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BOUNDARY VALUE PROBLEM FOR A CLASSICAL

SEMILINEAR PARABOLIC EQUATION

LI MA

Abstract. In this paper, we study the boundary value problem of the
classical semilinear parabolic equations

ut −∆u = |u|p−1
u, in Ω× (0, T )

and u = 0 on the boundary ∂Ω × [0, T ) and u = φ at t = 0, where
Ω ⊂ Rn is a compact C1 domain, 1 < p ≤ pS is a fixed constant, and
φ ∈ C2

0 (Ω) is a given smooth function. Introducing new idea, we show

that there are two sets W̃ and Z̃ such that for φ ∈ W , there is a global
positive solution u(t) ∈ W̃ with h1 omega limit {0} and for φ ∈ Z̃, the
solution blows up at finite time.
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1. Introduction

In this paper, we study the Dirichlet boundary value problem of the clas-
sical semilinear parabolic equation

(1) ut −∆u = |u|p−1u, in Ω× (0, T )

with u = 0 on the boundary ∂Ω × [0, T ) and u = φ at t = 0, where T > 0,
Ω ⊂ Rn is a compact C1 domain, p > 1 is a fixed constant, and φ ∈ C2

0 (Ω)
is a given smooth function. Assume that p ≤ pS = n+2

n−2 for n ≥ 3 and
p < ∞ for n = 1, 2. By the standard theory we know that there is a local
time positive solution to (1). With the help of Nehari functional, one may
find the threshold of the initial datum such that the solution either exists
globally or blows up in finite time. More interesting results about (1) can be
found in the recent work [1]. Since the equation (1) is a model problem, it
deserves to have more understanding. Introducing new idea, we show in this
paper that there are two new sets W̃ and Z̃ such that for φ ∈ W̃ , there is a
global positive solution in W̃ with the H1 omega limit 0 and for φ ∈ Z̃, the
solution blows up at finite time. We may extend the method used in this
paper to treat Neumann boundary value problem of semilinear parabolic
equation with negative power in [4]. To define the invariant set Z̃, we shall
use the fact that the cones

C+ = {u ∈ C1
0 (Ω);u ≥ 0, u 6= 0}

The research is partially supported by the National Natural Science Foundation of
China 10631020 and SRFDP 20090002110019.

1

http://arxiv.org/abs/1012.5861v1


2 LI MA

and
C− = {u ∈ C1

0 (Ω);u ≤ 0, u 6= 0}

are invariant sets of (1). This fact can be proved by applying the maximum
principle.

We now recall the standard way to construct the invariant sets for (1).
Formally, (1) has a Lyapunov functional; namely,

J(u) =

∫
1

2
|∇u|2 −

1

1 + p
up+1.

Here and after, we use
∫

to denote the integration over Ω. In fact, we may
consider (1) as the negative L2-gradient flow of the functional J(·). That is,
abstractly, (1) can be written as

ut = −J ′(u).

Hence, we have

d

dt
J(u(t)) =< J ′(u), ut >= −|ut|

2
2 = −|J ′(u)|2L2 .

Let f(u) = up and its primitive

F (u) =
up+1

p+ 1
.

Introduce the working space

Σ = {u ∈ H1
0 ;u 6= 0,

∫
F (u) < ∞}.

The condition
∫
F (u) < ∞ is always true by using the Sobolev inequality.

Define on Σ, the functional

M(u) =
1

2

∫
Ω
|u|2

and the Nehari functional

I(u) =

∫
|∇u|2 − uf(u) =

∫
|∇u|2 − |u|p+1.

Note that these two functionals are well-defined on Σ.
Along the flow (1) we can see that

(2)
d

dt
M(u) =

∫
uut = −I(u).

Let
d = inf{J(u);u ∈ Σ; I(u) = 0}.

Define
W = {u ∈ Σ;J(u) < d, I(u) > 0}

⋃
{0}

and
Z = {u ∈ Σ;J(u) < d, I(u) < 0}.

The classical result says that W and Z are invariant sets of (1); furthermore,
for 1 < p < pS and for any initial data φ ∈ W , the solution exists globally;
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for 1 < p ≤ pS and for any initial data φ ∈ Z, the solution blows up at finite
time. One may see [5] for more results and references.

We now introduce new functionals. For λ ∈ R+, define

Eλ(u) = J(u) + λM(u).

Then along the flow (1), we have

(3)
d

dt
Eλ(u) = −|J ′(u)|22 − λI(u).

From this, it is clear that for λ ≥ 0, we have

d

dt
Eλ(u) > 0

except |J ′(u)| = 0.
Introduce

dλ = inf{Eλ(u);u ∈ Σ; I(u) = 0}.

As in the case for the quantity d, we can give it the mountain-pass charac-
terization.

Assume it is finite at this moment. Define

Wλ = {u ∈ Σ;Eλ(u) < dλ, I(u) > 0}
⋃

{0}.

For convenient we set W0 = W . Arguing as in W , one can see that Wλ with
λ > 0 is non-empty.

Then by (3) and the standard argument we know that for λ ≥ 0, Wλ is a
invariant set of the flow (1).

One of our main results for (1) is to show the the following conclusion.

Theorem 1. Fix any power 1 < p < pS, we have for λ > 0 that
(1). dλ is finite, and dλ > d for λ > 0;
(2). for φ ∈ Wλ with λ ≥ 0, the flow exists globally and its omega limit

is {0}. Hence

W̃ :=
⋃
λ≥0

Wλ

is invariant set of (1).

We remark that since dλ > d, we know that the set Wλ is different from
the set W .

To find the set for blow-up solutions to (1), we need to use the comparison
argument. We shall restrict the initial data being positive. Let δ ≥ 0.
Consider the boundary value problem of the following semilinear parabolic
equation

(4) vt −∆v + δv = vp, u > 0, in Ω× (0, T )

with u = 0 on the boundary ∂Ω × [0, T ) and u = φ at t = 0, where T :=
Tmax(φ) > 0 is the maximal existence time of the solution v(t). Define on
Σ+ = Σ

⋂
C+,

Jδ(v) = J(v) + δM(v),
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Iδ(v) = I(v) + 2δM(v),

and on the set where {Iδ(v) = 0}

Eδ(v) = Jδ(v) = (
1

2
−

1

p+ 1
)

∫
|u|p+1.

Define
dδ = inf{Eδ(v); v ∈ Σ+, Iδ(u) = 0}.

For ǫ > 0,
dδ,ǫ = inf{Jδ(u);u ∈ Σ+; Iδ(u) = ǫ}

and
Zδ = {u ∈ Σ+;Jδ(u) < dδ, Iδ(u) < 0}.

Clearly, Zδ is non-empty and it is a invariant set of the flow (4). We remark
that one may make similar construction on Σ− = Σ

⋂
C−.

Theorem 2. Fix 1 < p ≤ pS. (1). For φ ∈ Zδ and φ ≥ vδ, the flow (v(t))
to (4) blows up in finite time.

(2). Let u(t) be the flow to (1) with the initial data φ as (1) above. Then
u(t) ≥ v(t) and u(t) blows up at some t < ∞.

As a consequence of Theorem 2, we have

Corollary 3. Set Z̃ =
⋃

δ≥0 Zδ. Then for any φ ∈ Z̃, the solution for (1)
blows up at finite time.

The results above will be proved in next section.

2. Global solution and finite time blow-up solution

We now prove Theorem 1.
(1). The finiteness of dλ can be obtained in the similar way as in [5].

Since 1 < p < pS , we know that dλ can also be achieved by some function
uλ(see [2] [3], or [6]). By this we know that dλ is different from d for λ > 0.
Hence, we have dλ > d for λ > 0.

(2). Since I(φ) > 0, we have I(u(t)) > 0 for all t ∈ [0, T ). For otherwise,
for some t > 0, I(u(t)) = 0. Using the definition of dλ, we have Eλ(u(t)) ≥
dλ. This is a contradiction to the fact that

d

dt
Eλ(u(t)) < 0, and Eλ(u(t)) < Eλ(φ) < dλ.

Using (2), we know that M(u(t)) < M(φ). With the help of the condition
Eλ(u(t)) < d and 1 < p < pS , we know that u(t) ∈ H1 is uniformly bounded
and bounding constant depends only on d, p, |Ω|, and M(φ).

The H1 omega limit at t = ∞ can be determined below. It is a classical
fact ([5]) that the H1 omega limit set ω(φ) consists of classical equilibria. If
v ∈ ω(φ), we have I(v) = 0. If v is nontrivial, we have

Eλ(v) ≥ dλ.

Impossible. Hence v = 0, that is, ω(φ) = {0}.
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This completes the proof of Theorem 1.
The remaining part of this section we give the proof of Theorem 2.

Proof. (Proof of Theorem 2). Introduce

A = inf{
|∇u|22 + δ|u|22

|u|2p+1

; u ∈ H1
0 (Ω), u 6= 0}.

Then it is easy to see that dδ =
p−1

2(p+1)A
(p+1)/(p−1) (see [2] [3], or [6]). Assume

that 0 6= v ∈ H1
0 (Ω) such that Iδ(v) = −ǫ. Then

(5) Eδ(v) =
p− 1

2(p + 1)

∫
(|∇v|2 + δv2)−

ǫ

p+ 1
.

Using the definition of A we have∫
(|∇v|2 + δv2) ≤

∫
|v|p+1 ≤ A−

p+1

2 (

∫
(|∇v|2 + δv2))

p+1

2 .

Hence, ∫
(|∇v|2 + δv2) ≥ A(p+1)/(p−1).

Combining this with (5) we have

(6) dδ,ǫ ≥ dδ −
ǫ

p+ 1
.

We now prove (1) in the statement of theorem 2.
(1). Take ǫ > 0 such that

ǫ < min(−Iδ(φ), dδ − Jδ(φ)).

Then using (3) and (6) we know that

Jδ(v(t)) ≤ Jδ(φ) < dǫ

for t ∈ [0, T ). Since Iδ(φ) < −ǫ, by using the definition of dδ,ǫ and the
continuity, we know that

Iδ(v(t)) < −ǫ.

Note that

Iδ(v) = 2Jδ(v)− (1−
2

p+ 1
)

∫
|v|p+1.

Assume that T = Tmax > 0 be the maximal time of the flow (v(t)). Assume
that T = ∞. On one hand, using similar formula to (2) we have

1

2

d

dt

∫
v2 = −Iδ(v) ≥ ǫ > 0,

and then ∫
v2 ≥

∫
φ2 + 2ǫt → ∞.

That is, M(v(t)) → ∞ as t → ∞.
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On the other hand,

1

2

d

dt

∫
v2 = −Iδ(v) ≥ −2dǫ + (1−

2

p+ 1
)

∫
|v|p+1.

Then we have

d

dt
M(v(t)) ≥ −2dǫ +C(p, |Ω|)M(v(t))

p+1

2

for some uniform constant C(p, |Ω|) > 0. Then using M(v(t)) → ∞, we
know that there exists T1 > 0 such that for any t > T1,

d

dt
M(v(t)) ≥

1

2
C(p, |Ω|)M(v(t))

p+1

2 .

However, this implies that T < ∞. A contradiction. Hence T < ∞ and
M(v(t)) → ∞ as t → T .

We shall prove (2) in the statement of theorem 2 by using the comparison
lemma. (2). Let Tmax < ∞ be the blow-up time of the flow (v(t)). Recall
that v(t) > 0 for t ∈ (0, Tmax). Let w(t) = u(t)− v(t), t < Tmax. Then w(t)
is bounded in any finite time before the blowing up time of the solution u(t).
Note that

(7) wt −∆w = pξp+1w + δv.

Recall that w(0) = 0 and w(t)|∂Ω = 0. Let w−(t) be the negative part
of w(t). Multiplying both sides of (7) by w−(t) and integrating over Ω by
w−(t), we get

d

dt

∫
|w−(t)|

2 = −

∫
|∇w−(t)|

2 + p

∫
ξ−p−1|w−(t)|

2 + δ

∫
vw−(t).

We remark that the last term is non-positive. Then we have

d

dt

∫
|w−(t)|

2 ≤ C

∫
|w−(t)|

2.

By the Gronwall inequality we know that
∫
|w−(t)|

2 = 0 for any t > 0.
Hence we have u(t) ≥ v(t) and then∫

u(t)2 ≥

∫
v(t)2 → ∞

as t → Tmax < ∞.
�
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