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0 DYNAMICS, SPECTRAL GEOMETRY AND TOPOLOGY

DAN BURGHELEA

ABSTRACT. The paper is an informal report on joint work with Stefan Haller on Dynamics
in relation with Topology and Spectral Geometry. By dynamics one means a smooth vector
field on a closed smooth manifold; the elements of dynamics ofconcern are the rest points,
instantons and closed trajectories. One discusses their counting in the case of a generic
vector field which has some additional properties satisfied by a still very large class of
vector fields.
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1. INTRODUCTION

This paper provides an informal presentation1 of results obtained in collaboration with
Stefan Haller; some of them have been already published in [3] and [5]. We follow here an
unpublished version [4] of the paper [3] which provides a slightly different formulation of
the results. There is an additional gain in generality of theresults presented in this paper.
The rest points of the vector fields under consideration rather than of "Morse type" are
"hyperbolic".

By dynamics we mean a smooth vector fieldX on a closed smooth manifoldM. The
elements of dynamics are the rest points, instantons and closed trajectories. In the case
of a generic vector field the rest points are hyperbolic and becauseM is closed they are
finitely many, but the instantons and closed trajectories are at most countable and possibly
infinitely many. However, under additional hypotheses, in each homotopy class of con-
tinuous paths between two rest points and in each homotopy class of closed curves there
are finitely many instantons respectively finitely many closed trajectories. Therefore the
instantons and closed trajectories can be counted by "counting functions" defined on the
set of corresponding homotopy classes. WhenM is connected, in the first case this set
is in bijective correspondence with the set of elements of the fundamental group and in
the second case with the set of conjugacy classes of elementsof the fundamental group.
For a still large class of vector fields the counting functions referred above have Laplace
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transforms with respect to some cohomology classesξ ∈ H1(M R) and these Laplace
transforms are holomorphic functions in some regions of thecomplex plane. These holo-
morphic functions can be described using differential geometry and topology.

In this paper we express these holomorphic functions in terms of geometric data in-
dependent of closed trajectories and instantons (Theorems3.2 and 3.3 below). We also
provide a precise description of the class of vector fields for which our results hold and
show that this class is large enough to insure that the results are relevant (Theorem 2.4
below). These results are not true for all vector fields but provide some patterns which
might be recognized in a much larger class of vector fields than the one we describe and
they deserve additional investigations.

Section 2 of this paper provides the definition of the above mentioned elements of dy-
namics and of the properties the vector fields are supposed tohave, in order to make our
theory work, and this section is referred to as Basics in Dynamics. Section 3 discusses the
spectral geometry needed to formulate the results stated inTheorems 3.2 and 3.3 which
provide directly or indirectly interpretation of the Laplace transform of the counting func-
tions of instantons and closed trajectories. Section 4 treats some relations with topology.
This section is very sketchy because more substantial results will need additional lengthy
definitions. We review only Novikov results about the rest points and Huchings-Lee and
Pajitnov results about closed trajectories. To find more of what we know at this time the
interested reader is invited to consult [5].

2. BASICS IN DYNAMICS

Let M be a smooth manifold,TM
p
→ M the tangent bundle andX a smooth vector

field. Recall that a smooth vector field can be regarded as a smooth mapX : M → TM
s.t.p ·X = id.

Any vector fieldX has a flowΨt : M → M, a smooth one parameter group of dif-
feomorphisms. We denote byθm : R → M, the unique trajectory which passes through
m ∈ M at t = 0, which is exactlyθm(t) := Ψt(m).

Rest points:The set of rest points is the setX = {x ∈ M |X(x) = 0} where the vector
fieldX vanishes.

At any such point the differential of the the mapX : M → TM defines the linear map

Dx(X) : TxM → TxM

with Tx(M) = p−1(x), as follows. Choose an open neighborhoodU of x in M , and a
trivialization of the tangent bundle aboveU , θ : TU → U × Tx(M), with θ|Tx(M) =

id. ConsiderXθ := pr2 ◦θ ◦ X : U → Tx(M) with pr2 the projection on the second
component. ClearlyXθ(x) = 0. Observe thatDx(X

θ) is independent ofθ, which justifies
the notationDx(X) := Dx(X

θ).

Definition 2.1. A rest pointx ∈ X is callednondegenerate = hyperbolicif the real part
ℜλ 6= 0 of each eigenvalueλ of Dx(X) is different from zero. Forx hyperbolic rest point
the number of the eigenvalues (counted with multiplicity) whose real part is larger than0
is called theMorse indexof x.
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Stable/Unstable sets:For a rest pointx the setW±
x := {y ∈ M | limt→±∞ θx(t) = x}

is called stable /unstable set. Ifx is nondegenerate and has Morse indexq then, by Perron-
Hadamard theorem [10],W+

x resp.W−
x is the image of a one to one immersion

i+x : R(n−q) → M,

resp.
i−x : Rq → M,

and is called thestable manifold resp.unstable manifoldof x.

Trajectories: A smooth mapθ : R → M is aparametrized trajectory if

dθ(t)/dt = X(θ(t)).

Two trajectoriesθ1 andθ2 are regarded as equivalent (θ1 ≡ θ2) if θ1(t) = θ2(t + a) for
some real numbera.

A nonparametrized trajectory is an equivalence class[θ] of parametrized trajectories.
If m′ = Ψt(m) the differentialDm(Ψt) : Tm(M) → Tm′(M) inducesD̂m(Ψt) :
Tm(M)/Tm(Γ) → Tm′(M)/Tm′(Γ) whereΓ denotes the trajectory containingm and
m′ and is referred to asPoincaré mapalongΓ.

An instanton between the rest pointsx andy is an isolated2 nonparametrized trajectory
[θ] with limt→−∞ θ(t) = x and limt→∞ θ(t) = y. The set of instantons fromx to y is
denoted byIx,y.

A closed trajectory is a pair ˆ[θ] = ([θ], T ) s.t.θ(t+T ) = θ(t). The numberT is called
the time period of ˆ[θ] as opposed to theperiod p([θ̂]) of ˆ[θ] introduced below. The set of
closed trajectories is denoted byC.

Nondegeneracy:

Definition 2.2. :

(a) A rest pointx ∈ X is called nondegenerate if is hyperbolic, in which case it has a
Morse indexind(x) ∈ Z≥0. The set of rest points of indexk is denoted byXk.

(b) An instanton[θ] from x to y, with x, y nondegenerate rest points is nondegenerate
if the mapsi−x andi+y are transversal at any point of[θ] ⊂ M. EquivalentlyW−

x ⋔

W+
y along[θ], in which caseind(x) − ind(y) = 1. Moreover, orientationsox of

W−
x andoy of W−

y induce an orientation of[θ] and implicitly a signǫox,oy([θ])
with

ǫox,oy([θ]) = +1 or − 1

if the induced orientation is consistent or not with the orientation fromx to y.

(c) A closet trajectory[θ̂] = ([θ], T ) is nondegenerate if the Poincaré map

D̂m(ΨT ) : Tm(M)/Tm(Γ) → Tm(M)/Tm(Γ)

induced from the linear mapDm(ΨT ) : Tm(M) → Tm(M) for somem (and then
for any otherm ∈ [θ]) satisfiesdet(D̂m(ΨT ) − λId) 6= 0, |λ| = 1. In this case
denote by

ǫ([θ̂]) = signdet(D̂m(ΨT)− Id).

2Isolated here means that there exists an open neighborhoodU of the underlying set of[θ] which does not
contain any other trajectory between these rest points.
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As the closed trajectory[θ̂] defines a map̂[θ] : S1 → M one denotes byK([θ̂]) the

set of integers so that̂[θ] factors by a self map ofS1 of degreek. Define theperiod

of [θ̂] by

p( ˆ[θ]) := supK(θ̂).

Definition 2.3. :
A closed one formω ∈ Ω1(M), ( d(ω) = 0) is calledLyapunov for X if:

(a) ω(X) ≤ 0 and
(b) ω(X)(x) = 0 iff X(x) = 0.

A Lyapunov formω which is Morse (i.e. locally is the differential of smooth function
with non degenerate critical points) is calledMorse–Lyapunov.

The cohomology classξ ∈ H1(M ;R) is called Lyapunov forX if it contains Lyapunov
forms forX.

It is straightforward to check that given a Lyapunov formω for X, a neighborhoodU
of X andr ≥ 2, one can find a smooth functionf arbitrary small inCr topology which
vanishes onX , has support inU, and withω′ = ω + df a Morse–Lyapunov form forX.
So if a vector field which satisfiesH (see below the definition ofH) has a Lyapunov form
ω it also has a Morse–Lyapunov formω′ arbitrary close toω.

Properties of a smooth vector field:

• G (Genericity)=H(Hyperbolicity) +MS(Morse Smale) +NCT(Nondegenerate closed
trajectories)

PropertyH requires all rest points are nondegenerate;
PropertyMS requires thati+x andi+y are transversal for any pair of rest points;
PropertyNCT requires that all closed trajectories are nondegenerate.

• L ( Lyapunov)
PropertyL is satisfied if the set of Lyapunov cohomology classes inH1(M ;R)

is nonempty, equivalently ifX admits a Lyapunov form.

Let X be a vector field which satisfies propertyH andg a Riemannian metric onM.
For anyx ∈ X denote byVol(Bx(r)) the volume of the ball centered at0 of radiusr in
Rindx w.r. to the pull back of the Riemannian metricg by i−x .

• EG(Exponential growth)
The vector fieldX has exponential growth propertyEG at the rest pointx if for

some ( and therefore every) Riemannian metricg onM there existsC > 0 so that
Vol(Bx(r)) ≤ eCr for all r ≥ 0. It has exponential growth propertyEG if it has
propertyEG at all rest points.

These properties are satisfied by a large class of vector fields, as the following theorem
indicates.

Theorem 2.4. 1. (Kupka–Smale) For anyr the set of vector fields which satisfyG is
residual in theCr topology.

2. (Smale) SupposeX is a smooth vector field which satisfiesL . Then in anyCr neigh-
borhood ofX there exists vector fields which coincide withX in a neighborhood ofX and
satisfyL andG = H+MS+NCT.

3. SupposeX is a smooth vector field which satisfiesL . Then in anyC0 neighborhood
of X there exists vector fields which coincide withX in a neighborhood ofX and satisfy
L,G, and EG.



DYNAMICS, SPECTRAL GEOMETRY AND TOPOLOGY 5

One expects the following Conjecture to be true.

Conjecture 2.5. Statement (3) in the theorem above remains true for an arbitrary r.

This is indeed the case forn = 2. In fact for the rest points of Morse index0, 1 andn
EG holds; in the case of index0 andn one has nothing to verify.

In [3] we have also considered a stronger version ofEG referred there asSEG. The-
orem 2.4 remains true forSEG replacingEG. PropertySEG is of the same nature but
takes a little longer to describe.

A very readable proof of Theorem 2.4 (1) is contained in [16].An inspection of the
proof of (1) leads easily to (2) which can also be derived froma slightly stronger version
of (1). The proof of (3) is considerably more elaborated. A complete proof is contained in
[3] and uses the work of Pajitnov [14].

In view of the compacity ofM PropertyL insures that there are only finitely many
rest points, PropertyMS insures that there are at most countable number of instantons and
PropertyNCT insures that there are at most countable number of closed trajectories.3

The following proposition is of crucial importance.

Proposition 2.6. SupposeX satisfiesG andω is Lyapunov forX representing the coho-
mology classξ. Then for any real numberR one has:

1. The set of instantons[θ] so that
∫
[θ] ω < R is finite.

2 . The set of closed trajectories[θ̂] so thatξ([θ̂]) < R is finite.

Statement (1) is due to Novikov [12]. Statement (2) is due to Fried and Hutchings-Lee
[8].

Proposition 2.6 indicates that despite their infiniteness,the instantons and the closed
trajectories can be counted with the help of counting functions. To explain this we need
additional definitions.

ForM a closed connected smooth manifold andx, y ∈ M define:

• Px,y :=homotopy classes of continuous paths fromx, y. This set can be put in
bijective correspondence to the fundamental group ofM.

• [S1,M ] the set of homotopy classes of continuous maps fromS1 to M. This set
is in bijective correspondence with the conjugacy classes of elements of the funda-
mental group ofM.

Let ξ ∈ H1(M ;R) andω a closed one form representingξ. Define

(a) ω(α) =
∫
α
ω, for α ∈ Px,y,

(b) ξ(γ) :=
∫
γ
ω, for γ ∈ [S1,M ].

LetX be a smooth vector field onM which satisfies PropertyG. As noticed the setXk

of rest points of Morse indexk is finite. Denote their number bynk.
Suppose in addition thatX has PropertyL .
In view of Proposition 2.6 forx ∈ Xk+1, y ∈ Xk, ox orientation ofW−

x andoy ori-
entation ofW−

y define the counting functionsIox,oy
x,y : Px,y → Z andZ : [S1,M ] → Q

by

Iox,oy
x,y (α) :=

∑
[θ]∈α

ǫox,oy([θ])

3In fact much more is true: For any positive real numberT the set of closed trajectories with time period
smaller thatT is finite and similarly the set of instantons whose needed time to go fromi−x (S−

x ) to i+y (S+
y ) is

smaller thanT is finite. HereS−

x resp.S+
y denote the unit sphere inRindx respRn−ind y .
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with [θ] instanton in the homotopy classα ∈ Px,y and

Z(γ) :=
∑
[θ̂]∈γ

ǫ([θ̂])/p([θ̂])

with [θ̂] closed trajectory in the homotopy classγ ∈ [S1,M ].

Laplace transform:
If ω is a closed one form representing a cohomology classξ one consider the following

formal expressions:

Iox,oy,ωx,y (z) =:
∑

α∈Px,y

Iox,oy
x,y (α)e−zω(α)

and

Zξ(z) =:
∑

γ∈[S1,M ]

Z(γ)e−zξ(γ)

and one can ask when they define holomorphic functions in someparts of the complex
plane.

Note that ifω′ = ω + dh then IO,ω
x,y (z) = ez(h(y)−h(x)IO,ω′

x,y (z), and a change of
the orientationsO might change the sign of the functionIO,ω

x,y (z). So an affirmative or
negative answer to the question above for the second formal expression depends only on
the cohomology class ofω.

Theorem 2.7. SupposeX satisfies G and L andO = {ox, x ∈ X} is a collection of
orientations of the unstable manifoldsW−

x .
1. If IO,ω

x,y (z) is absolutely convergent forℜz > ρ thenZξ(z) is absolutely convergent
for Rez > ρ.

2. If X satisfiesG, L andEG then there existsρ ∈ R so thatIO,ω
x,y (z) andZξ(z) are

absolutely convergent forℜz > ρ. Moreover, for anyu ∈ Xk+1 andw ∈ Xk−1∑
v∈Xk

IO,ω
u,v (z) · IO,ω

v,w (z) = 0.

Note that the formal sumsIO,ω
x,y (z) andZξ(z) are the Dirichlet series as defined in [17].

The first is associated with the discrete sequence of real numbersω(α), α ∈ Px,y and the
corresponding numbersIox,oy

x,y (α) ∈ Z ⊂ C. The second is associated with the discrete
sequenceξ(γ), γ ∈ [S1,M ] and the corresponding numbersZ(γ) ∈ Q ⊂ C. Proposition
2.6 insures that the formal sumsIO,ω

x,y (z) andZξ(z) are Dirichlet series and consequently
have an abscissa of convergenceρ ≤ ∞. They define holomorphic functions provided the
abscissa of convergence is6= ∞.

Theorem 2.7 is the general result of our work . Ultimately to prove it boils down to
show that the abscissa of convergence for the Dirichlet seriesIO,ω

x,y (z) andZξ(z) are finite.
For this purpose it suffices to consider these series forz a real parameter. This will bring
us to Witten deformation described in the next section.

Suppose thatX satisfiesG, L andEG andO = {ox, x ∈ X} is a collection of orienta-
tions for the unstable manifoldsW−

x , x ∈ X .
In view of Theorem 2.7 (2) one can use the functionsIO,ω

x,y (z) to define for any
z, ℜz > ρ a holomorphic family of cochain complexes with baseC∗(M,X, ω,O)(z) :=
(C∗(M,X), δ∗O,ω(z)) with
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• Ck((M,X) := Maps(Xk, C). The base is determined by characteristic functions
associated to the rest points.

• δ∗O,ω(z);C
∗(M ;X) → C∗+1(M,X), given by

δkO,ω(z)(f)(u) :=
∑
v∈Xk

Iωu,v(z)f(v), u ∈ Xk+1

If ω1, ω2 are two Lyapunov forms representing the same cohomology classξ andO1,O2

are two sets of orientations then there exists a canonical isomorphism between the cochain
complexes(C∗(M,X), δ∗O1,ω1

(z)) and(C∗(M,X), δ∗O2,ω2
(z)).

The isomorphism send the base element corresponding to the rest pointu into ±ezh(u)

with ω2 = ω1 + df with ± if o1,u is the same or not witho2,u. We can therefore de-
note this holomorphic family of cochain complexes, well defined up to an holomorphic
isomorphism, byC∗(M,X, ξ)(z).

3. SPECTRAL GEOMETRY

In this section we will describe a few results in geometric analysis and use them to ex-
press the holomorphic functionsIO,ω

x,y (z) andZξ(z) in terms of more geometric invariants.

Witten deformation:
Let ω be a real valued closed one form,Ω∗(M) the real or complex valued differential

forms andd∗ω(t) : Ω
∗(M) → Ω∗+1(M) the perturbed exterior differential defined by

d∗ω(t) := d+ tω∧

with t ∈ R. The family of cochain complexes of deRham type,(Ω∗(M), d∗ω(t)) is referred
to as the "Witten deformation" (of the deRham complex(Ω∗(M), d∗)).

Suppose thatM is endowed with a Riemannian metricg. Then a differential opera-
tor from Ω∗(M) to Ω∗(M), in particular ford∗ω(t) : Ω∗(M) → Ω∗+1(M), has a for-
mal adjoint(dω(t)♯)∗ : Ω∗(M) → Ω∗−1(M). Following Witten [18] consider∆ω

∗ (t) =
(dω(t)

♯)∗+1 · d∗ω(t) + dω(t)
∗−1 · (dω(t)

♯)∗ which is equal to

∆∗ + t(LX + L♯
X) + t2||X ||2

with X = − gradg(ω), LX the Lie derivative w.r. toX, L♯
X the formal adjoint ofLX and

||X ||2 the operator of multiplication by the square of the fiber-wise norm ofX.
The operators∆ω

∗ (t) are a zero order perturbation of∆q, the Laplace–Beltrami opera-
tors associated to the Riemannian metricg.

Recall that a closed one form is called Morse if locally is thedifferential of a function
with all critical points are nondegenerate. As already noticed ifX satisfiesH andL then it
admits Morse Lyapunov form.

We will consider the Witten deformation forω a closed Morse one form and a Riemann-
ian metric flat near the rest points4 of − gradg ω. Let nk be the number of rest points of
Morse indexk.

Proposition 3.1. There exists positive constantsC1, C2, C3, T so that fort ≥ T exactly
nk eigenvalues of∆ω,sm

k (t) counted with their multiplicity are smaller thatC1e
−C2t and

all others are larger thanC3t.

4We believe that the flatness requirement is not necessary butconsiderably more effort is needed to finalize
the arguments without this hypothesis.
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This is a known observation first made by Witten [18] for a Morse exact one form but
provable by the same arguments for a Morse closed one form.

As a consequence, fort large enough sayt > ρ, there is a canonical orthogonal decom-
position

(Ω∗(M); dω(t)) := (Ω∗(M)sm(M)(t), dω(t))⊕ (Ω∗(M)la(M)(t), dω(t))

which diagonalizes∆ω
∗ (t) i.e.,∆ω

∗ (t) = ∆ω,sm
∗ (t) ⊕ ∆ω,la

∗ (t) for t > ρ. The small resp.
large complex is generated by the eigenforms correspondingto the small resp. large eigen-
values i.e. the eigenvalues which fort > ρ are bounded from above resp. below by a
fix number, say1. The small complex(Ω∗(M)sm(M)(t), dω(t)) is finite dimensional with
dimΩk(M)sm(M)(t) = nk while the large complex is acyclic. The numberρ can be any
number which insures thatt > ρ impliesC1e

−C2t < 1 < C3t.

Theorem 3.2. SupposeX satisfiesG and EG, ω is Morse Lyapunov forX andO is a
collection of orientations of the unstable manifoldsW−

x , x ∈ X . Choose a Riemannian
metric onM which is flat near the rest points ofX. For anyx ∈ X let hx : Rindx → R be
the only smooth function which satisfiesdhx = (i−x )

∗(ω) andhx(0) = 0.
There existsρ′ > 0 so that :

(a) for anyt with t > ρ′, x ∈ X anda ∈ Ωindx(M) the integral∫
Rind x

e−thx(i−x )
∗(a) ∈ C

is absolutely convergent,
(b) the mapa 

∫
Rind x e

−thx(i−x )
∗(a) ∈ C defines the linear mapsIntk : Ωk(M) →

Ck(M ;X) which, when restricted to(Ωk(M)sm, provide an isomorphism from
(Ω∗(M)sm(M)(t), dω(t)) to C∗(M,X, ω,O)(t).

Theorem 3.2 identifies the cochain complexC∗(M,X, ω,O)(t), an object determined
by dynamics, to a subcomplex of(Ω∗(M), d∗ω(t)), precisely to(Ω∗(M)sm(M)(t), dω(t)).
Moreover(Ω∗(M)sm(M)(t), dω(t)) gets a canonical base, the image by(Int∗)−1 of the
base ofC∗(M ;X) determined by the rest points. Note that this base depends only on
the integration on unstable manifolds, the metricg and the closed one formω (which
ultimately determinesΩ∗

sm(M)(t)). However, if one regardsd∗ω(t) with respect to this
base as a matrix, its entries are exactly the functionsIO,ω

x,y (t) which count the instantons.
Theorem 3.2 is first proved forX = − gradg ω. To obtain the result as stated one needs

additional arguments. There is a qualitative difference between these two vector fields. At
rest points the linearization of the first vector field has alleigenvalues real numbers6= 0
while for the second vector field the eigenvalues can be complex numbers only with real
part 6= 0.

The invariant R:
Consider(M, g) a Riemannian manifold of dimensionn andω a closed one form. Let

Ψ(g) ∈ Ωn−1(TM \M ;π∗OM ) be the global angular form associated to the Riemannian
manifold(M, g) introduced by Mathai-Quillen [11]. Hereπ∗OM denotes the pull back of
the orientation bundleOM by tangent bundle map onTM \M.

Supposeω ∈ Ω1(M) is a real valued closed one form andX : M → TM a smooth
vector field with no rest points. In [3] and [6] the following quantity

R(X, g, ω) :=

∫
M

ω ∧X∗(Ψ(g))
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was introduced as a numerical invariant of the triple(X, g, ω). It was noticed that this
invariant can be extended to vector fields with isolated restpoints (in particular hyperbolic)
using a "geometric regularization" of the possibly divergent integral

∫
M\X

ω ∧X∗(Ψ(g)).

The invariant has a number of remarkable properties which have been presented in [6].

The function logV ol(t) :
RegardIntk(t) : Ωk(M)sm(t) → Ck(M,X) as an isomorphism between two finite

dimensional vector spaces equipped with scalar products5. The first with the scalar product
induced from the Riemannian metricg, the second with the only scalar product which
makes the base provided by the rest points orthonormal. Recall that for α : V → W an
isomorphism between two vector spaces with scalar products

logVol(α) = 1/2 log det(α♯ · α)

with α♯ the adjoint ofα. Write logVolk(t) := logVol(Intk(t)) and define

logVol(t) :=
∑

(−1)k log Volk(t). (1)

The Ray- Singer large torsionlogTla(t) :
Recall that for a positive self adjoint elliptic pseudo differential operator∆, the spec-

trum is a countable collection of positive real numbers0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤
λk+1 · · · . Ray and Singer have defined the regularized determinantdet∆ by the formula

log det∆ = −d/dss=0ζ
∆(s) (2)

whereζ∆(s), the zeta function of∆, is the analytic continuation of
∑

i(λi)
−s well defined

for ℜs > 0. It is known thatζ∆(s) is a meromorphic function in the entire complex plane
and has0 as a regular value. The definition can be applied to the operator∆ω,la

k (t). Define

logT la(t) := 1/2
∑
k

k(−1)k+1 log det∆ω,la
k (t) (3)

which is a real analytic function6 in t for t > ρ

Theorem 3.3. Supposeω is Morse Lyapunov forX, andX satisfiesG andEG andg is a
Riemannian metric flat near the rest points ofX . Then there existsρ > 0 so that fort > ρ

logTla(M, g, ω)(t)− logVol(t) + tR(g,X, ω) = ZX
[ω](t). (4)

The right side of the above equality is a dynamical quantity while the left side in a
spectral geometry quantity.

Next observe that the family of operators

∆ω
q (z) = ∆q + z(LX + L∗

X) + z2|| gradg ω||
2

is a selfadjoint holomorphic family of type A in the sense of Kato [9], and therefore there
exists a family of functionsλn(z) and a family of differential formsan(z) ∈ Ω(M)q both
holomorphic inz in a neighborhood of[0,∞) in the complex plane so that

(a) λn(z)
′s exhaust the eigenvalues of∆ω

q (z),
(b) an(z) is an eigenform corresponding to the eigenvalueλn(z).

5If the vector space is overC then "scalar product" means "Hermitian scalar product".
6Actually e2 log Tla(t) can be extended to a holomorphic function inz for ℜz > ρ.
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As a consequence the left side of equality (4) has an analyticcontinuation to a neighbor-
hood of[0,∞) and since the right side is a well defined holomorphic function forℜz > ρ
so is the left side. It also follows from Kato’s theory that:

Theorem 3.4.The two complexes(Ω∗(M)sm(M)(t), dω(t)) and(Ω∗(M)la(M)(t), dω(t))
have analytic continuation to a neighborhood of[0,∞).

One expects this to be the case forℜz > 0.

The proofs of Theorems 3.2 and 3.3 are contained in [4] and canbe also derived from
[3] while Theorem 3.4 is a consequence of Kato’s theory.

Theorems 3.2, 3.3 and 3.4 can be generalized. Both the deRhamcomplex(Ω∗(M), d∗)
and the Witten deformationΩ∗(M), d∗ω(t) = d∗+ tω∧ can be twisted by a closed complex
valued one-formη. Precisely(Ω∗(M), d∗) can be replaced by(Ω∗(M), d∗η = d∗ + η∧)
and(Ω∗(M), d∗ω(t) = d∗ + tω∧) by (Ω∗(M), d∗η;ω = d∗ + (η + tω)∧).

Theorems 3.2, 3.3 and 3.4 remain true with proper modification. For example the
conclusion of Theorem 3.3 remains the same by replacingtω by η + tω andZ [ω](z) by
Z [η];[ω](z) with

Zξ1.ξ2(z) =:
∑

γ∈[S1,M ]

Z(γ)e−(ξ1+zξ2)(γ)

for ξ1 ∈ H1(M ;C), ξ2 ∈ H1(M ;R). An equivalent form of this stronger result is proved
in [3].

An interesting particular case:
If X has no rest points thenG andEG reduce toNCT i.e. all closed trajectories are non-

degenerate. Moreover(Ω∗(M), d∗ω(t)) = (Ω∗
la(t), d

∗
ω(t)) and for anyt > 0 the operator

∆ω
k (t) is invertible and therefore positive for anyk.
The following statement is a minor improvement of a result ofJ. Marksick [4].

Corollary 3.5. SupposeX is a smooth vector field with no rest points andξ ∈ H1(M ;R)
andω a Lyapunov form representingξ andg a Riemannian metric onM. Suppose that all
closed trajectories are nondegenerate. Denote by

logTan(t) := 1/2
∑
q

(−1)q log det∆ω
q (t).

Then

logTan(t) + t

∫
ω ∧X∗(Ψg) = Zξ(t).

Corollary 3.5 is a particular version of Theorem 3.3.

4. TOPOLOGY

In this section we review results relating elements of dynamics with topological invari-
ants.

Twisted cohomologyH∗(M ; ξ):
Recall that a cohomology classξ ∈ H1(M ;C) permits the definition of twisted coho-

mologyH∗(M ; ξ). This can be defined in any setting, simplicial, singular, Cech, deRham.
All settings lead to isomorphic vector spaces at least for a smooth manifoldM. The deR-
ham version ofH∗(M ; ξ) is defined as the cohomology of the complex of smooth differ-
ential forms equipped with the differentiald∗η : Ω∗ → Ω∗+1 with dη = d+ η ∧ . Hereη is
a closed one form representingξ (in de Rham cohomology). The twisted cohomology for
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t[ω] ∈ H1(M : R) ⊂ H1(M ;C) is therefore the cohomology of the complex(Ω∗, d∗ω(t))
in Witten deformation. It is not hard to see that givenξ the dimension ofH∗(M ; zξ)

changes for only finitely manyz so we writeβξ

q
for dimHq(M ; tξ) for t large. The fol-

lowing well known result of Novikov provides strong restrictions for the numbers of rest
points of a vector field which satisfiesH, MS andL .

Theorem 4.1. (Novikov)
If X satisfiesH, MS andL with ξ a Lyapunov class forX then:

nk ≥ βξ

k∑
0≤k≤r

(−1)knk ≥
∑

0≤k≤r

βξ

k
, r even

∑
0≤k≤r

(−1)knk ≥
∑

0≤k≤r

βξ

k
, r odd.

Torsion:
The cochain complex(C∗(M ;X), δ∗O,ω, (z)) is equipped with a base and has well de-

fined torsion not explained here in the full generality. In case that thez[ω]-twisted co-
homology is trivial the torsion is a complex number defined upto a sign and its square
depends holomorphically onz. The domain of this function consists of the complex num-
bersz with H∗(M ; z[ω]) = 0 which is the complement of a finite set provided that is
nonempty.

The cohomology classzξ, ξ ∈ H1(M ;C) can be interpreted as a rank one complex
representation of the fundamental group. The manifoldM equipped with this representa-
tion and with anEuler structurehas aMilnor–Turaev torsionnot described in this paper.
In case that thezξ-twisted cohomology is trivial the Milnor–Turaev torsion is a complex
number defined up to sign and its square depends holomorphically on z. The domain of
this function consists of the complex numbersz with H∗(M ; zξ) = 0. The vector fieldX
and some minor additional data determine an Euler structure.

It is possible to show that ifX satisfiesG, L andEG with ξ = [ω] a Lyapunov coho-
mology class forX then the torsion of(C∗(M ;X), δ∗O,ω(z)) multiplied by the function

eZ
ξ(z) is essentially the Milnor–Turaev torsion ofM, zξ and the Euler class defined byX.

For more details consult [5]. This relates the functionsIO,ω
x,y (z), Zξ(z) and the topology.

The statement above is a reformulation and a minor extensionof results of Hutchings–Lee
and Pajitnov [8] and [15] which will not be explained here in details. However, we will
explain below this statement in caset is a real number.

SupposeH∗(M ; tω) = 0 for t > ρ. For sucht, ∆ω
∗ (t) and then∆ω,sm

∗ , are invertible
and therefore have non vanishing determinants. The determinant of∆ω

k refers to theζ−
regularized determinant as explained in the previous section and defined by formula (1).
In particular, we havelogTan(t) andlogTsm(t) defined by the formula (2) in the previous
section. Clearly

logTan(t) = logTsm(t) + logTla(t). (5)



12 DAN BURGHELEA

The cochain complex(C∗(M ;X), δ∗O,ω, (z)) has a base and therefore we can regard its
components as equipped with the scalar product which makes the base orthonormal and
implicitly define the corresponding Laplacians∆X(t).

Note also that by Theorem 2.7 the cohomology of the finite dimensional cochain com-
plex (C∗(M ;X), δ∗O,ω, (z)) for t large (t > sup{ρ, ρ′}) is trivial and then by formula (3)
defineslog TX(t) for t large. AslogVol(t) = logTsm(t) − logTω

X(t) combining (4) and
(5) one concludes that :

logTan(t)− tR(M,ω, g) = logTX(t) + Z [ω](t)

which, in the caseX satisfies in addition toG andL the propertyEG, is a generalization
of Marsick’s result to the case whenX has rest points. This statement is equivalent via the
work of Bismut–Zhang [1] to an analytic version of Hutchings- Lee Pajitnov theorem.
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