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MODIFICATION OF THE SIMPSON MODULI SPACE M3m+1(P2) BY
VECTOR BUNDLES (I)

OLEKSANDR IENA AND GÜNTHER TRAUTMANN

Abstract. We consider the moduli space of stable vector bundles on curves embedded

in P2 with Hilbert polynomial 3m+ 1 and construct a compactification of this space by

vector bundles. The result M̃ is a blow up of the Simpson moduli space M3m+1(P2).
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1. Introduction

1.1. Motivation. Simpson showed in [12] that for an arbitrary smooth projective variety

X and for an arbitrary numerical polynomial P ∈ Q[m] there is a coarse moduli space

M := MP (X) of semi-stable sheaves on X with Hilbert polynomial P , which turns out

to be a projective variety.

In many cases M contains an open dense subset MB whose points consists of sheaves

which are locally free on their support. So, one could consider M as a compactification

of MB. We call sheaves in the boundary M rMB singular. It is an interesting question

whether and how one could replace the boundary of singular sheaves by one which consists

entirely of vector bundles with varying and possibly reducible supports.

In this paper we answer this question for the moduli space M = M3m+1(P2) of stable

sheaves supported on cubic curves in the projective plane having Hilbert polynomial

P (m) = 3m+ 1. This is the first non-trivial case of 1-dimensional sheaves on surfaces. It

turns out that the blow up M̃ ofM along the locus of singular sheaves is a compactification

in the above sense. Even so this is only a first example it leads to several interesting

constructions which might be helpful in more general situations.

1.2. Summary of the paper. The moduli space M = M3m+1(P2) is completely under-

stood see [6], [3], [2]. The sheaves in M will be called (3m+ 1)-sheaves. Their supports

are defined by the their Fitting ideals. M is smooth of dimension 10 and isomorphic to

the universal cubic curve. The subvariety M ′ of singular sheaves is a smooth subvariety

in M of dimension 8. To indicate this, we will denote it by M8.
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Figure 1. Surface D(p) and support of R-bundles.

For a singular (3m+ 1)-sheaf F there is only one point p ∈ C ′ = SuppF , where F is

not OC′-free. This point is a singular point of the curve C ′.

For each point p of the projective plane, we introduce a reducible surfaceD(p) consisting

of two irreducible components D0(p) and D1(p), D0(p) being the blow up of the projective

plane at p and D1(p) being another projective plane, such that these components intersect

along the line L(p) which is the exceptional divisor of D0(p). Each surface D(p) can be

defined as the subvariety in P2 × P2 with equations u0x1, u0x2, u1x2 − u2x1 where the xi

resp. ui are the homogeneous coordinates of the first resp. second P2, such that the first

projection contracts D1(p) to p and describes D0(p) as the blow up. We let OD(p)(a, b)

denote the invertible sheaf induced by OP2
(a)⊠OP2

(b).

For every singular (3m + 1)-sheaf we introduce a family of coherent 1-dimensional

sheaves on D(p), locally free on their (Fitting-)support. We call the objects of this family

R-bundles.

Definition 1.1. An R-bundle associated to a singular (3m + 1)-sheaf F with singular

point p is a coherent 1-dimensional sheaf E on D(p) subject to the following conditions.

• E is locally free on its support C = Supp E .

• There is an exact sequence

(1) 0 → 2OD1(p)(−L)
̺
−→ σ∗

p(F)
θ
−→ E → 0.

• E|D0(p) has Hilbert polynomial 4m+ 1 with respect to the sheaf OD0(p)(1, 1).

R-bundles turn out to be flat limits of non-singular (3m+1)-sheaves, hence they can be

seen as reasonable replacements for singular (3m+ 1)-sheaves. R-bundles are supported

on reducible curves of the type C = C0 ∪ C1, where Ci = C ∩ Di(p). The curve C0

coincides in most of the cases with the proper transform of C ′ = SuppF under the blow

up D0(p) → P2, in general it is a subvariety of the total transform of C ′. The curve C1 is

a conic in the projective plane D1(p) bearing the degree of an R-bundle.

For R-bundles we introduce the following equivalence relation, which is an “embedded”

version of Definition 4.1, (ii) from [11] (see also [7] and [8]).

Definition 1.2. Let E1 and E2 be two R-bundles on D(p) associated to the same singu-

lar sheaf. We call them equivalent if there exists an automorphism φ of D(p) that acts

identically on D0(p) and such that φ∗(E1) ∼= E2.

The main result of this paper is the following theorem.
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Theorem 1.3. The set of equivalence classes of R-bundles on D(p) associated to the

same singular (3m + 1)-sheaf F is in a natural bijection with the projectivised normal

space PN[F ] of the normal space N[F ] = T[F ](M)/T[F ](M8) to M8 at the point [F ] ∈ M8.

This justifies the following interpretation.

Corollary 1.4. The blow up M̃ of M along M8 is the space of all the isomorphism

classes of the non-singular (3m + 1)-sheaves together with all the equivalence classes of

all R-bundles, which are the points of the exceptional divisor.

In section 7 we construct a “universal” flat family of non-singular (3m+1)-sheaves and

R-bundles over M̃ whose members are representatives of the equivalence classes of those

sheaves. One can expect that under an appropriate notion of families of non-singular

(3m + 1)-sheaves together with R-bundles the blow up M̃ represents the corresponding

moduli functor.

1.3. Structure of the paper. In Section 2 we collect the essential facts about the moduli

space M3m+1(P2). Details and technicalities necessary to define R-bundles are discussed

in Section 3. In Section 4 we discuss the most important properties of R-bundles. Using

them we prove then the main result in Section 5. Examples of R-bundles are considered in

Section 6. In Section 7 we construct parameter spaces for all non-singular (3m+1)-sheaves

(up to isomorphism) and all R-bundles (up to equivalence).

1.4. Some notations and conventions. In this paper k is an algebraically closed field

of characteristic zero. We work in the category of separated schemes of finite type over

k and call them varieties, using only their closed points. Note that we do not restrict

ourselves to reduced or irreducible varieties. Dealing with homomorphism between direct

sums of line bundles and identifying them with matrices, we consider the matrices acting

on elements from the right, i. e, the composition X
A
−→ Y

B
−→ Z is given by the matrix

A · B.

2. Moduli space M := M3m+1(P2)

Let us recall here some of the results from [3]. We consider stable sheaves on P2 with

Hilbert polynomial 3m+ 1 and call them simply (3m+ 1)-sheaves. Every (3m+ 1)-sheaf

F defines a non-trivial extension

0 → OC → F → kp → 0,

where C is a cubic curve supporting F and kp is the skyscraper sheaf at p ∈ C of length

1, whereby h0(F) = 1.

There exists a fine moduli space M = M3m+1(P2) of (3m+1)-sheaves. M is projective,

nonsingular of dimension 10 and is isomorphic to the universal cubic

{(〈f〉, 〈x〉) ∈ P9 × P2 | f(x) = 0},

where P9 is identified with the space of cubic curves in P2. The map underlying this

isomorphism is given by [F ] 7→ (C, p).

The (3m+ 1)-sheaves on P2 are exactly the sheaves given by locally free resolutions

0 → 2OP2
(−2)

A
−→ OP2

(−1)⊕OP2
→ F → 0,
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where

(2) A =

(
z1 q1
z2 q2

)

with linear independent linear forms z1, z2 ∈ Γ(P2,OP2
(1)) and non-zero determinant.

The space of all such matrices is a parameter space of M and is denoted by X . X is

isomorphic to an open subset in k18 and is acted on by the group

G = GL2(k)×H,

where H is the group of 2× 2 matrices
(
λ z

0 µ

)
, λ, µ ∈ k, λµ 6= 0, z ∈ Γ(P2,OP2

(1)).

The action is defined by the rule (g, h) · A = gAh−1. M is a geometric quotient of X by

G, the quotient morphism X
ν
−→ M is

A =

(
z1 q1
z2 q2

)
7→ 〈detA〉 × p(A),

where p(A) := 〈z1 ∧ z2〉 denotes the common zero point of z1 and z2 in P2.

A (3m + 1)-sheaf is called singular if it is not locally free on its support. A point

〈f〉 × p ∈ M represents an isomorphism class of a singular sheaf if and only if p is a

singular point of the curve {f = 0} ⊂ P2. The subvariety of all singular sheaves in M is

denoted by M8. It is easy to verify that M8 is smooth of codimension 2 in M .

The corresponding subvariety in X is denoted by X8. A matrix A as in (2) belongs to

X8 if and only if q1(p(A)) = q2(p(A)) = 0. These two conditions give two global equations

of X8 in X and one concludes that X8 is a global complete intersection in X , smooth of

codimension 2.

Let x0, x1, x2 ∈ Γ(P2,OP2
(1)) be fixed coordinates of P2. Then a matrix A from (2)

with z1 = x1, z2 = x2 belongs to X8 if and only if

(3) A =

(
x1 x1y1 + x2y2
x2 x1z1 + x2z2

)

for some linear forms yi, zi ∈ Γ(P2,OP2
(1)), i = 1, 2.

Let M̃ → M be the blow up of M along M8. Since M8 is smooth of codimension 2 in

M , the exceptional divisor EM of the blow up M̃ → M is isomorphic to the projective

normal bundle PNM8/M . Let X̃
α
−→ X be the blowing up of X along X8. Since X8 is

defined by two global equations, X̃ may be considered as a subvariety in X×P1 such that

the exceptional divisor EX of X̃
α
−→ X may be identified with X8 × P1.

Note that X8 is invariant under the action of G. Therefore, since the blowing up

α : X̃ → X is an isomorphism over X rX8, we obtain an action of G on X̃ r EX . This

action can be uniquely extended to an action of G on X̃. An element (g, h) ∈ G acts by

the rule

(g, h) · (A, 〈t3, t4〉) = (gAh−1, 〈(t3, t4)g
T〉).

We obtain the following commutative diagram

G× X̃ //

id×α

��

X̃

α

��

G×X // X.



MODIFICATION OF THE SIMPSON MODULI SPACE M3m+1(P2) BY VECTOR BUNDLES 5

Note that for an arbitrary point (A, 〈t3, t4〉) ∈ X̃ its stabilizer is the subgroup

St = {( λ 0
0 λ )× ( λ 0

0 λ ) | λ ∈ k∗} .

Therefore, we can consider the corresponding free action of the group PG = G/St on X̃.

Note that since ν−1(M8) = X8, we obtain a unique lifting ν̃ of ν, i. e., the commutative

diagram

X̃ M̃

X M.
ν

//
�� ��

∃! ν̃
//

Then ν̃ : X̃ → M̃ is G-invariant and the set of the orbits coincides with the set of the

fibres ν̃−1(ξ), ξ ∈ M̃ . In a neighbourhood of every point of M̃ there is a local section of

ν̃. Using this and Zariski main theorem one shows that X̃ is a principal PG-bundle over

M̃ . Hence M̃ is a geometrical quotient.

3. Definition of R-bundles and their properties

Surfaces D(p). Let p be a point in P2. Let σp : Bl0×p(k× P2) → k× P2 be the blow up

of k× P2 at 0× p. Consider the composition of σp with the canonical projection onto k

Bl0×p(k× P2)
σp

−→ k× P2
pr1
−−→ k.

Denote by D(p) the fibre over 0. It is a reducible projective surface consisting of two

irreducible components D0(p) and D1(p). The first is isomorphic to the blow up Blp P2

of P2 at p, the second is a projective plane P2. Their intersection L(p) = D0(p) ∩D1(p)

is the exceptional divisor of D0(p) and is a projective line in D1(p) (see Figure 1). The

restriction σp|D(p) contracts D1(p) to p and is the blow up D0(p) → P2 at p.

Invertible sheaves on D(p) and their cohomology. Note that all surfaces D(p) are

isomorphic to each other. Each surface D(p) comes as a closed subvariety of P2×P2 such

that σp is the restriction of the first projection to P2.

D(p)

P2 × P2 P2P2

D0(p) D1(p)

{p}

��

��
σp

{{ww
ww

ww
ww

w

pr1
oo

pr2
//

σp

��

∼=
��

oooo// //

σp

��

// //

As a subvariety in P2 × P2 every surface D(p)

has two different twisting sheaves on D(p), namely

OD(p)(1, 0) = OP2×P2
(1, 0)|D(p), and OD(p)(0, 1) =

OP2×P2
(0, 1)|D(p). We can also define the following

two divisors H and F on D(p) by OD(p)(H) =

OD(p)(1, 0) and OD(p)(F ) = OD(p)(0, 1). In other

words H is defined by the pull-back of a line h ⊂ P2

in the first P2 and F is defined by the pull-back of

a line f ⊂ P2 in the second P2.

Let u0, u1, u2 be the coordinates of the second P2 and let us choose the coordinates

x0, x1, x2 of the first P2 such that p = 〈1, 0, 0〉. Then the surface D(p) is given by the

equations

x1u2 − x2u1 = 0, x1u0 = 0, x2u0 = 0

with D0(p) = {u0 = 0}, D1(p) = {x1 = x2 = 0}. The canonical lifting homomorphisms

Γ(P2,OP2
(h)) → Γ(P2,OD(p)(H)), Γ(P2,OP2

(f)) → Γ(P2,OD(p)(F ))

are isomorphisms. By abuse of notation we denote the images of the homogeneous coor-

dinates also by x0, x1, x2 ∈ Γ(P2,OD(p)(H)) respectively u0, u1, u2 ∈ Γ(P2,OD(p)(F )), each
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forming a basis. Then we still have the equations x1u2− x2u1 = 0, x1u0 = 0, x2u0 = 0 on

D(p) with D0(p), D1(p) as above.

One can show (cf. [5]) that the line bundles OD(p)(H) and OD(p)(F ) are free generators

of the Picard group of D(p). More precisely, the map

Z⊕ Z → Pic(D(p)), (a, b) 7→ [OD(P )(aH + bF )].

is a group isomorphism.

We will denote the restrictions of the divisors H and F to Di(p), i = 0, 1, by Hi and Fi

respectively. Note that H1 ∼ 0, so H = H0. If it does not cause any misunderstandings,

we will often write just H and F for the restrictions Hi and Fi. The intersection line L(p)

as a divisor in D0(p) respectively in D1(p) will be denoted by L0(p) respectively L1(p).

There are equivalences of divisors L1(p) ∼ F1 and L0(p) ∼ H0 − F0. The intersection

numbers are given by

L0(p)
2 = −1, L1(p)

2 = 1, H0.F0 = 1, H0.L0(p) = 0,

F0.L0(p) = 1, F1.L1(p) = 1, F 2
0 = 0, F 2

1 = 1.

Proposition 3.1. (i) The Euler characteristic of the invertible sheaf OD(p)(aH + bF ) is

given by the formula χ(OD(p)(aH + bF )) = 1
2
(a + b)2 + 3

2
(a+ b) + 1.

(ii) The Hilbert polynomial of OD(p)(aH + bF ) with respect to the invertible sheaf L =

OD(p)(H + F ) equals

(4) 2m2 + [2(a + b) + 3] ·m+
1

2
(a+ b)2 +

3

2
(a+ b) + 1.

(iii) Higher cohomology groups vanish for the following sheaves:

OD(p)(−2F ), OD(p)(−H), OD(p)(−F ), OD(p), OD(p)(H − F ), OD(p)(−H + F ),

OD(p)(H), OD(p)(F ), OD(p)(−H − F ), OD(p)(H + F ), OD(p)(H + 2F ),

hence their h0 can be computed using the formula above.

Some key tools for the proof. All the statements of Proposition 3.1 can be directly verified

using the following observations.

For a locally free sheaf G on D(p) there is the “gluing” exact sequence

0 → G → G|D0(p) ⊕ G|D1(p) → G|L(p) → 0

and in particular the exact sequences

(5) 0 → OD(p)(aH + bF ) → OD0(p)(aH0 + bF0)⊕OD1(p)(bF1) → OL(b) → 0, a, b ∈ Z.

The cohomology of the sheaves OD(p)(aH + bF ) can be deduced from (5) and the exact

sequences

0 → OP2×P1
(a− 1, b− 1) → OP2×P1

(a, b) → OD0(p)(aH0 + bF0) → 0

describing the embedding D0(p) ⊂ P2 × P1 with equation u1x2 − u2x1 = 0 using the

Künneth formulas (see [10]) for P2 × P1. �
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Some canonical homomorphisms. In the following we need some canonical homo-

morphisms related to the reducible surface D(p):

• There is a canonical section OD(p)
s
−→ OD(p)(H−F ) induced by the canonical section

of the canonical divisor L0 ∼ H − F0 via the gluing sequence (5), vanishing along

D1(p).

• For any a ∈ Z there is the homomorphism OD1(p)
u0−→ OD(p)(aH + F ) induced by

the diagram

0 OD(p)(aH + F ) OD0(p)(aH0 + F0)⊕OD1(p)(F1) OL(1) 0

OD1(p)

// // // //

u0

tti i i i i i i i i i

(0,u0)
��

because u0 is the equation of L in D1(p).

• Using the gluing sequence (5) one obtains the exact sequence

0 → OD1(p)(−F1)
u0−→ OD(p)(aH)

s
−→ OD(p)((a + 1)H − F )

r1−→ OD1(p)(−F1) → 0,

where r1 denotes the restriction homomorphism to D1(p).

• The sections x1, x2 of OD(p)(H) factorize as xν = uν ◦ s:

(6) OD(p)(−H) OD(p).

OD(p)(−F )

xν
//

s
��

??
??

??
?

uν

??�������

R-bundles and their properties. We define R-bundles as in Definition 1.1. In addition

to the three items in the definition, R-bundles have four other properties, which will be

derived at the end of Section 4.

Proposition 3.2. Let E be an R-bundle and let Ci = Di(p) ∩ C, i = 0, 1, be the compo-

nents of its support. Then

1) E has a locally free resolution

(7) 0 → 2OD(p)(−H − F ) −→ OD(p)(−H)⊕OD(p) → E → 0.

2) The restriction of (7) to D1 = D1(p) induces a resolution

0 → 2OD1(p)(−L) −→ 2OD1(p) −→ ED1(p) → 0

such that E|D1(p) is a semistable (2m + 2)-sheaf on D1(p) ∼= P2 with Supp(E|D1(p))

a conic.

3) E|D0(p) is isomorphic to the structure sheaf OC0
with the resolution

0 → OD0(p)(−2F0 −H0) −→ OD0(p) −→ OC0
→ 0.

4) h0E = 1, and the non-zero section gives rise to a non-trivial extension sequence

0 → OC → E → kq → 0,

where q ∈ C1 r L is uniquely determined by E .

Remark 3.3. Let E be an R-bundle. Let C ′ be the cubic curve C ′ = SuppF . Note that

the curve C0 is a subvariety of the total transform of C ′ under the blow up D0(p) → P2.

In most of the cases it is the proper transform of C ′. Therefore, the restriction map

σp : C0 → C ′ may be considered as a “partial normalization” of C ′.
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Remark 3.4. Note that the properties 1) and 4) of Proposition 3.2 are analogous to

those of the (3m+ 1)-sheaves. The degree 1 sheaf F on C ′ is replaced by E whose degree

has been shifted to the additional curve C1 with ED1
a (2m+2)-sheaf and a vector bundle

of degree 1 on C1.

Remark 3.5. 1) Note that the restriction of resolution (7) to the component D1(p) = P2

is a Beilinson resolution of E|D1(p) on P2.

2) One can also show that the restriction of (7) to D0(p) is the resolution of Beilinson

type, see [1], Theorem 8.

Remark 3.6. Note that σp∗σ
∗
p(F) ∼= F for every (3m + 1)-sheaf F . Applying σp∗ to

sequence (1) and using that R0σp∗OD1(p)(−L) = R1σp∗OD1(p)(−L) = 0 we obtain the

isomorphism σp∗E
∼= F .

The proof of Proposition 3.2 will be a consequence of the description of R-bundles as

flat limits of non-singular (3m+ 1)-sheaves in the following section.

4. R-bundles as 1-dimensional degenerations of (3m+ 1)-sheaves.

Let A be a matrix in X8 and let B be a matrix representing a morphism 2OP2
(−2) →

OP2
(−1)⊕OP2

. Recall (cf. Section 2) that A and B can be considered as elements in k18.

Consider the morphism

lB : k → k18, t 7→ A + tB.

Let T = l−1
B (X). This way we obtain the morphism

(8) lB := lB|T : T → X.

By the property of the spaceM we obtain a (3m+1)-familyF over T with the resolution

(9) 0 → 2OT×P2
(−2H)

A+tB
−−−→ OT×P2

(−H)⊕OT×P2
→ F → 0.

Here H is represented by the pull-back of a line h ⊂ P2. We choose h such that the point

p does not lie on h. By shrinking T we can also assume that A + tB ∈ X r X8 for all

t ∈ T , t 6= 0. In other words, the restrictions F t of the sheaf F to the fibres t× P2
∼= P2

are non-singular (3m+ 1)-sheaves for all t ∈ T , t 6= 0. So the singular (3m+ 1)-sheaf F0

is a flat 1-parameter degeneration of non-singular (3m+ 1)-sheaves.

Let p = p(A) and consider the blow up Z := Bl0×p(T × P2)
σ
−→ T × P2. As above we

denote the exceptional divisor of σ by D1 = D1(p). By abuse of notation the lifting of

the divisor H ⊂ T × P2 is again denoted by H .

Remark 4.1. Letting xi denote the homogeneous coordinates of P2, such that the point

p has the equations tx0, x1, x2, Z is embedded in T × P2 × P2 with equations

tx0u1 − x1u0, tx0u2 − x2u0, x1u2 − x2u1,

where the ui are the coordinates of the second P2. It follows that the fibre Z0 for t = 0

equals D(p), see section 3.

Note that the morphism Z
σ
−→ T × P2

pr1
−−→ T is flat. Indeed, since both Z and T are

regular, dimZ = 3, dimT = 1, and dimZt = 2 = dimZ−dim T for all t ∈ T , this follows

from [4], 6.1.5. Applying σ∗ to sequence (9) we obtain the sequence

0 → 2OZ(−2H)
σ∗(A+tB)
−−−−−−→ OZ(−H)⊕OZ → σ∗(F) → 0,
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which remains exact because the sheaf OZ(−2H) is locally free and, therefore, has no

torsion. There is a canonical section s ∈ Γ(Z,OZ(D1)), which gives us the exact sequence

0 → OZ(−D1)
s
−→ OZ → OD1

→ 0.

Tensoring with OZ(D1 − 2H) one gets the exact sequence

0 → 2OZ(−2H)
( s 0
0 s )−−−→ 2OZ(−2H +D1) → 2OD1

(−L) → 0.

We use here that H and D1 do not meet (our choice of H) and that OD1
⊗ OZ(D1) ∼=

OD1
(−L) (properties of blow ups).

Note that A+ tB vanishes at 0× p. Therefore, the morphism σ∗(A+ tB) vanishes on

D1 and hence factorizes uniquely through s, i. e., there exists

2OZ(−2H +D1)
φ(A,B)
−−−−→ OZ(−H)⊕OZ

such that the diagram

2OZ(−2H) OZ(−H)⊕OZ

2OZ(−2H +D1)

σ∗(A+tB)
//

( s 0
0 s ) %%LLLLLLLLL

φ(A,B)

99rrrrrrrrr

commutes.

Note that φ(A,B) is injective since 2OZ(−2H +D1) is torsion free and since ( s 0
0 s ) is

an isomorphism outside of the exceptional divisor D1.

Note also that the exceptional divisor D1 is equivalent to the difference H−F , where F

is the pull-back of a line in the second P2 along the standard embedding Z ⊂ T ×P2×P2.

Hence we obtain the following commutative diagram with exact rows and columns.

(10)

0

0 2OD1
(−L)

0 2OZ(−2H) OZ(−H)⊕OZ σ∗F 0

0 2OZ(−H − F ) OZ(−H)⊕OZ F̃ 0.

2OD1
(−L) 0

0

//
σ∗(A+tB)

// // //

//
φ(A,B)

// // //

��

( s 0
0 s )

��

��

��

��

��

��

��

where F̃ is defined as cokernel.

Proposition 4.2. The sheaf F̃ is locally free on its support if and only if B is a normal

vector to X8 at A, i. e., if and only if B ∈ TAX r TAX8.

Sketch of the proof. The sheaf F̃ is not locally free at some point if and only if the mor-

phism φ(A,B) vanishes at this point. Since the only zero point of the morphism A+ tB

is (0, p) and since the preimage of (0, p) is the exceptional divisor D1, we conclude that

φ(A,B) may only vanish at points lying in D1.
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To simplify the considerations one can assume without loss of generality that p =

〈1, 0, 0〉 and that A is of the form (3). Let

(11)

A =

(
x1 A01x0x1 + · · ·+ A22x

2
2

x2 B01x0x1 + · · ·+B22x
2
2

)
, B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)
,

then straightforward calculations show that vanishing of φ(A,B) at a point q ∈ D1(p) is

equivalent to the system

(12)

{
ξ00 = A01ξ0 + A02η0,

η00 = B01ξ0 +B02η0.

One easily checks that (12) are tangent equations at A. This proves the required state-

ment. �

The sheaf F̃ is flat over T , because its resolution remains exact after restriction to

fibres. So we obtain for every normal vector B a sheaf

(13) E = E(A,B) := F̃ |D(p)

on D(p). This sheaf is locally free on its support and is a flat 1-dimensional degeneration

of non-singular (3m + 1)-sheaves. Using flatness of F̃ and restricting diagram (10) to

D(p) one obtains an exact sequence

0 → 2OD1(p)(−L) → σ∗
p(F 0) → E → 0

and the locally free resolution of E on D(p),

(14)

0 → 2OD(p)(−H − F )
Φ(A,B)
−−−−→ OD(p)(−H)⊕OD(p) → E → 0, Φ(A,B) := φ(A,B)|D(p).

Straightforward calculations show now that the sheaf E satisfies Definition 1.1.

We have obtained a construction that produces R-bundles. The following proposition

shows that every R-bundle can be obtained by this construction for some A and B and

yields at the same time a proof of Proposition 3.2.

Proposition 4.3. Each R-bundle E is part of an exact diagram

(15)

0 0

2OD1
(−L) 2OD1

(−L)

0 2OD1
(−L) 2OD(p)(−2H) OD(p)(−H)⊕OD(p) σ∗F 0

0 2OD(p)(−H − F ) OD(p)(−H)⊕OD(p) E 0

2OD1
(−L) 0

0

// (
u0 0
0 u0

)//
σ∗A

//
π

// //

//
Φ

//
π′

// //

��

(
u0 0
0 u0

)

��

( s 0
0 s )

��

��

��

��

̺

��

θ

��

��

ppppppppppppp

ppppppppppppp

with Φ = Φ(A,B) for some A ∈ X8 and B ∈ TAX r TAX8.
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If p = 〈1, 0, 0〉 and A is as in (3), then

Φ =

(
u1 u1y1 + u2y2
u2 u1z1 + u2z2

)
+

(
ξ0 ξ00x0

η0 η00x0

)
u0.

Proof. We divide the proof into the following steps.

1) Let E be an R-bundle as in Definition 1.1. For the proof we may assume that F is

the cokernel of an A as in (3). Let σ = σp, D = D(p), Di = Di(p). Then σ∗(F) has the

resolution

0 → 2OD1(−L)

(
u0 0
0 u0

)

−−−−−→ 2OD(−2H)
σ∗A
−−→ OD(−H)⊕OD

π
−→ σ∗F → 0.

2) The homomorphism ̺ can be uniquely lifted to a morphism of resolutions

2OD(−H − F ) 2OD1
(−L)

OD(−H)⊕OD σ∗F

//

π
//

Ã
��

̺

��

2OD(−2H)

2OD(−2H)

B
��

σ∗A
//

( s 0
0 s )

//2OD1
(−L)

2OD1
(−L)

(
u0 0
0 u0

)

//

0

0

//

//

B
��

(
u0 0
0 u0

)

//0

0

//

//

(16)

because of the vanishing of the relevant Ext-groups, following from Proposition 3.1.

Claim. B is an isomorphism.

Proof of the Claim. The restriction of (16) to D0 becomes the exact diagram

2OD0
(−H − F0) 2OL(−1)

OD0
(−H)⊕OD0

σ∗
0F

//

π
//

ÃD0
��

̺D0

��

2OD0
(−2H)

2OD0
(−2H)

B
�� σ∗

0
A

//

(
s0 0
0 s0

)

//0

0 //

0

0,

//

//

//

where σ0 : D0 → P2 is the blow up map and s0 is the canonical section of OD0
(L). Using

the bottom row of this diagram one concludes that the Hilbert polynomial of σ∗
0(F) with

respect to the sheaf OD0
(1, 1) is 6m+ 1. The restriction of (1) to D0 becomes the exact

sequence

2OL(−1)
̺D0−−→ σ∗

0(F)
θD0−−→ E|D0

→ 0.

Therefore, we conclude that the Hilbert polynomial of the kernel of ̺D0
is zero, hence ̺D0

is injective.

By the shape of the original matrix A we conclude that ÃD0
= B ·

(
u1 u1y1 + u2y2
u2 u1z1 + u2z2

)
,

where B is identified with its corresponding 2 × 2 matrix. If B = 0, then ÃD0
= 0 and

̺D0
= 0, which contradicts the injectivity of ̺D0

.

Assume that the rank of B is 1 and that

B =

(
λα λβ

µα µβ

)
, (α, β) 6= (0, 0), (λ, µ) 6= (0, 0).

In this case the kernel of B is isomorphic to OD(−2H) and is generated by the matrix(
µ −λ

)
. Then ÃD0

=
(
λu λq
µu µq

)
for u = αu1+βu2 and q = α(u1y1+u2y2)+β(u1z1+u2z2).

Then the kernel of ÃD0
is generated by

(
µ −λ

)
and is isomorphic to OD(−H − F ). As

̺D0
is injective, we conclude that the kernels of B and ÃD0

must be isomorphic, which is

impossible since H 6∼ F . �
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Since B is an isomorphism, using the action of GL2(k) on the upper row of diagram (16),

we may assume that B = id. Then Ã can be written as

Ã =

(
u1 u1y1 + u2y2
u2 u1z1 + u2z2

)
+

(
ξ0 ξ00x0

η0 η00x0

)
u0

using decomposition (6).

3) By the resolution of σ∗F we obtain the following exact diagram

(17)

0 0

2OD1
(−L) 2OD1

(−L)

0 2OD1
(−L) 2OD(−2H) OD(−H)⊕OD σ∗F 0

0 K OD(−H)⊕OD E 0

2OD1
(−L) 0

0

// (
u0 0
0 u0

)//
σ∗A

//
π

// //

//
Φ

//
π′

// //

��

(
u0 0
0 u0

)

��

��

��

��

��

̺

��

θ

��

��

ppppppppppppp

ppppppppppppp

with K the kernel of θ ◦ π.

By the construction of Ã, θ ◦ π ◦ Ã = 0, and hence Ã factorizes uniquely through K,

with the commutative diagram

2OD(−H − F )

OD(−H)⊕OD.K //
Φ

//

''
Ã

''OOOOOOOOOOO

∃! α

��
�

�

�

Because Φ and Ã are injective, α is injective as well. On the other hand, K and 2OD(−H−

F ) have the same Hilbert polynomial with respect to OD(H + F ), namely 2(2m2 −m).

Hence α is an isomorphism. Replacing K by 2OD(−H − F ) yields the diagram of the

proposition. Note that Ã = Φ(A,B) for B =
(

ξ0x0 ξ00x2
0

η0x0 η00x2
0

)
. This completes the proof of

Proposition 4.3. �

Proof of Proposition 3.2. 1) Follows directly from Proposition 4.3.

2) Restricting the resolution of E to D1 one obtains the required statement.

3) Restricting to D0 we see that E|D0
is the cokernel of

(
u1 u1y1 + u2y2
u2 u1z1 + u2z2

)
.

Because ( u1
u2
) is surjective, one obtains that E|D0

is the structure sheaf of the curve

given by the determinant of this matrix.

4) Since Φ in (15) is of the form
(
l1 q1
l2 q2

)
such that l1, l2 ∈ Γ(D,OD(F )) are linearly

independent with a single common zero q ∈ D1 r L, there is the exact sequence

0 → OD(−2F −H)
( l2 −l1 )
−−−−−→ 2OD(−F −H)

(
l1
l2

)

−−−→ OD(−H) → kq → 0.
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Splitting this sequence into short exact sequences one obtains the exact diagram

0 0

0 OD(−2F −H) OD OC 0

0 2OD(−H − F ) OD(−H)⊕OD E 0

0 A OD(−H) kq 0

0 0

//
−(l1q2−l2q1)

// // //

//

(
l1 q1
l2 q2

)

// // //

// // // //

��

( l2 −l1 )
��

��

��

��

( 0 1 )
��

( 10 )
��

��

(
l1
l2

)
**TTTTTTTTTTTTTTTT

and then, by the snake lemma, the required extension

0 → OC → E → kq → 0.

If this extension is trivial, then σ∗kq
∼= kp must be a direct summand of the (3m+1)-sheaf

σ∗E ∼= F (cf. Remark 3.6). This contradicts the stability of F .

Remark 4.4. The point q from Proposition 3.2, 4) arises from a flat degeneration as

above as follows. The points p(t) of the fibres F t of the flat family F form a section S of

T × P2 over T passing through (0, 〈1, 0, 0〉). After blowing up its proper transform meats

D in the point q.

Remark 4.5. Let F be a (3m + 1)-sheaf as in the proof of Proposition 4.3. Then

already F induces an exact commutative diagram of type (15). However in this case

Φ =
(
u1 u1y1+u2y2
u2 u1z1+u2z2

)
and its cokernel is a one-dimensional sheaf F̃ such that F̃|D1

is a

singular (2m+2)-sheaf on D1
∼= P2 whereas F̃ |D0

is the structure sheaf of the supporting

curve C0 as before.

Remark 4.6. Note that because of the vanishing of the relevant Ext-groups every mor-

phism between sheaves on D(p) with resolutions of the type (7) can be uniquely lifted to

a morphism of the corresponding resolutions. In particular this holds for R-bundles.

5. Classification result (main result)

In this section we are going to prove theorem 1.3. First of all note that the relation

“to be equivalent” defined in Definition 1.2 is in fact an equivalence relation on the set of

R-bundles associated to a given singular (3m+ 1)-sheaf.

Proof of Theorem 1.3. Since the morphism X → M induces an isomorphism N[F ]
∼= NA,

where NA = NA(X8) = TA(X)/TA(X8) is the normal space to X8 at the point A, it is

enough to show that every two R-bundles E1 = E(A,B1) and E2 = E(A,B2) on D(p) as

in (13) are equivalent if and only if B1 and B2 represent the same point in PNA.

Without loss of generality one can assume that p = 〈1, 0, 0〉 and that A is of the form (3).

We can write A as in (11). Adding a suitable multiple of the first column of A to the

second column (this gives us an affine automorphism of X) we can assume without loss

of generality that the coefficients A01, A11, and A12 are zero.

Let E1 = E(A,B1) and E2 = E(A,B2) be two equivalent R-bundles, then the sheaves E1
and E2 possess locally free resolutions of type (14), they are cokernels of Φ1 = Φ(A,B1)

and Φ2 = Φ(A,B2) respectively.
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Equivalence of E1 and E2 means that there exists an isomorphism φ : D(p) → D(p)

identical on D0(p) such that there is an isomorphism E2
ξ
−→ φ∗(E1). By Remark 4.6 ξ can

be uniquely lifted to a morphism of resolutions

(18) OD(p)(−H)⊕OD(p) E2

OD(p)(−H)⊕OD(p) φ∗(E1)

//

//

(
ā b̄
0 d̄

)

��

ξ
��

2OD(p)(−H − F )

2OD(p)(−H − F )

( a b
c d )

��
φ∗(Φ1)

//

Φ2
//0

0 //

// 0

0.

//

//

Note that from the uniqueness of the lifting it follows that isomorphisms between R-

bundles lift to automorphisms of OD(p)(−H)⊕OD(p) and thus the induced endomorphisms

of 2OD(p)(−H − F ) are also automorphisms in this case. Therefore, both matrices ( a b
c d )

and
(
ā b̄
0 d̄

)
are invertible.

Straightforward verifications (cf. [5]) show that for some µ ∈ k∗ the matrix B2 − µB1

satisfies the tangent equations (12), i. e., B2 − µB1 ∈ TA(X8). So B1 and B2 represent

the same element in PNA.

Let now B1 and B2 be two equivalent normal vectors at A ∈ X8. Let Φ1 = Φ(A,B1)

and Φ2 = Φ(A,B2) be the matrices defining as in (14) the sheaves E1 and E2 respectively.

Since B1 and B2 define the same point in PNA, it follows that

B2 − α · B1 ∈ TA(X8)

for some α ∈ k∗.

Let

B1 =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

and

B2 =

(
µ0x0 + µ1x1 + µ2x2 µ00x

2
0 + · · ·+ µ22x

2
2

ν0x0 + ν1x1 + ν2x2 ν00x
2
0 + · · ·+ ν22x

2
2

)
.

Take

β = µ0 − ξ0α, γ = ν0 − η0α,

and let

(19) φ1 =
(

α β γ
0 1 0
0 0 1

)
: P2 → P2, 〈u0, u1, u2〉 7→ 〈(u0, u1, u2)

(
α β γ
0 1 0
0 0 1

)
〉.

Note that the automorphisms of the form (19) are exactly the automorphisms of D1
∼= P2

acting identically on L. Consider now such an automorphism φ : D(p) → D(p) with

φ|D1
= φ1 and φ|D0

= idD0
. Using the tangent equations (12) one checks that φ∗(Φ1) = Φ2.

Therefore, there is an isomorphism φ∗(E1) ∼= E2, which means that the sheaves E1 and E2
are equivalent. This completes the proof. �

Remark 5.1. When one considers isomorphism classes of the R-bundles one finds that

they depend on the point q in Proposition 3.2. However, the isomorphism classes of the

restrictions of the R-bundles to the plane D1(p) don’t depend on that point, as well as

the equivalence classes of the R-bundles.
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6. Examples

Let us fix some A ∈ X8 and let us consider the R-bundles E(A,B). The curve C0 is

uniquely defined by the matrix A. The curve C1 depends on B. Let us fix C1. Then by

Proposition 3.2, 4), points of C1 r L parameterize the isomorphism classes of R-bundles

with the support C0 ∪ C1. To be more precise: there is a one-to-one correspondence

between the isomorphism classes of R-bundles supported on C0 ∪ C1 and non-singular

points of C1 r L.

It may however happen that there are two different points of the curve C1 that define the

same equivalence class of R-bundles. This is the case when the curve C1 has a non-trivial

stabilizer under the action of the automorphisms of D1 identical on L (automorphisms

from (19)). There is a natural action of this stabilizer on C1 r L (and also on its non-

singular locus) and the orbits of this action are clearly in one to one correspondence with

the equivalence classes of R-bundles E(A,B) with support C0 ∪ C1.

t

x21x0 − x2(x2 + x0) = 0

Generic case: C0 ∩ L consists of two points. Let us

fix the matrix A =

(
x1 x2(x0 + x2)

x2 x1x0

)
. Let C be a curve

in P2 given by the determinant of this matrix. This is an

irreducible cubic curve with an ordinary double point sin-

gularity.

Then for all directions B the curve C0 is given by the

determinant of the matrix

(
u1 u2(x0 + x2)

u2 u1x0

)
. The intersection of C0 with the line L is

given by the equation u2
1−u2

2 = 0 and consists of two points, say q1 and q2. For a direction

B =

(
ξ0x0 + ξ1x1 + ξ2x2 ξ00x

2
0 + · · ·+ ξ22x

2
2

η0x0 + η1x1 + η2x2 η00x
2
0 + · · ·+ η22x

2
2

)

the restriction of E(A,B) to D1 is given as the cokernel of the matrix
(
u1 + ξ0u0 u2 + ξ00u0

u2 + η0u0 u1 + η00u0

)
.

Its support is then the conic in D1 through the points q1 and q2 given by the determinant

of this matrix.

Remark 6.1 (comparison with [11]). One sees that C0 is a normalization of C (C0 is a

proper transform of C).

If the conic C1 is smooth, then it is isomorphic to P1 and thus the support of an

R-bundle in this situation is a curve of type X1 (see [11], pp. 212–213).

If C1 is singular, then it is just a union of two lines and thus the whole support C0∪C1

is a curve of type X2.

Let us fix C1.

Smooth curve C1. As already noticed, the points of C1 r L are in one-to-one correspon-

dence with the isomorphism classes of the R-bundles supported on C0 ∪ C1. One sees in

this case that the stabilizer group of C1 consists of two elements. The non-trivial one is

the central symmetry with respect to the intersection point of the tangent lines to C1 at

q1 and q2 respectively (axes of C1).
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Figure 2. Support of R-bundles in the generic case.
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Figure 3. Support of R-bundles for three lines with simple intersections.

The orbits of the action of the stabilizer group on C1 rL consist clearly of two points,

the orbit space may be identified with the curve C1 r L itself, the quotient map being

induced by the 2 : 1 self-covering k∗ → k∗, t 7→ t2, via an isomorphism C1 r L ∼= k∗.

Singular curve C1. In this case C1 is a union of two lines. The stabilizer group of C1 is a

group isomorphic to k∗ and there are only two orbits in the non-singular locus of C1 r L

each being one of the components of C1 without their intersection point and without the

points on L. Each orbit is isomorphic to k∗.

Another cases with two points in the intersection C0 ∩ L are the following.

Three lines with simple intersections. As a typical example one can choose the matrix

A =

(
x1 0

x2 x2x0

)
. We present the pictures for different types of C1 in Figure 3.

Transversal intersection of a line with a smooth conic. A typical example comes from the

matrix A =

(
x1 x0x1

x2 x2
1

)
. The corresponding pictures can be seen on Figure 4

t

x21x0 − x32 = 0

C0 ∩ L consists of a single point. Let us fix the matrix

A =

(
x1 x2

2

x2 x1x0

)
. The curve C is in this case a cuspidal

cubic curve. The intersection of C0 with the line L is given

by the equation u2
1 = 0 and consists of a single point. Let us fix some C1.
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Figure 4. Support of R-bundles for a simple intersection of a line and a

smooth conic.
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Smooth curve C1. One sees that the stabilizer of C1 is trivial in this case. Hence the points

of C1rL are in one-to-one correspondence with the isomorphism and simultaneously with

the equivalence classes of R-bundles supported on C0 ∪ C1.

Singular curve C1. In this case the stabilizer of C1 is a 1-dimensional group acting tran-

sitively on C1 r L.

There are also the following similar cases.

Tangent intersection of a line with a smooth conic. An example for this case is provided

by the matrix A =

(
x1 x0x2

x2 x1x2

)
. The pictures are given in Figure 6.

Point on a double line. We can consider the matrix A =

(
x1 0

x2 x0x1

)
. The pictures are

given in Figure 7.

�
�
�
�

�
�

@
@
@
@

@
@

t

x1x2(x1 + x2) = 0

C0 ∩ L is the whole line L. We start here from the matrix

A =

(
x1 0

x2 x2(x1 + x2)

)
, A =

(
x1 0

x2 x2
2

)
or A =

(
x1 0

x2 x2
1

)
. Then

the curve C consists of three different lines that all intersect in

the same point, of a line and a double line, or of a triple line

respectively.
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Figure 8.

In this case C1 is the union the line L with another line L1, which intersects L at a point

pB that depends on the direction B. It is clear that the stabilizer of C1 acts transitively on

L1, hence there is only one equivalence class of R-bundles with fixed C1 in this case. Two

directions B and B′ with different intersection points pB and pB′ define non-equivalent

sheaves because all the allowed automorphism are identities on L. See Figure 8 for the

corresponding pictures.
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7. Universal families of R-bundles

We are going to construct flat families parameterizing all R-bundles as well as all non-

singular (3m+ 1)-sheaves.

Family over X̃, construction of the space. Let X̃
α
−→ X be the blow up of X along

X8 and let H = X ×h for a line h ⊂ P2. Then there is the universal (3m+1)-sheaf U on

X × P2 given by the locally free resolution (cf. [3], 6.1)

(20) 0 → 2OX×P2
(−2H)

AX−−→ OX×P2
(−H)⊕OX×P2

→ U → 0,

where AX is the universal matrix: AX |{A}×P2
= A for all A ∈ X .

By pulling back we obtain the family Ū := (α × id)∗U of (3m + 1)-sheaves over X̃.

Let S8 = SingU be the closed subvariety of X × P2 where U is not locally free, i. e., the

zero locus of AX . Since X is the parameter space of the universal cubic, the subvariety

S8 is a section of X × P2 over X8 and so isomorphic to X8. In particular S8 is smooth of

codimension 3. Then S̃8 := (α× id)−1(S8) is the set of points in X̃ × P2 where the sheaf

Ū is not locally free. S̃8 is isomorphic to the exceptional divisor X̃8 = α−1(X8) of the

blow up X̃
α
−→ X , in particular S̃8 is smooth.

Let τ : Y → X̃ × P2 be the blowing up of X̃ × P2 along S̃8 and let D̃1 denote the

exceptional divisor of τ . Let D̃0 be the proper transform of X̃8 × P2. It is isomorphic to

the blow up of X̃8 × P2 along S̃8. Then D̃ = D̃0 ∪ D̃1 is the preimage of X̃8 × P2.

D̃1 Y

S̃8 X̃ × P2

��

// //

// //

τ

��

X̃ × P2 X × P2

X̃ X

S̃8 S8

X̃8 X8

α×id
//

α
//

pr1
��

pr1

��

//

//

∼=
��

∼=
��

44
44jjj 44

44jjj

44
44jjjjj 44

44jjjjj

A fibre Yx of the morphism Y → X̃ × P2 → X̃ for a point x ∈ X̃8 is a surface D(p) with

p ∈ S̃8 corresponding to x. Moreover, the composed morphism Y → X̃ is flat. Hence the

situation is analogous to that of the blow up Z in section 4. There is also an embedding

of Y analogous to that of Z:

Remark 7.1. The ideal sheaf I of S̃8 is the quotient of a decomposable rank-3 vector

bundle as follows. Let x1, x2 ∈ ΓOX̃×P2
(H) be the independent linear entries of the lifted

matrix A. Then I is generated by x1, x2 and the lifted equation of X̃8, giving rise to a

surjection

E := OX̃(−X̃8)⊠OP2
⊕ 2OX̃×P2

(−H) → I.

It follows that Y = P(I) is embedded in the P2-bundle P(E) with local equations similar

to those of Z.

Family over X̃, construction of the sheaf. Pulling back sequence (20) along the

morphism

Y
τ
−→ X̃ × P2

α×id
−−−→ X × P2,

we obtain the sequence

0 → 2OY (−2H) −→ OY (−H)⊕OY → τ ∗(Ū) → 0,
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where H also denotes the pull-back of X̃ × h. This remains exact because the sheaf

OY (−2H) is locally free and, therefore, has no torsion. Similar to diagram (10) one

obtains the commutative diagram with exact rows and columns

(21)

0

0 C

0 2OY (−2H) OY (−H)⊕OY τ ∗Ū 0,

0 2OY (−2H + D̃1) OY (−H)⊕OY Ũ 0

C 0

0

// // // //

// // // //

��

��

��

��

��

��

��

��

by multiplying with the canonical section of OY (D̃1), with C = OD̃1
⊗ OY (−2H + D̃1),

where Ũ is the quotient.

Proposition 7.2. 1) The sheaf Ũ is flat over X̃ and the fibres of Ũ are either non-

singular (3m+ 1)-sheaves or R-bundles on some D(p).

2) Any non-singular (3m+1)-sheaf and any R-bundle on some D(p) is equivalent to a

fibre of Ũ .

Proof. Consider lB as in (8), an embedding of an open set of k in X along a normal

direction B ∈ k18 such that 0 ∈ T is the only point in T with the image in X8. Then from

the universal property of blow-ups it follows that lB uniquely factorizes through X̃
α
−→ X ,

i. e., there exists the commutative diagram

X̃

α

��

U
lB

//

∃! l̃B
??

X.

Then using again the universal property of blow-ups we obtain the commutative diagram

with cartesian squares

(22)

Z Y

T × P2 X̃ × P2 X × P2

T X̃ X.

l̃B×id
//

α×id
//

l̃B
//

α
//

�� �� ��

∃! LB
//

σ

��

τ
��

Comparing diagram (22) with the construction of the blow up Z in Section 3, one finds

that the restriction of the exceptional divisor and the proper transform of X̃8 × P2 to the

image of T in X̃ is the one of Z. It follows that the restriction of diagram (21) to this

image is isomorphic to diagram (10). It follows that the sheaf Ũ is flat over X̃ and locally

free on its support.
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In particular, the construction of R-bundles (diagram (10)) is obtained by pulling back

diagram (21) from Y along LB as in (22). In particular this means that the fibres of the

sheaf Ũ are either non-singular (3m + 1)-sheaves or R-bundles on some D(p). By the

above construction of lB every non-singular (3m + 1)-sheaf (up to isomorphy) as well as

every R-bundle (up to equivalence) appear as fibres of Ũ . �

Remark 7.3. Because Ũ is flat over X̃ it is easy to show that the sheaf C is the “relative

torsion” of τ ∗Ū over S̃8. The same holds for diagram (10).

The universal family over M̃ . Let YM = Blν̃(S̃8)
(M̃ × P2) and let YM

τM−→ M̃ × P2 be

the corresponding morphism. Let D̃M be the exceptional divisor. Then by the universal

property of blow ups there exists a unique morphism Y
ξ
−→ YM such that the diagram

Y YM

X̃ × P2 M̃ × P2

ν̃×id
//

τ
��

τM
��

ξ
//

(23)

commutes.

Proposition 7.4. There exists a flat sheaf Ṽ on YM such that Ũ is a pull back of Ṽ along

ξ up to a twist by a pull back of a line bundle on X̃.

Proof. Let V be the universal (3m + 1)-family on M × P2. Let p1 : M × P2 → M and

p2 : M × P2 → P2 be the canonical projections. Then there exists a relative Beilinson

resolution (cf. [9])

(24) 0 → p∗1A2 ⊗ p∗2OP2
(−2) −→ (p∗1A1 ⊗ p∗2OP2

(−1))⊕ (p∗1A0 ⊗ p∗2OP2
) → V → 0,

where A2 = R1p1∗(V ⊗ p∗2Ω
2
P2
(2)), A1 = R1p1∗(V ⊗ p∗2Ω

1
P2
(1)), and A0 = R0p1∗(V) are

locally free sheaves on S of rank 2, 1, and 1 respectively.

Consider the blow up αM : M̃ → M . Let V̄ be the pull-back of V to M̃ × P2 along

αM × id. Pulling back once more along τM one obtains the exact sequence

0 → τ ∗M (A2 ⊠OP2
(−2)) −→ τ ∗M(A1 ⊠OP2

(−1)⊕A0 ⊠OP2
) → τ ∗M(V̄) → 0.

Using the canonical section of OYM
(D̃M), similarly to the construction of (21) we obtain

the commutative diagram with exact rows

(25)

0 τ ∗M(A2 ⊠OP2
(−2)) τ ∗M (A1 ⊠OP2

(−1)⊕A0 ⊠OP2
) τ ∗M V̄ 0,

0 τ ∗M(A2 ⊠OP2
(−2))⊗OYM

(D̃M)) τ ∗M (A1 ⊠OP2
(−1)⊕A0 ⊠OP2

) Ṽ 0

// // // //

// // // //

�� ��

Note that since the morphism X
ν
−→ M is flat, the pull-back of (24) along ν × id is the

relative Beilinson resolution of U up to a twist by p∗1L for some line bundle L on X , i. e.,

resolution (20) tensorized by p∗1L. Therefore, the commutativity of (23) implies that the

pull-back of (25) along ξ coincides with (21) twisted by the pull back of the line bundle

ν∗L on X̃. This completes the proof of Proposition 7.4. �

Corollary 7.5. The family Ṽ is universal in the following sense. Each equivalence class of

R-bundles has a unique representative as the fibre of Ṽ over its corresponding point in M̃8
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and each isomorphism class of non-singular (3m+1)-sheaves has a unique representative

as the fibre of Ṽ over its corresponding point in M̃ r M̃8. Moreover, the sheaves on Z as

in Section 4 (one-dimensional deformations of R-bundles) are obtained as pull-backs of

Ṽ via unique morphisms T → M̃ .
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