Extremal Results REGARDing K_{6}-MINORS IN GRAPHS OF GIRTH AT LEAST 5

Elad Aigner-Horev and Roi Krakovski
\{horevel,roikr\}@cs.bgu.ac.il
Department of Computer Science
Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel

Abstract

We prove that every 6 -connected graph of girth ≥ 6 has a K_{6}-minor and thus settle Jorgensen's conjecture for graphs of girth ≥ 6. Relaxing the assumption on the girth, we prove that every 6 -connected n-vertex graph of size $\geq 3 \frac{1}{5} n-8$ and of girth ≥ 5 contains a K_{6}-minor.

Preamble. Whenever possible notation and terminology are that of 2]. Throughout, a graph is always simple, undirected, and finite. G always denotes a graph. We write $\delta(G)$ and $d_{G}(v)$ to denote the minimum degree of G and the degree of a vertex $v \in V(G)$, respectively. $\kappa(G)$ denotes the vertex connectivity of G. The girth of G is the length of a shortest circuit in G. Finally, the cardinality $|E(G)|$ is called the size of G and is denoted $\|G\| ;|V(G)|$ is called the order of G and is denoted $|G|$.

$\S 1$ Introduction. A conjecture of Jorgensen postulates that the 6-connected graphs not containing K_{6} as a minor are the apex graphs, where a graph is apex if it contains a vertex removal of which results in a planar graph. The 6 -connected apex graphs contain triangles. Consequently, if Jorgensen's conjecture is true, then a 6 -connected graph of girth ≥ 4 contains a K_{6}-minor. Noting that the extremal function for K_{6}-minors is at most $4 n-10$ [4] (where n is the order of the graph), our first result in this spirit is that
1.1. a graph of size $\geq 3 n-7$ and girth at least 6 contains a K_{6}-minor.

So that,
1.2. every 6 -connected graph of girth ≥ 6 contains a K_{6}-minor;

This settles Jorgensen's conjecture for graphs of girth ≥ 6. Relaxing the assumption on the girth in 1.1, we prove the following.
1.3. A 6-connected graph of size $\geq 3 \frac{1}{5} n-8$ and girth at least 5 contains a K_{6}-minor.

REmARK. In our proofs of 1.1 and $\mathbf{1 . 3}$, the proofs of claims (1.1. A-B) and (1.3) A-D) follow the approach of [3].
$\S 2$ Preliminaries. Let H be a subgraph of G, denoted $H \subseteq G$. The boundary of H, denoted by bnd ${ }_{G} H$ (or simply bnd H), is the set of vertices of H incident with $E(G) \backslash E(H)$. By $i n t_{G} H$ (or simply $i n t H$) we denote the subgraph induced by $V(H) \backslash b n d H$. If $v \in V(G)$, then $N_{H}(v)$ denotes $N_{G}(v) \cap V(H)$.

Let $k \geq 1$ be an integer. By k-hammock of G we mean a connected subgraph $H \subseteq G$ satisfying $|b n d H|=k$. A hammock H coinciding with its boundary is called trivial, degenerate
if $|H|=|b n d H|+1$, and fat if $|H| \geq|b n d H|+2$. A proper subgraph of H that is a k-hammock is called a proper k-hammock of H. A fat k-hammock is called minimal if all its proper k hammocks, if any, are trivial or degenerate. Clearly,
every fat k-hammock contains a minimal fat k-hammock.
Let H be a fat 2-hammock with $b n d H=\{u, v\}$. By capping H we mean $H+u v$ if $u v \notin E(H)$ and H if $u v \in E(H)$. In the former case, $u v$ is called a virtual edge of the capping of H. The set $b n d H$ is called the window of the capping.

Let now $\kappa(G)=2$ and $\delta(G) \geq 3$. By the standard decomposition of 2-connected graphs into their 3-connected components [1, Section 9.4], such a graph has at least two minimal fat 2-hammocks whose interiors are disjoint and that capping of each is 3 -connected. Such a capping is called an extreme 3 -connected component.

A k-(vertex)-disconnector, $k \geq 1$, is called trivial if removal of which isolates a vertex. Otherwise, it is called nontrivial. A graph is called essentially k-connected if all its $(k-1)$ disconnectors are trivial. If each $(k-1)$-disconnector D isolates a vertex and $G-D$ consists of precisely 2 components (one of which is a singleton) then G is called internally k-connected.

Suppose $\kappa(G) \geq 1$ and that $D \subseteq V(G)$ is a $\kappa(G)$-disconnector of G. Then, $G[C \cup D]$ is a fat $\kappa(G)$-hammock for every non-singleton component C of $G-D$. In particular, we have that
2.2. if $\kappa(G) \geq 1, \delta(G) \geq 3$, and $D \subseteq V(G)$ is a nontrivial $\kappa(G)$-disconnector of G, then G has at least two fat minimal $\kappa(G)$-hammocks whose interiors are disjoint.
2.3. If $\kappa(G) \geq 1, \delta(G) \geq 3, e \in E(G)$, and G has a nontrivial $\kappa(G)$-disconnector, then G has a minimal fat $\kappa(G)$-hammock H such that if $e \in E(H)$, then e is spanned by bnd H.

Let H be a k-hammock. By augmentation of H we mean the graph obtained from H by adding a new vertex and linking it with edges to each vertex in $b n d H$.
2.4. Suppose $\kappa(G)=3$ and that H is a minimal fat 3 -hammock of G. Then, an augmentation of H is 3-connected.

Proof. Let H^{\prime} denote the augmentation and let $\{x\}=V\left(H^{\prime}\right) \backslash V(H)$. Assume, to the contrary, that H^{\prime} has a minimum disconnector $D,|D| \leq 2$. If $H^{\prime}-D$ has a component containing x, then H has a nontrivial $|D|$-hammock; contradicting the assumption that $\kappa(G)=3$. Hence, $x \in D$. As x is 3 -valent, $H^{\prime}-D$ has a component C containing a single member of $b n d H^{\prime}(=$ $\left.N_{H^{\prime}}(x)\right)$, say u. Since $\delta(G) \geq 3,\left|N_{C}(u) \backslash D\right| \geq 1$ so that $(D \backslash\{x\}) \cup\{u\}$ is a disconnector of H of size ≤ 2 not containing x and hence also a disconnector of G; contradiction.
2.5. Suppose $\kappa(G)=3$ and that H is a triangle free minimal fat 3-hammock of G such that $e \in E(G[b n d H])$. Then, an augmentation of $H-e$ is 3 -connected.

Proof. Let H^{\prime} be the augmentation of $H-e$, let $\{x\}=V\left(H^{\prime}\right) \backslash V(H)$, and let $e=t w$ such that $t, w \in N_{H^{\prime}}(x)$. By [2.4, $\kappa\left(H^{\prime}+e\right) \geq 3$. Suppose that $\kappa\left(H^{\prime}\right)<3$, then H^{\prime} contains
a 2-disconnector, say $\{u, v\}$, so that $H^{\prime}=H_{1} \cup H_{2}, H^{\prime}[\{u, v\}]=H_{1} \cap H_{2}$ and such that $x \in V\left(H_{i}\right)$ for some $i \in\{1,2\}$. Unless $x \in\{u, v\}$, then $t, w \in V\left(H_{i}\right)$. Thus, if $x \notin\{u, v\}$, then $\{u, v\}$ is a 2 -disconnector of $H^{\prime}+e$; contradiction.

Suppose then that, without loss of generality, $x=u$. Thus, since x is 3 -valent, there exists an $i \in\{1,2\}$ such that $\left|N_{H_{i}}(x) \backslash\{v\}\right|=1$. As $\{x, v\}$ is a minimum disconnector of H^{\prime}, it follows that $H_{i}-\{x, v\}$ is connected so that $N_{H_{i}}(x) \cup\{v\}$ is the boundary of a 2-hammock of G; such must be trivial as $\kappa(G)=3$, implying that $\left|V\left(H_{i}\right)\right|=\{x, v, z\}$, where $z \in\{t, w\}$.

We may assume that x is not adjacent to v; for otherwise, $\left|N_{H_{3-i}}(x) \backslash\{v\}\right|=1$ so that the minimality of the disconnector $\{x, v\}$ implies that $H_{3-i}-\{x, v\}$ is connected and consequently that $N_{H_{3-i}}(x) \cup\{v\}$ is the boundary of a 2-hammock of G; since such must be trivial we have that H is a triangle (consisting of $\{t, v, w\}$) contradicting the assumption that H is trianglefree.

Hence, since H is triangle free and since each member of $\{v\} \cup N_{H_{3-i}}(x)$ has at least two neighbors in $H_{3-i},\{v\} \cup N_{H_{3-i}}(x)$ is the boundary of a proper fat 3 -hammock of H; contradiction to H being minimal.

The maximal 2-connected components of a connected graph are called its blocks. Such define a tree structure for G whose leaves are blocks and are called the leaf blocks of G [2].

We conclude this section with the following notation. Let $H \subseteq G$ be connected (possibly H is a single edge). By G / H we mean the contraction minor of G obtained by contracting H into a single vertex. We always assume that after the contractions the graph is kept simple; i.e., any multiple edges resulting from a contraction are removed.
§3 Truncations. Let \mathcal{F} be a family of graphs (possibly infinite). A graph is \mathcal{F}-free if it contains no member of \mathcal{F} as a subgraph. A graph G is nearly \mathcal{F}-free if it is either \mathcal{F}-free or has a breaker $x \in V(G) \cup E(G)$ such that $G-x$ is \mathcal{F}-free. A breaker that is a vertex is called a vertex-breaker and an edge-breaker if it is an edge.

An \mathcal{F}-truncation of an \mathcal{F}-free graph G is a minor H of G that is nearly \mathcal{F}-free such that either $H \subseteq G$ (and then it has no breaker) or H contains a breaker x such that $H-x \subseteq G$. In the former case, the truncation is called proper; in the latter case, the truncation is improper with x as its breaker and $H-x$ as its body. An improper truncation is called an edge-truncation if its breaker is an edge and a vertex-truncation if its breaker is a vertex. A vertex-truncation is called a 3 -truncation if its breaker is 3 -valent.
3.1. Let \mathcal{F} be a graph family such that $K_{3} \in \mathcal{F}$ and let G be \mathcal{F}-free with $\delta(G) \geq 3$. Then G has an essentially 4 -connected \mathcal{F}-truncation H such that:
(3.1. 1) $|H| \geq 4$; and
(3.1. 2) if H is a vertex-truncation then it is a 3-truncation and $|H| \geq 5$.

Proof. Let \mathcal{H} denote the 3 -connected truncations of G.
(3.1, A) \mathcal{H} is nonempty. In particular, \mathcal{H} contains a truncation H with $|H| \geq 4$ so that if improper then it is an edge-truncation with edge-breaker e such that $\kappa(H-e)=2$.

Subproof. We may assume that G is connected. Let B be a leaf block of G (possibly $B=G$). If $\kappa(B) \geq 3$, then (3.1,1) follows (by setting $H=B$) as B is a proper truncation of G. As-
sume then that $\kappa(B)=2$ and let H be an extreme 3 -connected component of B with window $\{x, y\}$. Now, $H \in \mathcal{H}$ with possibly $x y$ an edge-breaker. If H is improper, then $\kappa(H-x y)=2$. Note that $\delta(G) \geq 3$ implies that $|H| \geq 4$ in both cases.

If \mathcal{H} contains a proper or an edge-truncation that is essentially 4 -connected, then (3.11) follows. Suppose then that
\mathcal{H} has no proper or edge-truncations that are essentially 4-connected.
(3.1,B) Assuming (3.2), then \mathcal{H} contains a truncation that if improper then it is a 3-truncation of order ≥ 5.

Subproof. Let $H \in \mathcal{H}$ such that if improper then H and e are as in (3.1.A). By (3.2) and 2.3, H has a minimal fat 3 -hammock H^{\prime} such that if $e \in E\left(H^{\prime}\right)$, then e is spanned by the boundary of H^{\prime}. Let $H^{\prime \prime}$ be the graph obtained from an augmentation of H^{\prime} by removing e if it is spanned by $b n d H^{\prime}$. Let $\{x\}=V\left(H^{\prime \prime}\right) \backslash V\left(H^{\prime}\right)$.

By 2.4 and 2.5, $\kappa\left(H^{\prime \prime}\right) \geq 3$ so that $H^{\prime \prime} \in \mathcal{H}$ with x as a potential 3 -valent vertex-breaker and (3.1,B) follows.

Finally, note that \mid int $H^{\prime} \mid \geq 2$ so that $\left|H^{\prime \prime}\right| \geq 5$.
Next, we show the following.
(3.1.C) If \mathcal{H} contains a 3 -truncation X of order ≥ 5, then \mathcal{H} contains essentially 4 -connected 3-truncations Y such that $5 \leq|Y| \leq|X|$.

Subproof. Let $H^{*} \in \mathcal{H}$ be a 3 -truncation of order ≥ 5 with the order of its body minimized. We show that H^{*} is essentially 4-connected. Let x denote the vertex-breaker of H^{*}. By the minimality of H^{*},

$$
\begin{equation*}
\text { any minimal fat 3-hammock } T \text { of } H^{*} \text { with } x \notin V(T) \text { satisfies } T=H^{*}-x \tag{3.3}
\end{equation*}
$$

(so that $b n d T=N_{H^{*}}(x)$).
Assume now, towards contradiction, that H^{*} is not essentially 4 -connected so that it contains nontrivial 3 -disconnectors and at least two minimal fat 3 -hammocks that may meet only at their boundary, by [2.2. By (3.3), existence of at least two such hammocks implies that x belongs to every nontrivial 3 -disconnector and thus to the boundary of every minimal fat 3 -hammock. As x is 3 -valent, there is a minimal fat 3 -hammock T of H^{*} with x on its boundary such that $N_{T}(x)=\{y\}$. As T is a minimal fat 3-hammock, $V(T)$ consists of x, y, the two members of $b n d T \backslash\{x\}$, and an additional vertex u. As $\delta(G) \geq 3, u y \in E(T), u$ is adjacent to both members of bndT
{x\} and } y is adjacent to at least one member of b n d T \backslash \{ x \} . Hence, $K_{3} \subseteq T-x \subseteq H^{*}-x$ so that x is not a breaker; contradiction.

Assuming (3.2), then, by (3.1,B), there are 3-connected 3-truncations of G of order ≥ 5 so that an essentially 4 -connected 3 -truncation of G exists by (3.1.C).
3.4. Let \mathcal{F} be a graph family such that $\left\{K_{3}, K_{2,3}\right\} \subseteq \mathcal{F}$, then G has an internally 4 -connected
\mathcal{F}-truncation satisfying (3.1.1-2) and if such is a vertex-truncation then it is a 3-truncation.

Proof. Let \mathcal{T} denote the essentially 4 -connected truncations of G that are either proper, or edge-truncations, or 3-truncations; \mathcal{T} is nonempty by 3.1. Let $\alpha(\mathcal{T})$ denote the least k such that \mathcal{T} contains a proper truncation of order k or an improper edge-truncation of order k. Let $\beta(\mathcal{T})$ denote the least k such that \mathcal{T} contains an improper 3 -truncation with its body of order k. Let $H \in \mathcal{T}$ such that $|H|=\min \{\alpha(\mathcal{T}), \beta(\mathcal{T})+1\}$ and let x denote its breaker if improper.

We show that H is internally 4 -connected. To see this, assume, to the contrary, that H is not internally 4 -connected and let D be a 3 -disconnector of H such that $H-D$ consists of ≥ 3 components at least one of which is a singleton (since H is essentially 4-connected). Let \mathcal{C} denote the non-singleton components of $H-D$. Since $K_{2,3} \in \mathcal{F},|\mathcal{C}| \geq 1$

Suppose $J=H[C \cup D]$ is a 3 -hammock of H, for some $C \in \mathcal{C}$, that does not meet x in its interior (if x exists). By the choice of H,

$$
\begin{equation*}
\text { for each fat 3-hammock } X \text { of } J \text { either } x \in b n d X \text { or } x \in E(H[b n d X]) \text {. } \tag{3.5}
\end{equation*}
$$

Indeed, for otherwise, an augmentation of a minimal fat 3 -hammock of X is a 3-truncation of order ≥ 5 of G that belongs to \mathcal{H} and has order $<|H|$, where \mathcal{H} is as in the proof of 3.1) existence of such a 3 -truncation of G implies that G has an essentially 4-connected 3truncation of order ≥ 5, by (3.1.C), and such has order $<|H|$ contradicting the choice of H. Consequently, the assumption that the interior of J does not meet x implies that

$$
\begin{equation*}
\text { if } J \text { exists, then } x \in D \cup E[H[D]] \text {. } \tag{3.6}
\end{equation*}
$$

Suppose now that J has a minimal fat 3 -hammock J^{\prime} (possibly $J^{\prime}=J$) with $x \in b n d J^{\prime}$ so that $x \in D$, by (3.6). $|D|=\kappa(H)$ imply that x is incident with each component of $H-D$ so that $\left|N_{\text {int } J^{\prime}}(x)\right|=1$, as x is 3 -valent. The minimality of J^{\prime} then implies that $\left|i n t J^{\prime}\right|=2$ so that $J^{\prime}-x$ contains a K_{3} (see proof of (3.1,C) for the argument) and thus x is not a breaker of H; contradiction.

Suppose next that J^{\prime} is a minimal fat 3 -hammock of J whose boundary vertices span x (as an edge). Then, an augmentation of $J^{\prime}-x$ belongs to \mathcal{H}, by 2.5, and such contains an essentially 4 -connected 3 -truncation of G, by (3.1.C), of order $<|H|$. Hence,

$$
\begin{equation*}
J \text { (if exists) has no minimal fat 3-hammock } J^{\prime} \text { with } x \in b n d J^{\prime} \cup E\left[H\left[b n d J^{\prime}\right]\right] \text {. } \tag{3.7}
\end{equation*}
$$

If J exists, then (3.5) and (3.7) are contradictory. Thus, to obtains a contradiction and hence conclude the proof of $\mathbf{3 . 4}$ we show that a 3 -hammock such as J exists. This is clear if $|\mathcal{C}| \geq 2$ as then at least one member of \mathcal{C} does not meet x. Suppose then that $|\mathcal{C}|=1$ so that $H-D$ consists of two singleton components, say $\{u, v\}$, and the single member C of \mathcal{C}. $D \cup\{u, v\}$ induce a $K_{2,3}$, say K. Since $K_{2,3} \in \mathcal{F}$ and x is a breaker, K contains x so that C does not; hence, $H[C \cup D]$ is the required 3-hammock.

For $k \geq 4$, a graph that is nearly $\left\{K_{3}, C_{4}, \ldots, C_{k-1}\right\}$-free is called nearly k-long. That is, G is nearly k-long if either it has girth $\geq k$ or it has a breaker $x \in V(G) \cup E(G)$ such that $G-x$ has girth $\geq k$.

A nearly 5 -long graph is nearly $\left\{K_{3}, C_{4}\right\}$-free; such is also nearly $\left\{K_{3}, K_{2,3}\right\}$-free. In addition, a 3 -connected nearly 5 -long truncation has order ≥ 5. Consequently, we have the following consequence of $\mathbf{3 . 4}$.
3.8. A graph with girth $\geq k \geq 5$ and $\delta \geq 3$ has an internally 4 -connected nearly k-long truncation of order ≥ 5 and if such is a vertex-truncation then it is a 3-truncation.
$\S 4$ Nearly long planar graphs. For a plane graph G, we denote its set of faces by $F(G)$ and by X_{G} its infinite face.
4.1. Let G be a 2 -connected plane graph of girth ≥ 6, and let $S \subseteq V(G)$ be the 2-valent vertices of G. Then, $|S| \geq 6$.

Proof. By Euler's formula:

$$
\begin{equation*}
|E(G)|=|V(G)|+|F(G)|-2 . \tag{4.2}
\end{equation*}
$$

Since G is 2-connected, every vertex in $V(G) \backslash S$ is at least 3-valent so that

$$
\begin{equation*}
2|E(G)| \geq 3(|V(G)|-|S|)+2|S| \tag{4.3}
\end{equation*}
$$

As G is of girth ≥ 6 and 2-connected (and hence every edge is contained in exactly two distinct faces) then:

$$
\begin{equation*}
2|E(G)| \geq 6|F(G)| . \tag{4.4}
\end{equation*}
$$

Substituting (4.2) in (4.3),

$$
\begin{equation*}
2(|V(G)|+|F(G)|-2) \geq 3(|V(G)|-|S|)+2|S| \Rightarrow|V(G)| \leq 2|F(G)|+|S|-4 \tag{4.5}
\end{equation*}
$$

Substituting (4.2) in (4.4),

$$
\begin{equation*}
2(|V(G)|+|F(G)|-2) \geq 6|F(G)| \Rightarrow|V(G)| \geq 2|F(G)|+2 \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6),

$$
\begin{equation*}
2|F(G)|+2 \leq 2|F(G)|+|S|-4 \Rightarrow|S| \geq 6 \tag{4.7}
\end{equation*}
$$

Hence, the proof follows.
From 4.1 we have that:
4.8. A nearly 6 -long internally 4 -connected graph is nonplanar.
4.9. Let G be a nearly 5-long internally 4-connected planar graph and suppose that if G has a vertex-breaker, then it also has a vertex-breaker which is a 3-valent vertex. Then, $|G| \geq 11$.

Proof. Define $S \subseteq V(G) \cup E(G)$ as follows. If G is of girth ≥ 5 set $S:=\emptyset$; otherwise set $S:=\{x\}$, where $x \in V(G) \cup E(G)$ is a breaker of G so that if $x \in V(G)$ then x is 3 -valent. Then, $G-S$ is 2-connected, and has at most three 2 -valent vertices. Hence,

$$
\begin{equation*}
2|E(G)| \geq 3(|V(G)|-3)+6 \tag{4.10}
\end{equation*}
$$

As $G-S$ is of girth ≥ 5 and G is 2 -connected then:

$$
\begin{equation*}
2|E(G)| \geq 5|F(G)| . \tag{4.11}
\end{equation*}
$$

Substituting (4.2) in (4.10),

$$
\begin{equation*}
2(|V(G)|+|F(G)|-2) \geq 3(|V(G)|-3)+6 \Rightarrow|F(G)| \leq(|V(G)|+1) / 2 \tag{4.12}
\end{equation*}
$$

Substituting (4.2) in (4.11),

$$
\begin{equation*}
2(|V(G)|+|F(G)|-2) \geq 5|F(G)| \Rightarrow|F(G)| \geq(2|V(G)|-2) / 3 \tag{4.13}
\end{equation*}
$$

From (4.12) and (4.13),

$$
\begin{equation*}
(|V(G)|+1) / 2 \leq(2|V(G)|-2) / 3 \Rightarrow|V(G)| \geq 11 \tag{4.14}
\end{equation*}
$$

Hence, the proof follows.
4.15. A 2-connected plane graphs G satisfying the following does not exist.
4.15.1) G has girth ≥ 5;
4.15. 2) each member of $V(G)-V\left(X_{G}\right)$ is at least 4-valent; and
4.15.3) G has a set $S \subseteq V\left(X_{G}\right),|S| \leq 3$ (possibly $S=\emptyset$) with each of its members 2-valent and each member of $V\left(X_{G}\right)-S$ at least 3-valent.

Proof. Assume towards contraction that the claim is false. We will use the Discharging Method to obtain a contradiction to Euler's formula. The discharging method starts by assigning numerical values (known as charges) to the elements of the graph. For $x \in V(H) \cup F(H)$, define $\operatorname{ch}(x)$ as follows.
(CH.1) $\operatorname{ch}(v)=6-d_{H}(v)$, for any $v \in V(H)$.
(CH.2) $\operatorname{ch}(f)=6-2|f|$, for any $f \in F(H)-\left\{X_{H}\right\}$.
(CH.3) $\operatorname{ch}\left(X_{H}\right)=-5 \frac{2}{3}-2\left|X_{H}\right|$.
Next, we show that

$$
\begin{equation*}
\sum_{x \in V(H) \cup F(H)} \operatorname{ch}(x)=\frac{1}{3} . \tag{4.16}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{x \in V(H) \cup F(H)} c h(x) & =-5 \frac{2}{3}-2\left|X_{H}\right|+\sum_{f \in F(H)-X_{H}}(6-2|f|)+\sum_{v \in V(H)}(6-d(v)) \\
& =-5 \frac{2}{3}-2\left|X_{H}\right|+6(|f(H)|-1)+\sum_{f \in F(H)-X_{H}}(-2|f|)+\sum_{v \in V(H)}(6-d(v)) \\
& =-5 \frac{2}{3}+6(|f(H)|-1)-2(2|E|)+6|V(H)|-2|E(H)| \\
& =6(F(H)-E(H)+V(H))-11 \frac{2}{3}=\frac{1}{3}
\end{aligned}
$$

Next the charges are locally redistributed according to the following discharging rules:
(DIS.1) If v is 2 -valent, then v sends $3 \frac{1}{5}$ to X_{G} and $\frac{4}{5}$ to the other face incident to it.
(DIS.2) If v is 3 -valent, then v sends $1 \frac{5}{8}$ to X_{G} and $\frac{4}{5}$ to every other face incident to it.
(DIS.3) If v is at least 4 -valent, then v sends $\frac{4}{5}$ to each incident face.
For $x \in V(G) \cup F(G)$, let $c h^{*}(x)$ (denoted as the modified charge) be the resultant charge after modification of the initial charges according to (DIS.1-3). We obtain a contradiction to (4.16) by showing that $c h^{*}(x) \leq 0$ for every $x \in V(H) \cup F(H)$. This is clearly implied by the following claims proved below.
(A) $c h^{*}(v) \leq 0$, for each $v \in V(H)$.
(B) $c h^{*}(f) \leq 0$, for each $f \in F(H)-\left\{X_{H}\right\}$.
(C) $c h^{*}\left(X_{H}\right) \leq 0$.

Observe that according to DIS.(1)-(3), faces do not send charge and vertices do not receive charge.

Proof of (A). It is sufficient to consider vertices v satisfying $d_{G}(v) \geq 5$. Indeed, if $d_{H}(v) \geq 6$, then $\operatorname{ch}(v)=c h^{*}(v) \leq 0$ by (CH.1). If $2 \leq d_{G}(v) \leq 3$, then it is easily seen by (CH.1) and (DIS.1-2) that $c h^{*}(v)=0$. If $4 \leq d_{G}(v) \leq 5$, then, by (CH.1) and (DIS.3), $c h^{*}(v)=$ $6-d_{H}(v)-\frac{4}{5} d_{G}(v) \leq 0$.

Proof of (B). Let $f \in F(H)-\left\{X_{H}\right\}$. By (DIS.1-3), f receives a charge of $\frac{4}{5}$ from every vertex incident to it. Hence, togther with (CH.2), $c h^{*}(f)=6-2|f|+\frac{4}{5}|f| \leq 0$. (The last inequality follows as $|f| \geq 5$.)

Proof of (C). Let $S_{1} \subseteq V\left(X_{G}\right)$ be the set of 3 -valent vertices of X_{G}, and let $S_{2}=V\left(X_{G}\right)-$ $\left(S \cup S_{1}\right)$. By (CH.3), (DIS.1-3) and as $|S| \leq 3$, we see that $c h^{*}(f)=-5 \frac{2}{3}-2\left|X_{G}\right|+3 \frac{1}{5}|S|+$ $1 \frac{5}{8}\left|S_{1}\right|+\frac{4}{5}\left|S_{2}\right| \leq-5 \frac{2}{3}-2\left|X_{G}\right|+3 \times 3 \frac{1}{5}+1 \frac{5}{8}\left(\left|X_{G}\right|-3\right)=-\frac{3}{8}\left|X_{G}\right|-\frac{11}{12} \leq 0$.
§5 K_{5}-minors in internally 4-connected graphs. By V_{8} we mean C_{8} together with 4 pairwise overlapping chords. By $T G$ we mean a subdivided G.

The following is due to Wanger.
5.1. [6, Theorem 4.6] If G is 3 -connected and $T V_{8} \subseteq G$ then either $G \cong V_{8}$ or G has a K_{5}-minor.

The following structure theorem was proved independently by Kelmans [7] and Robertson [8].
5.2. 7] Let G be internally 4-connected with no minor isomorphic to V_{8}. Then G satisfies one of the following conditions:
(5.2.1) G is planar;
(5.2.2) G is isomorphic to the line graph of $K_{3,3}$;
(5.2.3) there exist a $u v \in E(G)$ such that $G-\{u, v\}$ is a circuit;
(5.2.4) $|G| \leq 7$;
(5.2. 5) there is an $X \subseteq V(G),|X| \leq 4$ such that $\|G-X\|=0$.

From 5.1 and 5.2 we deduce that
5.3. A nearly 5 -long internally 4-connected nonplanar G has a K_{5}-minor.

Proof. We may assume that $G \not \neq V_{8}$ and that G has no V_{8}-minor. The former since V_{8} is not nearly 5 -long and the latter by 5.1. Hence, G satisfies one of (5.2,1-5). As G is nonplanar, by assumption, and the line graph of $K_{3,3}$ has a K_{5}-minor (and is not nearly 5 -long) it follows that G satisfies one of (5.2.3-5).

If G is of girth ≤ 4, let $a \in V(G) \cup E(G)$ be a breaker of G; otherwise (if G has girth ≥ 5) let a be an arbitrary vertex of G. If $a \in V(G)$, put $b:=a$; otherwise let b be some end of a. By defintion, $G-b$ has girth ≥ 5.
(5.3.A) $G-\{u, v\}$ is not a circuit for any $u, v \in V(G)$ so that G does not satisfy (5.2, 3).

Subproof. For suppose not; and let $C:=G-\{u, v\}=\left\{x_{0}, \ldots, x_{k-1}\right\}$, where $k \geq 3$ is an integer.

Suppose first that $b \in\{u, v\}$ and assume, without loss of generality, that $u=b$. Then, $k \geq 5$. As v is at least 3 -valent, there exists $0 \leq i \leq k-1$ so that $v x_{i} \in E(G)$. Since $G-b$ has girth $\geq 5, v x_{i+1}, v x_{i+2} \notin E(G)$ (subscript are read modulo k). Since x_{i+1} and x_{i+2} are at least 3 -valent in G, each is adjacent to u. But then $\left\{u, x_{i}, x_{i+3}\right\}$ is a 3 -disconnector of G separating $\left\{x_{i+1}, x_{i+2}\right\}$ from $\left\{v, x_{i+4}\right\}$ (note that since $k \geq 5, x_{i+1}, x_{i+2} \neq x_{i+4}$); a contradiction to G being internally 4 -connected.

Suppose then that $x_{i}=b$, for some $0 \leq i \leq k-1$. Hence, exactly one of v and u is adjacent to x_{i+1} and exactly one to x_{i+2} (this is true since every vertex of C is adajcent to v or u, and if say, v, is adajcent to both x_{i+1} and x_{i+2} then $G-b$ conatins a trinagle). If $x_{i+3} \neq x_{i}$, then x_{i+3} is adjacent to one of u and v. If $x_{i}=x_{i+3}$, then C is a circuit of length three, and $V(G)=5$. Both cases contradict the fact that G is nearly 5 -long.
(5.3,B) $|G| \geq 8$ so that G does not satisfy (5.2.4).

Subproof. For suppose $|G| \leq 7$. As G is internally 4-connected, $G-b$ is 2 -connected. Since $G-b$ is of girth ≥ 5, then $G-b$ contains an induced circuit C of length ≥ 5. Hence $|G| \geq 6$. If $|G|=6$, then $G=C \cup b$ and then G is planar; a contracation. If $|G|=7$ then G is a circuit plus two vertices and we get a contrdaction to (5.3, A). Hence, $V(G) \geq 8 . \square$

To reach a contradiction we show that $(5.2,5)$ is not satisfied by G. For suppose it is satisfied and let X be as in (5.2.5) and let $Y=V(G)-X$. As $V(G) \geq 8$, then $|Y| \geq 4$ and every vertex of Y is adjacent to at least three vertices in X. But then it is easily seen that G is of girth ≤ 4 but contains no edge- or vertex-breaker; a contradiction.

Let G be a plane graph. By jump over G we mean a path P internally-disjoint of G whose ends are not cofacial in G.
5.4. Let G be an internally 4-connected nearly 5-long plane graph and let P be a jump over G. Then, G has a K_{5}-minor with every branch set meeting $V(G)$.

Proof. Put $G^{\prime}:=G \cup P$. (By possibly contracting P) we may assume that P is an edge e with both ends in G. Suffices now to show that G^{\prime} has a K_{5}-minor. Suppose G^{\prime} has no such minor. We may assume that $G^{\prime} \not \not V_{8}$, since V_{8} with any edge removed is not internally 4-connected, and that G^{\prime} has no V_{8}-minor, by 5.1. Since G^{\prime} is nonplanar, $\left|G^{\prime}\right| \geq|G| \geq 11$, by 4.9, and since the line graph of $K_{3,3}$ has a K_{5}-minor, we have that G^{\prime} satisfies $(\mathbf{5 . 2}, 3)$ or (5.2,5). We show that both options lead to a contradiction to the definition of G.

Suppose (5.2.3) is satisfied. Set $C:=G^{\prime}-\{u, v\}=\left\{x_{0}, \ldots, x_{k-1}\right\}$, where $k \geq 9$ is an integer. If $e \notin E(C)$, then a contradiction is obatined by showing that $G-e-\{v, u\}$ cannot be a circuit. The proof is exactly the same as the proof of (5.3, A) with $G-e$ instead of G.

Hence we may assume that $e \in E(C)$; so let $e=x_{i} x_{i+1}$, for some $0 \leq i \leq k-1$ (subscript are read modulo k). Observe that $d_{G^{\prime}}\left(x_{i}\right), d_{G^{\prime}}\left(x_{i+1}\right) \geq 4$. Hence, in G, each of x_{i} and x_{i+1} is adajcent to both u and v.

By assumtion that (5.2.3) is satisfied, $u v \in E(G)$, and we see that one of u or v is a breaker, say u. Hence, $v x_{i+2}, v x_{i+3} \notin E(G)$. But then, since and $d_{G}\left(x_{i+1}\right), d_{G}\left(x_{i+2}\right)=3$, the set $\left\{u, x_{i+1}, x_{i+4}\right\}$ is a 3 -disconnector of G (note that since $k \geq 9, x_{i+1}, x_{i+4}$ are distinct) separating $\left\{x_{i+2}, x_{i+3}\right\}$ from $\left\{x_{i+5}, x_{i+6}\right\}$; a contradiction. Hence (5.2.3) is not satisfied.

Suppose (5.2,5) is satisfied. As $V(G) \geq 11$, it is easily seen that $G\left(=G^{\prime}-e\right)$ is of girth ≤ 4 but has no edge- or vertex-breaker; a contradiction. This concludes the proof.

By society we mean a pair (G, Ω) consisting of a graph G and a cyclic permutation Ω over a finite set $\bar{\Omega} \subseteq V(G)$. Let $\bar{\Omega}=\left\{v_{1}, \ldots, v_{k}\right\}, k \geq 4$. Two pairs of vertices $\left\{s_{1}, t_{1}\right\} \subseteq \bar{\Omega}$ and $\left\{s_{2}, t_{2}\right\} \subseteq \bar{\Omega}$ are said to overlap along (G, Ω) if $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ occur in $\bar{\Omega}$ in this order along Ω.

Two vertex disjoint paths P and P^{\prime} of G that are both internally-disjoint of $\bar{\Omega}$ are said to form a cross on (G, Ω) if their ends are in $\bar{\Omega}$ and these overlap along (G, Ω).
5.5. [9, Lemma (2.4)] Let (G, Ω) be a society. Then either
(5.5. 1) (G, Ω) admits a cross in G, or
(5.5.2) $G=G_{1} \cup G_{2}, G_{1} \cap G_{2}=G[D],|D| \leq 3$ such that $\bar{\Omega} \subseteq V\left(G_{1}\right)$ and $\left|V\left(G_{2}\right) \backslash V\left(G_{1}\right)\right| \geq 2$, or
(5.5.3) G can be drawn in a disc with $\bar{\Omega}$ on the boundary in order Ω.

Let C be a circuit in a plane graph G. Then the clockwise ordering of $V(C)$ induced by the embedding of G defines a cyclic permutation on $V(C)$ denoted Ω_{C} and we do not distinguish between the cyclic shifts of this order. Then, $\left(G, \Omega_{C}\right)$ is a society with $\overline{\Omega_{C}}=V(C)$. Throughout, we omit this notation when dealing with such societies of circuits of plane graphs and instead say that C is a society of G.
5.6. Let G be a 3-connected plane graph of order ≥ 5 and let P and P^{\prime} be vertex disjoint paths that are internally-disjoint of G and whose ends are contained in a facial circuit f of G. If $P \cup P^{\prime}$ form a cross on f, then $G \cup P \cup P^{\prime}$ contains a K_{5}-minor with every branch set meeting $V(G)$.

Proof. Clearly, $V(G) \neq V(f)$. Since the facial circuits of a 3-connected plane graph are it induced nonseparating circuits [5, we have that $G-V(f)$ is connected so that $f \cup P \cup P^{\prime}$ have a K_{4}-minor which is completed into a K_{5}-minor by adding a fifth branch set that is $G-V(f)$ (as f is an induced circuit).
§6 Proof of 1.1. \quad Let $\mathcal{H}=\{H \subseteq G: H$ is connected, $|G / H| \geq 5$, and $\|G / H\| \geq 3|G / H|-7\}$. \mathcal{H} contains every member of $V(G)$ as a singleton and thus nonempty. Let $H_{0} \in \mathcal{H}$ be maximal in $(\mathcal{H}, \subseteq), H_{1}=G\left[N_{G}\left(H_{0}\right)\right]$, and let $G_{0}=G / H_{0}$, where $z_{0} \in V\left(G_{0}\right)$ represents H_{0}. Let $G_{1}=G_{0}-z_{0}$ and note that $G_{1} \subseteq G$.
$\left|G_{0}\right|=5$ implies that $\left\|G_{0}\right\| \geq 8$ so that $\left\|G_{1}\right\| \geq 4$ and contains a k-circuit with $k<5$; contradiction to the assumption that G has girth at least 6 . Thus, we may assume that
(1.1.A) $\left|G_{0}\right| \geq 6$.

Let $x \in V\left(H_{1}\right)$ and put $G_{0}^{\prime}=G_{0} / z_{0} x .\left|G_{0}^{\prime}\right| \geq 5$, by (1.1. A). Thus, the maximality of H_{0} in (\mathcal{H}, \subseteq) implies that $\left\|G_{0}^{\prime}\right\| \leq 3\left|G_{0}^{\prime}\right|-8$. Thus, $\left\|G_{0}\right\|-\left\|G_{0}^{\prime}\right\| \geq 3\left|G_{0}\right|-7-3\left(\left|G_{0}\right|-1\right)+8 \geq 4$; implying that $z_{0} x$ is common to at least three triangles so that $d_{H_{1}}(x) \geq 3$. It follows then that
(1.1.B) $\delta\left(H_{1}\right) \geq 3$.

Let H be an internally 4 -connected nearly 6 -long truncation of H_{1}, by 3.8. Such is nonplanar by 4.8 and has a K_{5}-minor by 5.3 . Consequently, G_{0} has a K_{6}-minor.
$\S 7$ Proof of 1.3. In a manner similar to that presented in the proof of 1.1, let $\mathcal{H}=$ $\left\{H \subseteq G: H\right.$ is connected, $|G / H| \geq 5$, and $\left.\|G / H\| \geq 3 \frac{1}{5}|G / H|-8\right\}$ (such is nonempty) and let $H_{0}, H_{1}, G_{0}, z_{0}, G_{1}$ be as in the proof of 1.1 .
$\left|G_{0}\right|=5$ implies that $\left\|G_{0}\right\| \geq 8$ so that $\left\|G_{1}\right\| \geq 4$ and contains a k-circuit with $k<5$; contradiction to the assumption that G has girth at least 5 . Thus, we may assume that
(1.3.A) $\left|G_{0}\right| \geq 6$.

Let $x \in V\left(H_{1}\right)$ and put $G_{0}^{\prime}=G_{0} / z_{0} x .\left|G_{0}^{\prime}\right| \geq 5$, by (1.3)A). Thus, the maximality of H_{0} in (\mathcal{H}, \subseteq) implies that $\left\|G_{0}^{\prime}\right\| \leq 3 \frac{1}{5}\left|G_{0}^{\prime}\right|-9$. Thus, $\left\|G_{0}\right\|-\left\|G_{0}^{\prime}\right\| \geq 3 \frac{1}{5}\left|G_{0}\right|-8-3 \frac{1}{5}\left(\left|G_{0}\right|-1\right)+9 \geq 4$; implying that $z_{0} x$ is common to at least three triangles so that $d_{H_{1}}(x) \geq 3$. It follows then that
(1.3.B) $\delta\left(H_{1}\right) \geq 3$;
implying that

(1.3,C) $\delta\left(G_{0}\right) \geq 4$.

Next, we prove that
(1.3.D) $\kappa\left(G_{0}\right) \geq 5$.

To see (1.3D), let $T \subseteq V(G)$ be a minimum disconnector of G_{0} and assume, towards contradiction, that $|T| \leq 4$. As $\kappa(G) \geq 6, z_{0} \in T$. Let then $y=\left|N_{G_{0}}\left(z_{0}\right) \cap T\right|$ and let \mathcal{C} denote the components of $G_{0}-T$. Choose $C \in \mathcal{C}$ and put $H_{1}=G_{0}[C \cup T]$ and $H_{2}=G_{0}-C$.

Let H_{i}^{\prime} be the graph obtained from G_{0} by contracting H_{3-i} into z_{0} (note that minimality of T implies that each of its members is incident with each member of \mathcal{C}), for $i=1,2$. As $\left|H_{i}\right| \geq 5$, by (1.3. C), then $\left|H_{i}^{\prime}\right| \geq 5$, for $i=1,2$. The maximality of H_{0} in (\mathcal{H}, \subseteq) then implies that $\left\|H_{i}^{\prime}\right\| \leq 3 \frac{1}{5}\left|H_{i}^{\prime}\right|-9$.

As $z_{0} x \in E\left(H_{i}^{\prime}\right)$ for each $x \in T^{\prime}=T \backslash\left\{z_{0}\right\}$, for $i=1,2$, it follows that

$$
\begin{equation*}
\left\|G_{0}\right\|+y+2\left(\left|T^{\prime}\right|-y\right)+\left\|G_{0}\left[T^{\prime}\right]\right\| \leq\left\|H_{1}^{\prime}\right\|+\left\|H_{2}^{\prime}\right\| \leq 3 \frac{1}{5}\left(\left|G_{0}\right|+|T|\right)-18 \tag{7.1}
\end{equation*}
$$

As $\left\|G_{0}\right\| \geq 3 \frac{1}{5}\left|G_{0}\right|-8$, we have that

$$
\begin{equation*}
8+\left\|G_{0}\left[T^{\prime}\right]\right\| \leq 1 \frac{1}{5}|T|+y . \tag{7.2}
\end{equation*}
$$

Now, $|T| \leq 4$ (by assumption), so that $y \leq 3$, and $\left\|G_{0}\left[T^{\prime}\right]\right\| \geq 0$. Consequently, the right hand size of (7.2) does not exceed 7.8. This contradiction establishes (1.3, D).

Let \mathcal{B} denote the bridges of H_{1} in G_{1}. We may assume that \mathcal{B} is nonempty. Otherwise, G_{1} coincides with H_{1} so that H_{1} is a nonplanar 4-connected graph of girth ≥ 5 and thus containing a K_{5}-minor by 5.3. Consequently, G_{0} has a K_{6}-minor and 1.3 follows.

Let H be an internally 4 -connected nearly 5 -long truncation of H_{1}, by $\mathbf{3 . 8}$. We may assume that H is planar for otherwise H has a K_{5}-minor, by 5.3, so that G_{0} has a K_{6}-minor and 1.3 follows. Let x denote the breaker of H, if such exists in H. Let $\mathcal{B}_{1}=\emptyset$ if x does not exist (so that $H \subseteq G$) or is an edge-breaker. Otherwise (i.e., if x is a vertex-breaker), \mathcal{B}_{1} denotes the members of \mathcal{B} with attachment vertices in the subgraph of H_{1} contracted into x. Put $\mathcal{B}_{2}=\mathcal{B} \backslash \mathcal{B}_{1}$.

Fix an embedding of H in the plane. No member of \mathcal{B} defines a jump over H for otherwise the union of H and such a jump has has a K_{5}-minor with every branch set meeting $V(H)$, by 5.4. Hence, every member of \mathcal{B} has all of its attachment vertices confined to a single face of H.

By patch we mean a face f of H together with all members of \mathcal{B} attaching to $V(f)$. Patches not meeting x in case it is a vertex-breaker are called clean (so that if x does not exist or is
an edge-breaker, then every patch is clean). f is called the rim of the patch. If \mathcal{P} is a patch with $\operatorname{rim} f$, then by (\mathcal{P}, Ω_{f}) we mean a society with $\overline{\Omega_{f}}=V(f)$ and Ω_{f} is the clockwise order on $V(f)$ defined by the embedding of f in the plane.
(1.3.E) Let H^{\prime} denote the union of H and all members of \mathcal{B}_{2}. Then, H^{\prime} is planar.

To see (1.3) E) it is sufficient to show that every clean patch is planar. Indeed, since any two faces of H meet either at a single vertex or at a single edge, the union of any number of planar patches results in a planar graph.

Let \mathcal{P} be a clean patch with $\operatorname{rim} f$. If (\mathcal{P}, Ω_{f}) contains a cross, then the union of H and such a cross has a K_{5}-minor, by 5.6, with every branch set meeting $V(H)$; so that G_{0} has a K_{6}-minor and 1.3 follows. Assume then that $\left(\mathcal{P}, \Omega_{f}\right)$ has no cross and is nonplanar. Then, $\mathcal{P}=\mathcal{P}_{1} \cup \mathcal{P}_{2}, \mathcal{P}_{1} \cap \mathcal{P}_{2}=\mathcal{P}[D]$ and $|D| \leq 3$ such that $V(f) \subseteq V\left(\mathcal{P}_{1}\right)$ and $\left|V\left(\mathcal{P}_{2}\right) \backslash V\left(\mathcal{P}_{1}\right)\right| \geq 2$, by [5.5. Hence, $\left\{z_{0}\right\} \cup D$ is a k-disconnector of G_{0} with $k \leq 4$; contradicting (1.3.D). It follows that \mathcal{P} is planar so that (1.3.E) follows.

If x is a vertex-breaker, then let C be the vertices of H cofacial with x. 4-connectivity of G_{1} implies that every vertex in $H^{\prime}-\{x\}-C$ is at least 4 -valent in $H^{\prime}-x$. As x is 3 -valent in this case, by (3.1 3), we have that $H^{\prime}-x$ is a 2 -connected planar graph of girth ≥ 5 has an embedding in the plane with each vertex not in $X_{H^{\prime}-x}$ at least 4 -valent, and each vertex in $X_{H^{\prime}-x}$ at least 3 -valent except for at most 3 vertices which are at least 2 -valent. By 4.15 , $H^{\prime}-x$ is does not exist; contradiction.

References.

[1] J. A. Bondy and U. S. R. Murty. Graph Theory, Springer, 2008.
[2] R. Diestel, Graph Theory, third edition, Springer, 2005.
[3] W. Mader, $3 n-5$ edges do force a subdivision of K_{5}, Combinatorica, 18 (4) (1998) 569-595.
[4] W. Mader, Homomorphiesatze fur Graphen, Math. Ann. 178 (1968) 154168.
[5] B. Mohar and C. Thomassen, Graphs on Surfaces, 2001, The Johns Hopkins University Press Baltimore and London.
[6] R. L. graham, Martin Grötschel and László Lovász, Handbook of combinatorics (Vol.1), 1995, MIT Press Cambridge, MA, USA.
[7] A.K. Kelmans, On 3-connected graphs without essential 3-cuts or triangles, Sov. Math. Dokl. 33 (4) (1986) 698-703 (English translation).
[8] N. Robertson, Excluding V_{8} as a minor, manuscript.
[9] N. Robertson, P. D. Seymour, and R. Thomas, Hadwiger's conjecture for K_{6}-free graphs, Combinatorica, 14 (1993) 279-361.

