The Kelmans-Seymour conjecture for apex graphs

Elad Aigner-Horev $\sqrt[1]{1}$ and Roi Krakovsk $\sqrt[2]{2}$
Department of Computer Science Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel

Abstract

We provide a short proof that a 5-connected nonplanar apex graph contains a subdivided K_{5} or a $K_{4}^{-}\left(=K_{4}\right.$ with a single edge removed) as a subgraph. Together with a recent result of Ma and Yu that every nonplanar 5 -connected graph containing K_{4}^{-}as a subgraph has a subdivided K_{5}; this settles the Kelmans-Seymour conjecture for apex graphs.

Keywords. Subdivided K_{5}, Apex graphs.

Preamble. Whenever possible notation and terminology are that of [1]. Throughout, a graph is always simple, undirected, and finite. G always denotes a graph. A subdivided G is denoted $T G$. K_{4}^{-} denotes K_{4} with a single edge removed. We write $\delta(G)$ and $d_{G}(v)$ to denote the minimum degree of G and the degree of a vertex $v \in V(G)$, respectively. The k-wheel graph consists of a k-circuit C and an additional vertex, called the hub, adjacent to every vertex of C through edges called the spokes. C is called the rim of the wheel.
$\S 1$ Introduction. A refinement of Kuratowski's theorem postulated by the KelmansSeymour conjecture (1975) is that: the 5-connected nonplanar graphs contain a $T K_{5}$. As this conjecture is open for many years now, it does not stand to reason that certain special cases of this conjecture be considered. If to pick a special case, then we contend that the apex graphs are a natural choice; where a graph is apex if it has a vertex, referred to as an apex vertex, removal of which results in a planar graph. In this paper, we prove in a short manner that:
1.1. A 5-connected nonplanar apex graph contains a $T K_{5}$ or a K_{4}^{-}as a subgraph.

Recently, Ma and Yu [2, 3] proved that:
1.2. (Ma-Yu [2, 3])

A 5-connected nonplanar graph containing K_{4}^{-}as a subgraph, contains a $T K_{5}$.
By 1.1 and $\mathbf{1 . 2}$, it follows that the Kelmans-Seymour conjecture holds for apex graphs.

1.3. A 5-connected nonplanar apex graph contains a $T K_{5}$.

OUR proof of 1.1. By Euler's formula, a 2-connected planar graph with minimum degree 5 contains K_{4}^{-}as a subgraph [4, Lemma 2]. Consequently, a 5 -connected nonplanar apex graph G satisfying $K_{4}^{-} \nsubseteq G$ has $\delta(G-v)=4$, where v is an apex vertex of G. Thus, a 5 -connected

[^0]nonplanar apex graph contains K_{4}^{-}as a subgraph or has an apex vertex that is part of a 5 -(vertex)-disconnector of G. Thus, to prove 1.1, suffices that we prove the following.
1.4. A 5-connected nonplanar apex graph G with an apex vertex contained in a 5-(vertex)disconnector of G satisfies $T K_{5} \subseteq G$ or $K_{4}^{-} \subseteq G$.

Adjourning technical details until later sections, we outline here the sole manner in which we construct a $T K_{5}$ in our proof of 1.4 assuming $K_{4}^{-} \nsubseteq G$ and v is an apex vertex of G satisfying the premise of $\mathbf{1 . 4}$
(S.1) We fix an embedding of $G-v$ and identify it with its embedding. We then pick a "suitable" 5-(vertex)-disconnecter D containing v such that $G=G_{1} \cup G_{2}$ and $G[D]=$ $G_{1} \cap G_{2}$.
(S.2) In one of the sides of this disconnector, say G_{1}, we find a 4 -valent vertex u such that together with u the vertices cofacial with u in $G-v$ induce a subdivided $d(u)$-wheel $S \subseteq G_{1}$ whose spokes are preserved and coincide with the edges incident with u.
(S.3) In $G_{1}-v$, we construct 3 pairwise vertex-disjoint paths (i.e., a 3-linkage) linking $D-v$ and the rim of S (not meeting u) so that these paths meet the rim of S only at $N_{G}(u)$.
(S.4) We choose an arbitrary vertex in $G_{2}-D$ and connect it to D through a 5 -fan contained in G_{2}.
(S.5) $u v \in E(G)$ as u is 4 -valent.
(S.6) $T K_{5} \subseteq$ the union of S, the 3-linkage, the 5 -fan, and $u v$.

Essentially, the remainder of this paper consists of our preparation for this single construction. The accurate form of this construction can be found in $\$ 5$, We use the discharging method for finding the wheel S in (S.2).

§2 Preliminaries.

Subgraphs. Let H be a subgraph of G, denoted $H \subseteq G$. The boundary of H, denoted by $\operatorname{bnd}_{G} H$ (or simply bnd H), is the set of vertices of H incident with $E(G) \backslash E(H)$. By int ${ }_{G} H$ (or simply $i n t H$) we denote the subgraph induced by $V(H) \backslash b n d H$. If $v \in V(G)$, then $N_{H}(v)$ denotes $N_{G}(v) \cap V(H)$.

Paths and circuits. For $X, Y \subseteq V(G)$, an (X, Y)-path is a simple path with one end in X and the other in Y internally-disjoint of $X \cup Y$. If $X=\{x\}$, we write (x, Y)-path. If $|X|=|Y|=k \geq 1$, then a set of k pairwise vertex-disjoint (X, Y)-paths is called an (X, Y)-k-linkage. Throughout this paper, a linkage is always of size 4.

If $x \in V(G)$ and $Y \subseteq V(G) \backslash\{x\}$, then by (x, Y)-k-fan we mean a set of $k \geq 1(x, Y)$-paths with only x as a common vertex.

The interior of an $x y$-path P is the set $V(P) \backslash\{x, y\}$ and is denoted int P. For $u, v \in V(P)$, we write $[u P v]$ to denote the $u v$-subpath of P. We write $(u P v)$ to denote $i n t[u P v]$, and in a similar manner the semi-open segments $[u P v)$ and $(u P v]$.

If C is a circuit of a plane graph G and $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \subseteq V(C)$ appear in this clockwise order along C, then $\left[a_{i} C a_{i+1}\right], 1 \leq i \leq 4$, denotes the segment of C whose ends are a_{i}
and a_{i+1} and such that its interior, denoted $\left(a_{i} C a_{i+1}\right)$, does not meet A (clearly, $\left.a_{5}=a_{1}\right)$. Semi-open segments $\left[a_{i} C_{u} a_{i+1}\right)$ are defined accordingly. Two members of A are called consecutive if these are consecutive in the clockwise ordering of A along C.

Bridges. Let $H \subseteq G$. By H-bridge we mean either an edge $u v \notin E(H)$ and $u, v \in V(H)$ or a connected component of $G-H$. In the latter case, the H-bridge is called nontrivial. The vertices of H adjacent to an H-bridge B are called the attachment vertices of B. A uv-path internally-disjoint of H with $u, v \in V(H)$, is called an H-ear.

Hammocks. A k-hammock of G is a connected subgraph H satisfying $|b n d H|=k \geq 1$. A hammock H coinciding with its boundary is called trivial, degenerate if $|V(H)|=|b n d H|+1$, and fat if $|V(H)| \geq|b n d H|+2$. We call a 4 -hammock minimal if all its proper 4-hammocks, if any, are trivial or degenerate.
2.1. A minimal fat 4-hammock H of a 4-connected graph $G, K_{4}^{-} \nsubseteq G$, satisfies $\kappa(H) \geq 2$.

Proof. Assume, to the contrary, that $H=H_{1} \cup H_{2}$ such that $\{x\}=V\left(H_{1}\right) \cap V\left(H_{2}\right)$ and $V\left(H_{i}\right) \backslash\{x\} \neq \emptyset$, for $i=1,2$. Clearly, $b n d H_{i}=\{x\} \cup X_{i}$, where $X_{i} \subset b n d H$, for $i=1,2$.

Consequently, if H_{i} is a 4 -hammock of G, then H_{3-i} consists of a single edge; implying that H_{i} is degenerate, by fatness of H. As $d_{G}(x) \geq 4, K_{4}^{-} \subseteq G$.

Next, if each of $H_{i}, i=1,2$, is a k-hammock of G with $k \leq 3$, then both are trivial, by 4-connectivity of G. This in turn implies that H is degenerate satisfying $\{x\}=V(H) \backslash b n d H$; contradiction to the fatness of H.

Subdivided wheels. For $u \in V(G)$, we write S_{u} to denote a subdivided $d(u)$-wheel with hub u, the spokes preserved and coinciding with $\{u v: v \in N(u)\}$. Its rim, denoted C_{u}, is an induced circuit of G separating u from the rest of G.

If G is a 4-connected plane graph, then such an S_{u} exists for every $u \in V(G) \backslash V\left(X_{G}\right)$, where X_{G} is the infinite face of G. Indeed, the set of vertices cofacial with u form C_{u}. Consequently, if G is a plane graph and $u \in V(G) \backslash V\left(X_{G}\right)$ we refer to S_{u} as the facial wheel of u. Such a subdivided wheel is called short if:
(SH.1) $d(u)=4$ and u is the common vertex of two edge disjoint triangles, say T and T^{\prime}; and (SH.2) the two segments of $C_{u}-\left(E\left(C_{u}\right) \cap E(T)\right)-\left(E\left(C_{u}\right) \cap E(T)\right)$, say Q and Q^{\prime}, satisfy:
(SH.2.a) $2 \leq|V(Q)|,\left|V\left(Q^{\prime}\right)\right| \leq 4$; and
(SH.2.b) if one segment is of order 4 , then the other is of order ≤ 3.
A short wheel is called imbalanced if one of its segments is of order 4. An imbalanced wheel $S_{u} \subseteq H$, where H is a 4-hammock of a 4 -connected graph, is called proper with respect to H if the interior of its segment of order 4 does not meet bndH. If H is understood, then we write proper.

Faces of plane graphs. Let G be a 2-connected plane graph. By $F(G)$ we denote the set of faces of a plane graph G. A face f of length k is called a k-face and its length is denoted $|f|$. We write $(\geq k)$-face and $(\leq k)$-face to denote a face of length $\geq k$ and $\leq k$, respectively. A 4 -valent vertex is called an $\left(f_{1}, f_{2}, f_{3}, f_{4}\right)$-vertex, if the faces incident with v are of length $f_{i}, 1 \leq i \leq 4$, and these are met in a clockwise order around v.
§3 Linkages and wheels. Throughout this section, G is a 4-connected plane graph, and $u \in V(G) \backslash V\left(X_{G}\right), S_{u} \subseteq H$ is the facial wheel of u, where H is a 4 -hammock of G.

By a C_{u}-linkage we mean a $\left(b n d H, C_{u}\right)$-linkage in H; such clearly does not meet u, by planarity. By end \mathcal{P} we refer to the end vertices on C_{u} of members of a C_{u}-linkage \mathcal{P}. For such a \mathcal{P}, put $\alpha(\mathcal{P})=\mid$ end $\mathcal{P} \cap V\left(C_{u}\right) \cap N(u) \mid$. Also, if $\operatorname{end\mathcal {P}}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, then we always assume these appear in this clockwise order along C_{u} and denote by P_{i} the member of \mathcal{P} meeting a_{i}.

By planarity and since $N(u) \subseteq V\left(C_{u}\right)$, every $S_{u} \cup \mathcal{P}$-bridge does not meet or attach to u. Let $P \in \mathcal{P}$ and let P^{\prime} be a member of \mathcal{P} or a segment of C_{u}. By P-ear we mean an $S_{u} \cup \mathcal{P}$-ear with both its ends in P. By $\left(P, P^{\prime}\right)$-ear we mean an $S_{u} \cup \mathcal{P}$-ear with one end in P and the other in P^{\prime}.

If for any $b \in\left(a_{i} C_{u} a_{i+1}\right)$ there exists a C_{u}-linkage \mathcal{P}^{\prime} satisfying end $\mathcal{P}^{\prime}=\left(\right.$ end $\left.\mathcal{P} \backslash\left\{a_{i}\right\}\right) \cup\{b\}$ or end $\mathcal{P}^{\prime}=\left(\right.$ end $\left.\mathcal{P} \backslash\left\{a_{i+1}\right\}\right) \cup\{b\}$, then we call \mathcal{P} slippery with respect to $\left[a_{i} C_{u} a_{i+1}\right]$, where $1 \leq i \leq 4$, and $a_{5}=a_{1}$. We say that \mathcal{P} is slippery if it is slippery with respect to each segment $\left[a_{i} C_{u} a_{i+1}\right]$ satisfying $a_{i} C_{u} a_{i+1} \neq \emptyset$.

3.2. $A C_{u}$-linkage is slippery.

Proof. Let \mathcal{P} denote such a linkage, and let $w \in\left(a_{i} C_{u} a_{i+1}\right)$ such that $1 \leq i \leq 4$. Planarity and C_{u} being induced assert that there is an $S_{u} \cup \mathcal{P}$-bridge B with w as an attachment. Such a bridge attaches to at least one of $P_{i}-a_{i}$ or $P_{i+1}-a_{i+1}$. This is clearly true if B is trivial, as C_{u} is induced. If nontrivial, then having all attachments of B in $\left[a_{i} C_{u} a_{i+1}\right]$ implies that the 3 -set consisting of u and the two extremal attachments of B on $\left[a_{i} C_{u} a_{i+1}\right]$ is a 3-disconnector of G, by planarity.

It follows now from 3.2 that:
3.3. $A C_{u}$-linkage satisfying $\alpha \geq 1$ exists.

Our main tool for proving subsequent claims is the following.

3.4. Suppose that:

(3.4. a) H is a minimal fat 4-hammock; and
(3.4.b) \mathcal{P} is a C_{u}-linkage with end $\mathcal{P}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ satisfying:
(3.4.b.1) $\alpha(\mathcal{P})=k>0, k$ an integer; and
(3.4.b.2) $a_{1}, a_{3} \notin N(u)$; and
(3.4. b.3) $a_{2} \in N(u)$; and
(3.4. b. 4) $\left|N(u) \cap\left[a_{1} C_{u} a_{2}\right]\right| \geq 2$.

Then, $K_{4}^{-} \subseteq G$ or there exists a C_{u}-linkage satisfying $\alpha \geq k+1$.
Proof. Assume towards contradiction that

$$
\begin{equation*}
\text { a } C_{u} \text {-linkage with } \alpha \geq k+1 \text { does not exist. } \tag{3.5}
\end{equation*}
$$

Let P be the $a_{1} a_{3}$-segment of C_{u} not containing a_{4}. By (3.5) and planarity, for any \mathcal{P} satisfying (3.4) b), every member of $\left(N(u) \backslash\left\{a_{2}\right\}\right) \cap P$ is an attachment of an $S_{u} \cup \mathcal{P}$-bridge
attaching to C_{u} and P_{2} only. Such bridges exist by (3.4.b.4), (3.5), and since C_{u} is induced. Consequently, $a_{2} \notin b n d H$.

Choose a \mathcal{P} satisfying (3.4 b) such that
no P_{2}-ears are embedded in the region of the plane interior to $\left[a_{2} C_{u} a_{3}\right] \cup P_{2} \cup P_{3}$.
By (3.4 b.4), let $z \in N(u) \cap\left(a_{1} C_{u} a_{2}\right)$ such that $\left[a_{1} P z\right]$ is minimal. Let B be an $S_{u} \cup \mathcal{P}$ bridge attached to z; such is embedded in the region of the plane interior to $\left[a_{1} C_{u} a_{2}\right] \cup P_{1} \cup P_{2}$. By (3.5),

$$
\begin{equation*}
B \text { has no attachment on } P_{1} \text {. } \tag{3.7}
\end{equation*}
$$

Connectivity and existence of z then imply that there are vertices $x \in\left[a_{1} C_{u} a_{2}\right]$ (possibly $x=z$) and $y \in V\left(P_{2}\right)$ attachments of B such that $\left[a_{1} P x\right]$ and $\left[y P_{2} v\right]$ are minimal, where $v \in V\left(P_{2}\right) \cap b n d H$.

By (3.5),

$$
\begin{equation*}
\text { there are no }\left(P_{2}, P_{3}-a_{3}\right) \text {-ears with an end in }\left[a_{2} P_{2} y\right) . \tag{3.8}
\end{equation*}
$$

Indeed, if such an ear exists, then P_{2} can be rerouted through y and B to meet z, and P_{3} can be rerouted through the ear and $\left[a_{2} P_{2} y\right)$ to meet a_{2}; contradicting (3.5).

Let $\ell \in\left[a_{2} C_{u} a_{3}\right]$ be defined as follows. If there exist an $\left(\left(a_{2} P_{2} y\right),\left[a_{2} C_{u} a_{3}\right]\right)$-ear, then ℓ is an end of such an ear such that $\left[\ell a_{3}\right]$ is minimal. Otherwise, $\ell=a_{2}$.

By planarity, (3.6), (3.7), and (3.8), $\{u, x, y, \ell\}$ form the boundary of a 4-hammock of H; such is trivial or degenerate, by minimality of H. In either case, x coincides with z and B consists of the single edge $x y$ (otherwise, there is a k-disconnector, $k \leq 3$, separating B from the rest of G) implying that $\left\{x, u, a_{2}, y\right\}$ induce a K_{4}^{-}.

We infer the following from 3.4.
3.9. Suppose H is a minimal fat 4-hammock. Then, $K_{4}^{-} \subseteq G$ or there is a C_{u}-linkage \mathcal{P} satisfying:
(3.9. a) $\alpha(\mathcal{P}) \geq 2$; and
(3.9.b) if $\alpha \leq 2$ for every C_{u}-linkage, then every C_{u}-linkage with $\alpha=2$ meets $N(u)$ at consecutive members of endP.

Proof. A C_{u}-linkage satisfying $\alpha \geq 1$ exists, by 3.3. To show that such a linkage with $\alpha \geq 2$ exists, assume, towards contradiction, that every C_{u}-linkage has $\alpha \leq 1$. Let \mathcal{P} be a C_{u}-linkage with $\alpha(\mathcal{P})=1$ and end $\mathcal{P}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$; choose such notation so that $a_{2} \in N(u)$. As, by assumption, a linkage with $\alpha \geq 2$ does not exist, each vertex in $N(u) \backslash\left\{a_{2}\right\}$ is an attachment vertex of an $S_{u} \cup \mathcal{P}$-bridge that has attachments on C_{u} and P_{2} only. Since $d(u) \geq 4$ and C_{u} is induced, such bridges exist and thus $a_{2} \notin b n d H$. By rerouting P_{2} through such bridges we may choose such a \mathcal{P} such that $N(u) \subseteq\left(a_{1} C_{u} a_{2}\right]$. Thus, by 3.4 the claim follows.

Suppose next, that $\alpha \leq 2$ for every C_{u}-linkage, and suppose \mathcal{P} is such a linkage with $\alpha(\mathcal{P})=2$ so that $N(u)$ is met by nonconsecutive members of end \mathcal{P}, say, a_{2}, a_{4}. As, by assumption, there is no linkage with $\alpha>2$, each vertex in $N(u) \backslash\left\{a_{2}, a_{4}\right\}$ is an attachment vertex of an $S_{u} \cup \mathcal{P}$-bridge that has attachments on C_{u} and P_{2} only, or on C_{u} and P_{4} only (both options do not occur together). Since $d(u) \geq 4$ and C_{u} is induced, such bridges exist; hence $\left|b n d H \cap\left\{a_{2}, a_{4}\right\}\right| \leq 1$. By rerouting P_{2} and/or P_{4} through such bridges, we may choose \mathcal{P} so that $\left|N(u) \cap\left(a_{1} C_{u} a_{2}\right]\right| \geq 2$ or $\left|N(u) \cap\left[a_{4} C_{u} a_{1}\right)\right| \geq 2$. The claim then follows by 3.4.

We conclude this section with the following.
3.10. Let H be minimal and fat and suppose S_{u} is short such that if it is imbalanced then it is proper. Then, a C_{u}-linkage satisfying $\alpha \geq 3$ exists.

Proof. Assume, to the contrary, that

$$
\begin{equation*}
\text { a } C_{u} \text {-linkage satisfying } \alpha \geq 3 \text { does not exist. } \tag{3.11}
\end{equation*}
$$

By 3.9, a linkage with $\alpha=2$ exists; moreover, any C_{u}-linkage satisfying $\alpha=2$ meets $N(u)$ at consecutive ends. Suppose \mathcal{P} is such a linkage where end $\mathcal{P}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, and choose the notation so that the members of end \mathcal{P} meeting $N(u)$ are a_{2} and a_{3}.

Since C_{u} is induced,

$$
\begin{equation*}
\left(a_{4} C_{u} a_{1}\right) \cap N(u)=\emptyset . \tag{3.12}
\end{equation*}
$$

Indeed, otherwise, a bridge attached to a member of $\left(a_{4} C_{u} a_{1}\right) \cap N(u)$ has an attachment on at least one of P_{1} or P_{4}, by planarity and 4 -connectivity (see argument of (3.2); contradicting (3.11).

Let T, T^{\prime} be as in (SH.1). S_{u} being short and (3.12) imply that either

$$
\begin{equation*}
\left|V(T) \cap\left\{a_{2}, a_{3}\right\}\right|=\left|V\left(T^{\prime}\right) \cap\left\{a_{2}, a_{3}\right\}\right|=1, \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|V\left(T^{\prime \prime}\right) \cap\left\{a_{2}, a_{3}\right\}\right|=2, T^{\prime \prime} \in\left\{T, T^{\prime}\right\} . \tag{3.14}
\end{equation*}
$$

In either case, (3.12) implies that $\left\{a_{1}, a_{4}\right\} \subseteq$ int $Q^{\prime \prime}, Q^{\prime \prime} \in\left\{Q, Q^{\prime}\right\}$, where Q, Q^{\prime} are as in (SH.2). Consequently, S_{u} is imbalanced and consequently proper, by assumption. That is, $b n d H \cap\left\{a_{1}, a_{4}\right\}=\emptyset$.

An $\left(S_{u}-a_{1}, b n d H\right)$-linkage \mathcal{P}^{\prime} exists in $H-a_{1}$; otherwise a_{1} and a k-disconnector, $k \leq 3$, separating $b n d H$ and $S_{u}-a_{1}$ in $H-a_{1}$ form a proper 4-hammock of H that is neither trivial nor degenerate; contradicting the minimality of H. As, by assumption, $d(u)=4, \mathcal{P}^{\prime}$ does not meet u and is a C_{u}-linkage in H.

Since S_{u} is short, $\alpha\left(\mathcal{P}^{\prime}\right)=\left|e n d \mathcal{P}^{\prime} \cap N(u)\right| \geq 2$. We may assume equality holds or the claim follows. If $N(u)$ is met by consecutive members of \mathcal{P}^{\prime}, then these are not contained in a single triangle T or T^{\prime}, as this would contradict (3.12) (which applies to any C_{u}-linkage with $\alpha=2$ meeting $N(u)$ at consecutive members). On the other hand, if $N(u)$ is met by nonconsecutive members of \mathcal{P}^{\prime} (so that (3.13) is satisfied by \mathcal{P}^{\prime}), then a C_{u}-linkage satisfying the premise of 3.4 exists (see argument of 3.9) and the claim follows by 3.4
$\S 4$ Short wheels in minimal fat hammocks. The purpose of this section is to prove 4.1. Let H be a minimal fat 4 -hammock of a 4 -connected plane graph G; such is 2-connected, by 2.1. Consequently, every member of $F(H)$ is a circuit of H, each edge of H is contained in precisely 2 faces (we use this in the proof of (4.2) below), and each $v \in V(H)$ is incident with $d_{H}(v)$ distinct faces. A vertex $v \in V(H)$ is called good if $d_{H}(v) \geq 5$ or $v \in b n d H$.
4.1. Let H be a minimal fat 4-hammock of a 4-connected plane graph G satisfying:
(4.1. a) $K_{4}^{-} \nsubseteq G$; and
(4.1.b) every $P_{3} \cong P \subset H$ contains a good vertex; and
4.1.c) every $K_{3} \cong K \subset H$ contains ≥ 2 good vertices.

Then, H contains a short facial wheel S_{u} for some $u \in V(H) \backslash V\left(X_{H}\right)$ such that if S_{u} is imbalanced, then it is proper.

We shall use the well-known "discharging method" in order to prove 4.1 Such a method involves four main steps: (i) distributing initial charges to elements of the graph, (ii) calculating the total charge distributed using Euler's formula, (iii) redistributing charges according to a set of discharging rules, and finally (iv) estimating the resultant charge of each element. In our case, we shall employ the following charging-discharging schemes.

Charging scheme. For $x \in V(H) \cup F(H)$, define the charge $\operatorname{ch}(x)$ as follows:
(CH.1) $\operatorname{ch}(v)=6-d_{H}(v)$, for any $v \in V(H)$.
(CH.2) $\operatorname{ch}(f)=6-2|f|$, for any $f \in F(H) \backslash\left\{X_{H}\right\}$.
(CH.3) $\operatorname{ch}\left(X_{H}\right)=-5 \frac{2}{3}-2\left|X_{H}\right|$.
Next, we show that

$$
\begin{equation*}
\sum_{x \in V(H) \cup F(H)} \operatorname{ch}(x)=\frac{1}{3} \tag{4.2}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{x \in V(H) \cup F(H)} c h(x) & =-5 \frac{2}{3}-2\left|X_{H}\right|+\sum_{f \in F(H) \backslash X_{H}}(6-2|f|)+\sum_{v \in V(H)}(6-d(v)) \\
& =-5 \frac{2}{3}-2\left|X_{H}\right|+6(|f(H)|-1)+\sum_{f \in F(H) \backslash X_{H}}(-2|f|)+\sum_{v \in V(H)}(6-d(v)) \\
& =-5 \frac{2}{3}+6(|f(H)|-1)-2(2|E|)+6|V(H)|-2|E(H)| \\
& =6(F(H)-E(H)+V(H))-11 \frac{2}{3}=\frac{1}{3}
\end{aligned}
$$

Discharging scheme. In what follows, by send we mean "discharge" or "pass charge".
(DIS.1) Let $v \in V\left(X_{H}\right)$, such that $2 \leq d_{H}(v) \leq 4$.
(DIS.1.a) If $d_{H}(v)=2$, then let g the face incident with v other than X_{H}. If $|g|=3$, then v sends 4 to X_{H}. Otherwise v sends $3 \frac{2}{3}$ to X_{H} and $\frac{1}{3}$ to g.
(DIS.1.b) If $d_{H}(v)=3$, then v sends $2 \frac{2}{3}$ to X_{H} and $\frac{1}{3}$ to every incident (≥ 4)-face.
(DIS.1.c) If $d_{H}(v)=4$, then v sends $1 \frac{2}{3}$ to X_{H} and $\frac{1}{3}$ to every incident (≥ 4)-face.
(DIS.2) If $v \in V(H)$ is at least 5 -valent, then, v sends $\frac{1}{3}$ to every incident (≥ 4)-face.
(DIS.3) If $v \in V(H) \backslash V\left(X_{H}\right)$ is 4 -valent, then:
(DIS.3.a) v sends $\frac{2}{3}$ to every incident 4 -face.
(DIS.3.b) v sends 1 to every incident 5 -face, unless v is a ($3,4,3,5$)-vertex, and then v sends $1 \frac{1}{3}$ to its single incident 5 -face.
(DIS.3.c) v sends $1 \frac{1}{3}$ to every (≥ 6)-face.
Proof of 4.1. Assume, to the contrary, that the claim is false and apply (CH.1-3) and (DIS.13) to members of $V(H) \cup F(H)$. Let $c h^{*}(x)$ denote the charge of a member of $V(H) \cup F(H)$ after applying (DIS.1-3). We obtain a contradiction to (4.2) by showing that $c h^{*}(x) \leq 0$ for every $x \in V(H) \cup F(H)$. This is clearly implied by the following claims proved below.
(4.1.A) $c h^{*}(v) \leq 0$, for each $v \in V(H)$.
(4.1.B) $c^{*}(f) \leq 0$, for each $f \in F(H) \backslash\left\{X_{H}\right\}$.
(4.1.C) $c h^{*}\left(X_{H}\right) \leq 0$.

Observe that according to (DIS.1-3), faces do not send charge and vertices do not receive charge.

Proof of (4.1.A). It is sufficient to consider vertices v satisfying $2 \leq d_{H}(v) \leq 4$. Indeed, if $d_{H}(v) \geq 6$, then $\operatorname{ch}(v)=c h^{*}(v) \leq 0$ by (CH.1); and, if $d_{H}(v)=5$, then v is incident with at least three (≥ 4)-faces, as $K_{4}^{-} \nsubseteq G$, implying that $c h^{*}(v) \leq 0$ by (DIS.2).

By (DIS.1.a-c), $c h^{*}(v) \leq 0$ for every $v \in V\left(X_{H}\right)$ with $2 \leq d_{H}(v) \leq 4$. This is clear if v is 2 -valent; and true in case v is at least 3 -valent as such a vertex is incident with at least one (≥ 4)-face distinct of X_{H}, since $K_{4}^{-} \nsubseteq G$.

It remains to consider $v \notin V\left(X_{H}\right)$ satisfying $2 \leq d_{H}(v) \leq 4$; such is clearly 4 -valent, as $\kappa(G) \geq 4$. We may assume v is not incident with at least three (≥ 4)-faces, for otherwise $c h^{*}(v) \leq 0$ since by (DIS.3.a-c), v sends at least $\frac{2}{3}$ to each (≥ 4)-face. Consequently, since $K_{4}^{-} \nsubseteq G, v$ is incident with precisely two 3 -faces that are edge disjoint. Next, at least one of the remaining faces incident with v, say f, is a 4 -face for otherwise $c h^{*}(v) \leq 0$ by (DIS.3.bc). The remaining face incident with v, say g, is a (≥ 5)-face for otherwise H contains a short facial wheel; contradictory to our assumption. By (DIS.3.a), v sends $2 / 3$ to f. Hence, $c h^{*}(v) \leq 0$ by (DIS.3.b) if $|g|=5$, and by (DIS.3.c) if $|g| \geq 6$.

Proof of (4.1)B). If $|f|=3$, then, $\operatorname{ch}(f)=c h^{*}(f)=0$ for any 3 -face f, by (CH.2). It remains to consider (≥ 4)-faces. If f is such a face, then put $A_{f}=\left\{v \in V(f) \backslash b n d H: d_{H}(v)=4\right\}$ and note that (4.1)b) implies:

$$
\begin{equation*}
\left|A_{f}\right| \leq|f|-2 . \tag{4.3}
\end{equation*}
$$

Clearly,

$$
\begin{equation*}
c h^{*}(f)=\operatorname{ch}(f)+c\left(A_{f}\right)+c\left(V(f) \backslash A_{f}\right), \tag{4.4}
\end{equation*}
$$

where $c(X), X \subseteq V(f)$, is the total charge sent to f from members of X.
We may assume that f is a 5 -face. Indeed, if $|f|=4$, then $c\left(A_{f}\right) \leq \frac{2}{3}\left|A_{f}\right|$, by (DIS.1.c) and (DIS.3.a), $c\left(V(f) \backslash A_{f}\right) \leq \frac{1}{3}\left(|f|-\left|A_{f}\right|\right.$), by (DIS.1.a) and (DIS.2), and $\left|A_{f}\right| \leq 2$, by (4.3). Thus, $c h^{*}(f) \leq 0$, by (4.4). Next, if $|f| \geq 6$, then $c\left(A_{f}\right) \leq 1 \frac{1}{3}\left|A_{f}\right|$, by (DIS.1.c) and (DIS.3.c), $c\left(V(f) \backslash A_{f}\right) \leq \frac{1}{3}\left(|f|-\left|A_{f}\right|\right.$), by (DIS.1.a) and (DIS.2), and $\left|A_{f}\right| \leq 4$, by (4.3). Hence, $c h^{*}(f) \leq 0$, by (4.4).

Assume then that $|f|=5$ so that $\left|A_{f}\right| \leq 3$, by (4.3). We may assume that f is incident with a $(3,4,3,5)$-vertex not in $V\left(X_{H}\right)$; otherwise, $c\left(A_{f}\right) \leq 1 \times\left|A_{f}\right|$, by (DIS.1.c) and (DIS.3.b), $c\left(V(f) \backslash A_{f}\right)=\frac{1}{3}\left(|f|-\left|A_{f}\right|\right)$, by (DIS.1-2). By (4.4) (and as $\left|A_{f}\right| \leq 3$), $c h^{*}(f) \leq 0$.

Let then $v \in V(f) \backslash V\left(X_{H}\right)$ be a $(3,4,3,5)$-vertex. The members of $V(f)$ adjacent to v, say $v^{\prime}, v^{\prime \prime}$, are good by 4.1]c); and $\left|\left(V(f) \backslash\left\{v, v^{\prime}, v^{\prime \prime}\right\}\right) \cap b n d H\right| \geq 1$ or S_{u} is proper contradicting the assumption that such wheels do not exist in H. Let $v^{\prime \prime \prime} \in\left(V(f) \backslash\left\{v, v^{\prime}, v^{\prime \prime}\right\}\right) \cap b n d H$. v sends $1 \frac{1}{3}$ to f, By (DIS.3.c). Each of $\left\{v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right\}$ sends $\frac{1}{3}$ to f, by (DIS.1-2) and since $f \neq X_{H}$. The remaining vertex $V(f) \backslash\left\{v, v^{\prime}, v^{\prime \prime}, v^{\prime \prime \prime}\right\}$ sends at most $1 \frac{1}{3}$ to f, by (DIS.1-3) and since $f \neq X_{H}$. Consequently, $\operatorname{ch}^{*}(f)=\operatorname{ch}(f)+2 \times 1 \frac{1}{3}+2 \times \frac{1}{3} \leq 0$ (as $\left.\operatorname{ch}(f)=-4\right)$. \square

Proof of (4.1.C). For $i=2, \ldots, 5$, let $A_{i}=\left\{v \in V\left(X_{H}\right): d_{H}(v)=i\right\} ; B=\left\{v \in V\left(X_{H}\right)\right.$: $\left.d_{H}(v) \geq 5\right\} ; A_{2}^{\prime}=\left\{v \in A_{2}: v\right.$ is incident with a 3 -face $\} ;$ and put $A_{2}^{\prime \prime}=A_{2} \backslash A_{2}^{\prime}$. Clearly, $A_{i} \subseteq b n d H$ for $i<4$. Hence, since H is a 4 -hammock of G and $\kappa(G) \geq 4$,

$$
\begin{equation*}
\left|A_{2}\right|+\left|A_{3}\right| \leq 4 . \tag{4.5}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right| \leq\left|X_{H}\right| . \tag{4.6}
\end{equation*}
$$

By (CH.3) and (DIS.1-2),

$$
\begin{equation*}
c h^{*}\left(X_{H}\right)=-5 \frac{2}{3}-2\left|X_{H}\right|+4\left|A_{2}^{\prime}\right|+3 \frac{2}{3}\left|A_{2}^{\prime \prime}\right|+2 \frac{2}{3}\left|A_{3}\right|+1 \frac{2}{3}\left|A_{4}\right|+\frac{1}{3}\left|A_{5}\right| \tag{4.7}
\end{equation*}
$$

By (4.7), (4.5), and (4.6), it can be easily verified that $c h^{*}\left(X_{H}\right) \leq 0$ in the following cases: (i) $\left|X_{H}\right| \geq 11$; (ii) $7 \leq\left|X_{H}\right| \leq 10$ and $\left|A_{2}\right| \neq 4$; and (iii) $4 \leq\left|X_{H}\right| \leq 6$ and $\left|A_{2}\right| \leq 2$.

It remains to show that $\operatorname{ch}^{*}\left(X_{H}\right) \leq 0$ in the cases: (I) $7 \leq\left|X_{H}\right| \leq 10$ and $\left|A_{2}\right|=4$ and (II) $4 \leq\left|X_{H}\right| \leq 6$, and $\left|A_{2}\right| \geq 3$. In the latter case, $V\left(X_{H}\right) \backslash A_{2}$ is a k-disconnector, $k \leq 3$, of G; this is so since $V(H) \backslash V\left(X_{H}\right) \neq \emptyset$ by the fatness of H and each vertex in int H being at least 4 -valent.

Suppose then that (I) occurs. Then, $|B|=0$ can be assumed; indeed, if $|B| \geq 1$, then $\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right| \leq\left|X_{H}\right|-1$ implying that $c h^{*}(f) \leq 0$, by (4.7) and (4.5). We may also assume that $\left|A_{2}^{\prime}\right| \geq 1$; otherwise $\left|A_{2}^{\prime \prime}\right|=\left|A_{2}\right|=4$, and $c h^{*}(f) \leq 0$, by (4.7) and (4.5). Let then $x \in A_{2}^{\prime} \subseteq b n d H .\{x\} \cup N_{H}(x)$ induce a 3 -face implying that at least one member of $N_{H}(x)$ is a good verex, by (4.1. c), and consequently in $b n d H$ as $A_{5} \subseteq B=\emptyset$ (see above). As $\left|X_{H}\right| \geq 7$ and thus $|V(H) \backslash\{x\}| \geq 6$, it follows that $(b n d H \backslash\{x\}) \cup N_{H}(x)$ is either a 3-disconnector of G or a 4 -hammock of H with its interior containing at least 2 vertices; contradicting $\kappa(G) \geq 4$ and H being minimal, respectively. \square
§5 Proof of 1.4. \quad Suppose $K_{4}^{-} \nsubseteq G$ and let v be an apex vertex of G contained in some 5 -disconnector of G. Fix an embedding of G and identify G with its embedding.

By [4, Lemma 2](see Introduction), $\delta(G-v)=4$; implying that we may assume that $G-v$ has a minimal fat 4 -hammock H. To see this, let $u \in V(G-v)$ be 4 -valent. $N_{G-v}(u)$ is the boundary of two 4 -hammocks of $G-v$. If each of these two hammocks is degenerate, then G is a 7 -vertex graph which contains a $T K_{5}$. Thus, we may assume that at least one of these hammocks is fat; implying that minimal fat 4-hammocks exist in $G-v$.
H satisfies (4.1,b-c) or $K_{4}^{-} \subseteq G$; hence, by 4.1, there is a short facial wheel $S_{u} \subseteq H$ with some 4-valent vertex $u \notin V\left(X_{H}^{4}\right)$ as a hub; and such that S_{u} is proper if it is imbalanced. Let
\mathcal{P} be a C_{u}-linkage in H satisfying $\alpha(\mathcal{P}) \geq 3$, by 3.10. The set $\{v\} \cup b n d H$ forms the boundary of a 5 -hammock H^{\prime} of G satisfying $S_{u} \subseteq H^{\prime}$; let $w \notin V\left(H^{\prime}\right)$ and let F be a ($\left.w, b n d H^{\prime}\right)$-5-fan in G, such clearly does not meet $\operatorname{int} H^{\prime}$. Observing that $u v \in E(G)$, as u is 4 -valent in $G-v$, it follows that $T K_{5} \subseteq S_{u} \cup \mathcal{P} \cup F \cup\{u v\} \subseteq G$.

References.

[1] R. Diestel, Graph Theory, third edition, Springer, 2005.
[2] J. Ma and X. Yu, Independent paths and K_{5}-subdivisions, J. Combinatorial Theory B (to appear).
[3] J. Ma and X. Yu, K_{5}-subdivisions in graphs containing K_{4}^{-}, submitted manuscript.
[4] G. Fijavz and B. Mohar, K_{6}-minors in projective planar graphs, Combinatorica, 23 (3) 2003 453-465.

[^0]: ${ }^{1}$ horevel@cs.bgu.ac.il.
 ${ }^{2}$ roikr@cs.bgu.ac.il.

