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STATISTICALLY QUASI-CAUCHY SEQUENCES
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Abstract. A subset E of a metric space (X, d) is totally bounded if and only

if any sequence of points in E has a Cauchy subsequence. We call a sequence

(xn) statistically quasi-Cauchy if st− limn→∞ d(xn+1, xn) = 0, and lacunary

statistically quasi-Cauchy if Sθ − limn→∞ d(xn+1, xn) = 0. We prove that a

subset E of a metric space is totally bounded if and only if any sequence of

points in E has a subsequence which is any type of the following, statistically

quasi-Cauchy, lacunary statistically quasi-Cauchy, quasi-Cauchy, and slowly

oscillating. It turns out that a function defined on a subset E of a metric

space is uniformly continuous if and only if it preserves either quasi-Cauchy

sequences or slowly oscillating sequences of points in E.

1. Introduction

The concept of a metric, and any concept in a metric space play a very im-

portant role not in functional analysis, and topology but also in other branches of

sciences involving mathematics especially in computer sciences, information theory,

biological sciences, and dynamical systems.

A subset E of a metric space (X, d) is totally bounded if it has a finite ε-

net for each ε > 0 where a subset A of E is called to be an ε-net in E if E =
⊔

a∈A[E
⋂
B(a, ε)]. This is equivalent to the statement that any sequence of points

in E has a Cauchy subsequence. This suggests us to ask what happens if we

replace the term ”Cauchy” with another term ”quasi-Cauchy”. In fact we could

interchangeably put any of the terms ”quasi-Cauchy”, ”statistically quasi-Cauchy”,
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”lacunary statistically quasi-Cauchy”, and ”slowly oscillating” instead of the term

”Cauchy”.

The purpose of this paper is to investigate characterizations of totally bounded-

ness of a subset of a metric space X , and characterizations of uniform continuity a

function defined on a subset of X via sequences mentioned above.

2. Priliminaries

Throughout this paper, N, R, and X will denote the set of positive integers, the

set of real numbers, and a metric space with a metric d, respectively. We will use

boldface letters x, y, z, ... for sequences x = (xn), y = (yn), z = (zn), ... of points

in X .

Recall that a subset E of a metric space (X, d) is called bounded if

δ(E) = sup{d(a, b) : a, b ∈ E} ≤ M

where M is a positive real constant number. A subset A of a metric space X is

said to be an ε-net in X if

X =
⊔

a∈A

B(a, ε).

The metric space (X, d) is called totally bounded if it has a finite ε-net in X for

each ε > 0. A subspace (E, dE) of (X, d) is said to be totally bounded if it is totally

bounded as a metric space in its own right. A subset E of a metric space (X, d)

is said to be totally bounded if it is totally bounded as a metric subspace. The

definition of totally bounded sets in arbitrary metric spaces is consistent with that

of bounded sets in R, R2, R3, and R
n, when equipped with the usual metric, but

need not be consistent when equipped with an arbitrary metric. Moreover, note

that the set E = {e1, e2, ..., en, ...} ⊂ ℓ2 although bounded with δ(E) =
√
2, is still

quite big in the sense that there are infinite many points, in fact, in E none of

which is close to any of the others, in other words it is not a totally bounded set.

Such sets in arbitrary metric space fail to give certain properties, namely totally

boundedness, which are expected in analogy with boundededness in R, the set of

real numbers with the usual topology generated by the absolute value metric.
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The notion of statistical convergence was introduced by Fast [1], has been inves-

tigated by Fridy in [2], and has been extended to metrizable topological Hausdorff

groups in [3]. A sequence (xk) of points in X is called to be statistically convergent

to an element ℓ of X if for each positive real number ε

lim
n→∞

1

n
|{k ≤ n : d(xk, ℓ) ≥ ε}| = 0,

and this is denoted by st− limn→∞ xn = ℓ.

The notion of lacunary statistical convergence was introduced, and studied by

Fridy and Orhan in [4], and has been extended to metrizable topological Haus-

dorff groups in [5]. A sequence (xk) of points in X is called lacunary statistically

convergent to an element ℓ of X if

lim
r→∞

1

hr

|{k ∈ Ir : d(xk, ℓ) ≥ ε}| = 0,

for every positive real number ε where Ir = (kr−1, kr] and k0 = 0, hr : kr − kr−1 →
∞ as r → ∞ and θ = (kr) is an increasing sequence of positive integers. Throughout

this paper, we assume that lim infr
kr

kr−1
> 1.

A sequence (xn) of points in X is called quasi-Cauchy if limn→∞ ∆xn = 0 where

∆xn = d(xn+1, xn) (see [6]), and a sequence (xn) of points in X is called slowly

oscillating if for any given ε > 0, there exists δ = δ(ε) > 0 and N = N(ε) such that

d(xm, xn) < ε if n ≥ N(ε) and n ≤ m ≤ (1 + δ)n (see [7]).

The term ”quasi-Cauchy” was used by Burton and Coleman while those se-

quences were studied in both [8], and [9] in which those sequences were called as

forward convergent to zero. Trivially, Cauchy sequences are slowly oscillating. It is

easy to see that any slowly oscillating sequence is quasi-Cauchy, and therefore any

Cauchy sequence is quasi-Cauchy. The converses are not always true. There are

quasi-Cauchy sequences which are not Cauchy. There are quasi-Cauchy sequences

which are not slowly oscillating. Furthermore any quasi-slowly oscillating sequence

([10] is δ-quasi-Cauchy ([11]). Any subsequence of a Cauchy sequence is Cauchy.

The analogous property fails for quasi-Cauchy sequences, and slowly oscillating

sequences as well.
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3. sequential definitions of totally boundedness

We call a sequence (xn) of points inX statistically quasi-Cauchy if st−limn→∞ ∆xn =

0, and lacunary statistically quasi-Cauchy if SΘ − limn→∞ ∆xn = 0.

In this section, we give a further investigation of quasi-Cauchy sequences, and

slowly oscillating sequences; and obtain some characterizations of totally bounded-

ness of a subset of X by using the concepts of a quasi-Cauchy sequence, a slowly

oscillating sequence, a statistically quasi-Cauchy sequence, and a lacunary statisti-

cally quasi-Cauchy sequence of points in X .

A subset E of X is called slowly oscillating compact if whenever x = (xn) is a

sequence of points in E there is a slowly oscillating subsequence z = (zk) = (xnk
) of

x (see also [12]); and a subset E of X is called ward compact if whenever x = (xn)

is a sequence of points in E there is a quasi-Cauchy subsequence z = (zk) = (xnk
)

of x (see [13], and [14]).

Now we give the following two lemmas which will have quite importance in our

proofs.

Lemma 1. ([3]) Any statistically convergent sequence of points in X with a

statistical limit ℓ has a convergent subsequence with the same limit ℓ in the ordinary

sense.

Lemma 2. ([5]) Any lacunary statistically convergent sequence of points in X

with a lacunary statistical limit ℓ has a convergent subsequence with the same limit

ℓ in the ordinary sense.

Now we give one of our main results, which enables us to see certain characteri-

zations of totally boundedness of a subset of X .

Theorem 3. Let E be a subset of X . The following statements are equivalent.

(a) E is totally bounded.

(b) E is ward compact.

(c) E is slowly oscillating compact.

(d) Any sequence of points in E has a statistically quasi-Cauchy subsequence.

(e) Any sequence of points in E has a lacunary statistically quasi-Cauchy subse-

quence.
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Proof. Let us first prove that (a) implies (b). Take any sequence (xn) of points

in E. Since E can be covered by a finite number of subsets of X of diameter less

than 1, one of these sets , which we denote by A1, must contain xn for infinitely

many values of n. We may choose a positive integer n1 such that xn1
∈ A1. Then

A1 is totally bounded and hence it can be covered by a finite number of subsets of

A1 of diameter less than 1
2 . One of these subsets of A1, which we denote by A2,

contains xn for infinitely many n. choose a positive integer n2 such that n2 > n1

and xn2
∈ A2. Since A2 ⊂ A1, it follows that xn2

∈ A1 as well. Continuing in this

way, we obtain, for any positive integer k, a subset Ak of Ak−1 with diameter less

than 1
k
and a term xnk

∈ Ak of the sequence (xn) , where nk > nk−1. Since all

xnk
, xnk+1

, xnk+2
,...,xnk+j

,... lie in Ak and the diameter of Ak is less than 1
k
, it

follows that (xnk
) is a quasi-Cauchy subsequence of the sequence (xn). To prove

that (b) implies (a), suppose that E is not totally bounded. Then there exists an

ε > 0 such that there does not exist a finite ε-net. Take any x1 ∈ E. By the

assumption that E is not totally bounded, the open ball BE(x1, ε) is not equal to

E, i.e. BE(x1, ε) 6= E, so there exists an x2 ∈ E such that dE(x1, x2) ≥ ε, i.e.

x2 /∈ BE(x1, ε), and x2 ∈ E. Then BE(x1, ε) ∪ BE(x2, ε) 6= E otherwise {x1, x2}
would be a finite ε-net in E. Let x3 /∈ BE(x1, ε) ∪BE(x2, ε) i.e. dE(x1, x2) ≥ ε,

dE(x1, x3) ≥ ε, and dE(x2, x3) ≥ ε. Continuing the process in this manner, one

can obtain a sequence (xn) of points in E such that

xn /∈ BE(x1, ε) ∪BE(x2, ε) ∪ ... ∪BE(xn−1, ε), (n = 2, 3, ...)

i.e. dE(xi, xn) ≥ ε (i = 1, 2, ..., n− 1) and (n = 1, 2, ...), n 6= i.

The sequence (xn) constructed in this manner has no quasi-Cauchy subsequence.

This contradiction completes the proof that (b) implies (a). If E is ward compact,

then any sequence (xn) of points in E has a quasi-Cauchy subsequence, which is

also statistically quasi-Cauchy. Thus (b) implies (d). Let any sequence of points in

E have a statistically quasi-Cauchy subsequence. Take any sequence (xn) of points

in E. Thus (xn) has a statistically quasi-Cauchy subsequence (xkn
). By Lemma

1, there exists a subsequence (zj) of the sequence (∆xkn
) such that limj→∞ zj =

limn→∞ ∆xknj
= 0. This means that the subsequence (xknj

) is quasi-Cauchy. So

we get that (d) implies (b). Since any convergent sequence is lacunary statistically

convergent with the same limit, it follows that (b) implies (e). Now suppose that
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any sequence of points in E has a statistically quasi-Cauchy subsequence. If (xn) is

any any sequence of points in E, then it has a lacunary statistically quasi-Cauchy

subsequence, xkn
), say. Thus Sθ − limn→∞ ∆xkn

= 0. By Lemma 2, there exists a

subsequence (zm) of the sequence (∆xkn
) such that limn→∞ zm = 0. This means

that the subsequence we have obtained, (xknm
), is quasi-Cauchy. So we get that

(e) implies (b). As Cauchy sequences are slowly oscillating, we see that (a) implies

(c). Finally, let E be slowly oscillating compact. Take any sequence x = (xn)

of points in E. Then x has a slowly oscillating subsequence, say z. Since any

slowly oscillating sequence is quasi-Cauchy it follows that E is ward compact. This

completes the proof of the theorem. �

We see that for any regular subsequential method G defined on X , if a subset

E of X is G-sequentially compact, then any one of the conditions of Theorem 1

is satisfied (see [15] for the definition of G-sequentially compactness, see also [16]).

But the converse is not always true.

4. sequential definitions of uniform continuity

Slowly oscillating and ward continuity concepts were introduced by Cakalli in

[17] for real functions, and further investigation of slowly oscillating continuity was

done by Canak, and Dik in [12], and further invesigation of ward continuity was

done by Burton and Coleman in [6]. Now we modify Lemma 1 in [6] to the metric

space setting.

Lemma 4. If (ξn, ηn) is a sequence of ordered pairs of points in a subset E of

X such that limn→∞ d(ξn, ηn) = 0, then there exists a quasi-Cauchy sequence (xn)

with the property that for any positive integer i there exists a positive integer j

such that (ξi, ηi) = (xj−1, xj).

Proof. For each positive integer k, fix zk0 , z
k
1 , ..., z

k
nk

in E with zk0 = ηk, z
k
nk

= ξk+1,

and d(zki , z
k
i−1) <

1
k
for 1 ≤ i ≤ nk. Now write

(ξ1, η1, z
1
1 , ..., z

1
n1−1, ξ2, η2, z

2
1 , ..., z

2
n2−1, ξ3, η3, ..., ξk, ηk, z

k
1 , ..., z

k
nk−1

, ξk+1, ηk+1, ...)
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Then denoting this sequence by (xn) we obtain that for any positive integer i there

exists a positive integer j such that (ξi, ηi) = (xj−1, xj). This completes the proof

of the lemma.

In [12] it was proved that any slowly oscillating continuous function defined on a

slowly oscillating compact subset A of R is uniformly continuous. Since any slowly

oscillating compact subset of R is bounded it follows that any slowly oscillating

continuous function defined on any bounded subset of R is uniformly continuous.

Recently in [13], (see also [14], and [18]) it was proved that a slowly oscillating

continuous function is uniformly continuous on any subset of R. We see below

that is also the case that any slowly oscillating continuous function on a subset of a

metric space is uniformly continuous. In [8] it was proved that any ward continuous

function defined on a ward compact subset A of R is uniformly continuous. Since

any ward compact subset of R is bounded it follows that any ward continuous

function defined on any bounded subset of R is uniformly continuous. Recently in

[7] (see also [13], and [14]) it was proved that a ward continuous function defined

on any subset of R is uniformly continuous. It turns out that it is also the case that

any ward continuous function on a subset of a metric space is uniformly continuous.

�

Theorem 5. Let E be a subset of X , and f be a function defined on E. Then

the following statements are equivalent.

(UC) f is uniformly continuous on E.

(WC) f is ward continuous on E.

(SOC) f is slowly oscillating continuous on E.

Proof. Let f be uniformly continuous on E. To prove that f is ward continuous

on E, take any quasi-Cauchy sequence (xn), and ε > 0. Uniform continuity of f

on E implies that there exists a δ > 0, depending on ε, such that d(f(x), f(y)) < ε

whenever d(x, y) < δ and x, y ∈ E. For this δ > 0, there exists an N = N(δ) =

N1(ε) such that ∆xn < δ whenever n > N . Hence ∆f(xn) < ε if n > N . Hence

it follows that (f(xn)) is quasi-Cauchy, which completes the proof of that (UC)

implies (WC). To prove that uniform continuity of f implies slowly oscillating

continuity of f on E, take a slowly oscillating sequence x = (xn) of points in E.

Let ε > 0. Uniform continuity of f implies that there exists a δ > 0 such that
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d(f(x), f(y)) < ε whenever d(x, y) < δ. Since (xn) is slowly oscillating, for this

δ > 0, there exist a δ1 > 0 and N = N(δ) = N1(ε) such that d(xm, xn) < δ if

n ≥ N(δ) and n ≤ m ≤ (1 + δ1)n. Hence d(f(xm), f(xn)) < ε if n ≥ N(δ) and

n ≤ m ≤ (1 + δ1)n. It follows from this that (f(xn)) is slowly oscillating.

To prove that (SOC) implies (UC) suppose that f is not uniformly contin-

uous on E so that there exists an ε > 0 such that for any δ > 0 x, y ∈ E with

d(x, y) < δ but d(f(x), f(y)) ≥ ε. For each positive integer n, fix d(xn, yn) <
1
n
, and

d(f(xn), f(yn)) ≥ ε. As in the proof of Lemma 4, one can construct a slowly oscillat-

ing sequence (tn) which has a subsequence (xn) = (tkn
) such that limn→∞ ∆xn = 0,

but d(f(xn+1), d(f(f(xn)) ≥ ε. Therefore the transformed sequence (f(xn)) is not

slowly oscillating. Thus this contradiction yields that (SOC) implies (UC). Now

let us prove that (WC) implies (UC). Suppose that f is not uniformly continuous

on E. Then since the sequence constructed in the proof that (SOC) implies (UC)

is clearly quasi-Cauchy, but (f(xn)) is not, we see that (WC) implies (UC). This

completes the proof of the theorem.

�

Corollary 6. Let G be a regular subsequential method. If a function is uni-

formly continuous on E, then it is G-sequentially continuous on E(see [16]).

5. Conclusion

The present work contains not only an improvement and a generalization of the

works of Cakalli [8], Section 1 of the paper of Burton and Coleman [6] (note that

in that paper the authors presented the main theorem in the real case, although

they studied some other concepts in the metric space setting in Section 2 of their

paper) and Section II of the paper of Vallin [19] as it has been presented in a more

general setting, i.e. in a metric space which is more general than the real space,

but also an investigation of some further results for real functions, which are also

new for the real case. So that one may expect it to be more useful tool in the field

of metric space theory in modeling various problems occurring in many areas of

science, computer science, information theory, and biological science. For further

study, we suggest to investigate quasi-Cauchy sequences, statistically-quasi-Cauchy-

sequences, and lacunary statistically-quasi-Cauchy-sequences of fuzzy points, and
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characterizations of uniform continuity for the fuzzy functions defined on a fuzzy

metric space. However due to the change in settings, the definitions and methods

of proofs will not always be analogous to those of the present work (for example

see [20]).

References

[1] H.Fast, Sur la convergence statistique, Colloq. Math., 2, (1951), 241-244 MR 14:29c.

[2] J.A.Fridy, On statistical convergence, Analysis, 5, (1985), 301-313, MR 87b:40001.
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