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Morse theory

Marco Ghimenti ∗ Anna Maria Micheletti †

Dedicated to Franco Nicolosi

Abstract

Given (M,g0) we consider the problem −ε2∆g0+hu+ u = (u+)p−1

with (ε, h) ∈ (0, ε̄)× Bρ. Here Bρ is a ball centered at 0 with radius
ρ in the Banach space of all Ck symmetric covariant 2-tensors on
M . Using the Poincaré polynomial of M , we give an estimate on the
number of nonconstant solutions with low energy for (ε, h) belonging
to an residual subset of (0, ε̄)× Bρ, for ε̄, ρ small enough.
Keywords: singular perturbation, nondegenerate critical points,

Morse theory
AMS subject classification: 58G03, 58E30

1 Introduction

Let (M, g) be a smooth compact connected Riemannian manifold of dimen-
sion n ≥ 2 without boundary, endowed with the metric tensor g. We are
interested in the following problem

{

−ε2∆gu+ u = |u|p−2u in M
u ∈ H1

g (M), u > 0.
(1.1)

where 2 < p < 2n
n−2

with n ≥ 3, p > 2 if n = 2, and ε is a positive
parameter. Here H1

g (M) is the completion of C∞(M) with respect to the

norm ||u||2g =

∫

M

|∇gu|
2 + u2dµg.
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It is well known that any critical point of the energy functional Jε,g :
H1
g → R constrained to the Nehari manifold Nε,g is a solution of (1.1). Here

Jε,g(u) =
1

εn

∫

M

(

ε2

2
|∇gu|

2 +
1

2
u2 −

1

p
(u+)p

)

dµg

Nε,g = {u ∈ H1
g (M)r 0 : J ′

ε,g(u)[u] = 0}.

A lot of work has been devoted to the problem (1.1) in various kinds of
subsets of Rn. We limit ourselves to citing the pioneering papers [1, 2, 3, 6,
7, 9].

In [8] the authors shows that the least energy solution of (1.1), i.e. the
minimum of Jε,g on Nε,g, is a positive solution with a spike layer, whose peak
converges to the maximum point of the scalar curvature Sg of (M, g) as ε goes
to zero. Both topology and geometry influence the multiplicity of positive
solution of problem (1.1). Recently in [10, 14, 15] it has been proved that the
existence of positive solutions is strongly related to the geometry of M , that
is stable critical points of the scalar curvature Sg generate positive solutions
with one ore more peaks as ε goes to zero. Previously in [5] (see also [12, 16])
the authors point out that the topology of M has effect on the number of
solutions of (1.1), that is (1.1) has at least catM nonconstant solutions for
ε small enough. Here catM is the Lusternik Schnirelmann category of M .
Moreover in [5] the Poincaré polynomial is considered (see Definition 2.1)
and the authors assume that

all the solution of the problem (1.1) are nondegenerate. (1.2)

Then they prove that problem (1.1) has at least 2P1(M)− 1 solutions.
Our main result reads as following.

Theorem 1.1. Given g0 ∈ M k, the set

D =

{

(ε, h) ∈ (0, ε̃)× Bρ̃ : the problem − ε2∆g0+hu+ u = (u+)p−1

has at least P1(M) nonconstant solutions u with Jε,g0+h(u) < 2m∞

}

is an residual subset in (0, ε̃)× Bρ̃, for ε̃ and ρ̃ chosen small enough.

Here S k is the space of all Ck symmetric covariant 2-tensors on M and
M k is the set of all Ck Riemannian metrics on M with k ≥ 2. The set Bρ

is the ball centered at 0 with radius ρ in the Banach space S k. The number
m∞ is defined by

m∞ = inf{J∞(v) : J ′
∞(v)v = 0 and v 6= 0}
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where J∞(v) =

∫

Rn

1

2
(|∇v|2 + v2)−

1

p
|v|pdx.

The paper is organized as follows. In Section 2 we fix some notations and
we recall some results which will be crucial in the proof of main result. In
Section 3 we prove the main result, using some technical results showed in
sections 4, 5.

2 Notation, definition, known results

Through this paper we will use the following notations

• B(0, R) is the ball in R
n of center 0 and radius R.

• Bg(q, R) is the geodesic ball in M of center q and radius R with the
distance given by the metric g.

• Bρ is the ball in the Banach space S k of center 0 and radius ρ.

• I(u, r) is the ball in H1
g of center u and radius r

• For u ∈ H1
g (M) we use the norms

||u||2g =

∫

M

(|∇gu|
2 + |u|2)dµg |u|pp,g =

∫

M

|u|pdµg

|||u|||2g,ε =
1

εn

∫

M

(ε2|∇gu|
2 + |u|2)dµg |u|pp,g,ε =

1

εn

∫

M

|u|pdµg

• For u ∈ H1(Rn) we use the norms

||u||2 =

∫

Rn

(|∇u|2 + |u|2)dx |u|pp =

∫

Rn

|u|pdx

• mε,g = inf{Jε,g(v) : v ∈ Nε,g}

It is know that there exists a unique positive spherically symmetric func-
tion U ∈ H1(Rn) such that J∞(U) = m∞. Obviously we have

−∆U + U = Up−1. (2.1)

For ε > 0 we set Uε(x) = U(x/ε) and we get −ε2∆Uε + Uε = Up−1
ε .

Now we shall recall some topological tools which are used in the paper
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Definition 2.1. If (X, Y ) is a couple of topological spaces, the Poincaré
polynomial Pt(X, Y ) is defined as the following power series in t

Pt(X, Y ) =
∑

k

dimHk(X, Y )t
k (2.2)

where Hk(X, Y ) is the k-th homology group of the couple (X, Y ) with coeffi-
cient in some field. Moreover we set

Pt(X) = Pt(X, ∅) =
∑

k

dimHk(X)tk (2.3)

If X is a compact manifold there only a finite number of nontrivial Hk(X)
and dimHk(X) < ∞. In this case Pt(X) is a polynomial and not a formal
series.

Definition 2.2. Let J be a C2 functional on a Banach space X and let u ∈ X
be an isolated critical point of J with J(u) = c. If Jc := {v ∈ X : J(v) ≤ c},
then the (polynomial) Morse index it(u) is the series

it(u) =
∑

k

dimHk(J
c, Jc r {u})tk, (2.4)

If u is a nondegenerate critical point of J then it(u) = tµ(u) where µ(u)
is the (numerical) Morse index of u, and it is given by the dimension of the
maximal subspace on which the bilinear form J ′′(u)[·, ·] is negative definite.

It is useful to recall the following result (see [7])

Remark 2.3. Let X and Y be topological spaces. If f : X → Y and g : Y →
X are continuous maps such that g ◦ f is homotopic to the identity map on
X , then

Pt(Y ) = Pt(X) + Z(t) (2.5)

where Z(t) is a polynomial with non negative coefficients.

Definition 2.4. Let J be a C1 functional on a Banach space X. We say
that J satisfies the Palais Smale condition if any sequence {xn}n ⊂ X for
which J(xn) is bounded and J ′(xn) → 0 has a convergent subsequence.

We now introduce the Banach space S k which will be the parameter
space. We denote by S k the Banach space of all Ck symmetric covariant
symmetric 2-tensors onM . The norm ||·||k is defined in the following way. We
fix a finite covering {Vα}α∈L of M such that the closure of Vα is contained in
Uα where {Uα, ψα} is an open coordinate neighborhood. If h ∈ S k we denote
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by hi,j the components of h with respect to the coordinates (x1, . . . , xn) on
Vα. We define

||h||k =
∑

α∈L

∑

|β|≤k

n
∑

i,j=1

sup
ψα(Vα)

∂βhi,j

∂xβ11 · · ·∂xβkk
(2.6)

The set M k of all Ck Riemannian metrics on M is an open subset of S k.
On the tangent bundle of any compact connected Riemannian manifold

M , it is defined the exponential map exp : TM → M which is a C∞ map.
Then, for ρ small enough, the manifold M has a special set of charts given
by expx : B(0, R) → Bg(x,R) (where TxM is identified with R

n) for x ∈M .
The system of coordinates corresponding to these charts are called normal
coordinates.

Remark 2.5. Let g0 a fixed Ck Riemannian metric on the manifold M . By
the compactness of M there exist two positive constant c, C such that

∀x ∈M, ∀ξ ∈ TxM c||ξ||2 ≤ g0(x)(ξ, ξ) ≤ C||ξ||2;

∀x ∈M cn ≤ |g0(x)| ≤ Cn.

By definition of the norms |||u|||g,ε and ||h||k we have that there exists
ρ1 > 0 such that, if h ∈ Bρ1 , the two sets H1

g (M), H1
g0
(M) are the same and

the two norms |||u|||g,ε, |||u|||g0,ε (as well as |||u|||g, |||u|||g0) are equivalent,
and the positive constants for the equivalence do not depend on ε, for 0 <
ε < 1.

Remark 2.6. It is trivial that there exists ρ2 such that, for any h ∈ Bρ2 , we
have

Jε,g0+h(1) =

(

1

2
−

1

p

)

1

εn

∫

M

1dµg0+h >
p− 2

2p

1

εn
µg0(M)

2
. (2.7)

Then Jε,g0+h(1) > 2m∞ for ε <

[

p− 2

8pm∞
µg0(M)

]1/n

and h ∈ Bρ2 .

In the following we consider g = g0+h with h ∈ Bρ̂ where ρ̂ = min{ρ1, ρ2}.

Lemma 2.7. There exists ε1 ∈ (0, 1) such that, for any ε < ε1 and for any
h ∈ Bρ̂, we have

A(h, ε) := {u ∈ Nε,g0+h : Jε,g0+h(u) ≤ 2m∞} ⊂ I(0, α)r 1 (2.8)

for some α > 0.
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Proof. If u ∈ A(h, ε) we have

Jε,g(u) =

(

1

2
−

1

p

)

|||u|||2ε,g ≤ 2m∞, (2.9)

where g = g0 + h with h ∈ Bρ̂. By definition of ρ̂, there exists c1 > 0 such
that

c1||u||
2
g0
≤ c1|||u|||

2
ε1,g0

≤ c1|||u|||
2
ε,g0

≤ |||u|||2ε,g (2.10)

for 0 < ε < ε1 and h ∈ Bρ̂. Then by (2.9) and (2.10) we have

||u||2g0 ≤
2p

p− 2

2m∞

c1
. (2.11)

By Remark 2.6 we have u 6= 1 for ε1 small enough. By the following Remark
5.6, we have that A(h, ε) 6= ∅ for ε1, and ρ̂ small enough.

Now we recall a result about the nondegeneracy of positive solutions of
(1.1) with respect to the pair of parameters (ε, g), where ε is a positive
number and g is a Riemannian metric (see [13]).

Theorem 2.8. Given g0 ∈ M k, and an open ball of H1
g0
(M) without the

constant 1 A = I(0, α)r {1}, the set

D =

{

(ε, h) ∈ (0, 1)× Bρ s.t. any u ∈ A solution of the equation
−ε2∆g0+hu+ u = (u+)p−1is nondegenerate

}

is an residual subset in (0, 1)× Bρ for ρ small enough.

3 The main ingredient of the proof

Let us sketch the proof of our main result. We are going to find an estimate
of the number of nonconstant critical points of the functional Jε,g0+h with
energy close to m∞, with respect to the parameters (ε, h) ∈ (0, ε̃)× Bρ̃.

First of all we apply Theorem 2.8 choosing the positive numbers ε̃, ρ̃ small
enough and the open bounded set A equal to I(0, α)r {1}, where α is given
by Lemma 2.7. So we get that the set

D(ε̃, ρ̃) =

{

(ε, h) ∈ (0, ε̃)× Bρ̃ : any u ∈ I(0, α)r {1} solution of
−ε2∆g0+hu+ u = (u+)p−1 is non degenerate

}

⊃

⊃

{

(ε, h) ∈ (0, ε̃)× Bρ̃ : any solutions of − ε2∆g0+hu+ u = (u+)p−1

nonconstant, such that Jε,g0+h(u) < 2m∞ is non degenerate

}

is an residual subset in (0, ε̃)× Bρ̃, for ε̃ and ρ̃ small enough.
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Since lim
(ε,h)→(0,0)

mε,g0+h = m∞ (see following Remark 5.6), given δ ∈

(0, m∞/4), for (ε, h) ∈ R
+ × S k small enough, we have

0 < m∞ − δ < mε,g0+h < m∞ + δ < 2m∞.

Thus m∞ − δ is not a critical value of Jε,g0+h.
By the compactness of M , it holds Palais Smale condition for the func-

tional Jε,g0+h. At this point we take (ε, h) ∈ D(ε̃, ρ̃) with the positive numbers
ε̃, ρ̃ small enough. Thus we have that the critical points u of Jε,g0+h with
Jε,g0+h(u) < 2m∞ are in a finite number, then we can assume that m∞+ δ is
not a critical value for Jε,g0+h. It holds the following relation proved in [4, 7]
(see [7, Lemma 5.2])

Pt(J
m∞+δ
ε,g0+h

, Jm∞−δ
ε,g0+h

) = tPt(J
m∞+δ
ε,g0+h

∩Nε,g0+h). (3.1)

On the other hand, by proposition 4.1 and 5.1 and Lemma 5.5, we can
build two maps Φε,g0+h and βg0+h such that

M
Φε,g0+h

−→ Nε,g0+h ∩ J
m∞+δ
ε,g0+h

βg0+h

−→ Mr(M), (3.2)

where βg0+h ◦ Φε,g0+h is homotopic to the identity map and Mr(M) is homo-
topically equivalent to M . Therefore, by Remark 2.3 we have

Pt(J
m∞+δ
ε,g0+h

∩Nε,g0+h) = Pt(M) + Z(t) (3.3)

where Z(t) is a polynomial with nonnegative integer coefficients.
Since the functional Jε,g0+h satisfies the Palais Smale condition and the

critical points u of Jε,g0+h such that Jε,g0+h(u) < m∞ + δ are nondegenerate,
by Morse theory we have

∑

u∈C

it(u) =
∑

u∈C

tµ(u) = Pt(J
m∞+δ
ε,g0+h

, Jm∞−δ
ε,g0+h

). (3.4)

Here µ(u) is the dimension of the maximal subspace on which the bilinear
form J ′′

ε,g0+h
(u)[·, ·] is negative definite and the set C is defined by

C = {u : J ′
ε,g0+h(u) = 0 and m∞ − δ < Jε,g0+h(u) < m∞ + δ}. (3.5)

Then by (3.1), (3.4) and (3.5), for any (ε, h) ∈ D(ε̃, ρ̃) with the positive
numbers ε̃, ρ̃ small enough, we get that the functional Jε,g0+h has at least
P1(M) nonconstant critical points u such that Jε,g0+h(u) < m∞ + δ < 2m∞.
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4 The function Φε,g

Let us define a smooth real cut off function χR such that χR(t) = 1 if 0 ≤
t ≤ R/2, χR(t) = 0 if t ≥ R, and |χ′(t)| ≤ 2/R. Fixed q ∈ M and ε > 0, we
define on M the function

wgq,ε(x) =

{

Uε(exp
−1
q (x))χR(| exp

−1
q (x)|) if x ∈ Bg(q, R);

0 otherwise.
(4.1)

For any u ∈ H1
g0+h

(M) with u+ 6= 0 we define t(u) ∈ R as

tp−2(u) =

∫

M

(ε2|∇g0+hu|
2 + u2)dµg0+h

∫

M

|u+|pdµg0+h

, (4.2)

so t(u) is the unique number such that t(u)u ∈ Nε,g0+h.
Thus we can define a map Φε,g :M → Nε,g by

Φε,g(q) = t(wgq,ε)w
g
q,ε. (4.3)

Proposition 4.1. Given g0 ∈ M k, for any ε > 0 and for any h ∈ Bρ̃ ⊂ S k

the operator Φε,g0+h : M → Nε,g0+h is continuous. Moreover, given g0, for
any δ > 0 there exists ε2 = ε2(δ) such that, if ε < ε2, then

Φε,g0+h(q) ∈ Nε,g0+h ∩ J
m∞+δ
ε,g0+h

∀q ∈M, ∀h ∈ Bρ̂. (4.4)

Proof. It easy to prove the continuity of q → Φε,g0+h(q) ∈ Nε,g0+h from M to
H1
g0+h

(M). To obtain the second statement we recall that

Jε,g0+h(Φε,g0+h(w
g0+h
q,ε )) =

1

εn

(

1

2
−

1

p

)

[t(wg0+hq,ε )]p|wg0+hq,ε |pp,g0+h. (4.5)

Moreover the following limits hold

lim
ε→0

1

εn
|wg0+hq,ε |22,g0+h = |U |22 (4.6)

lim
ε→0

1

εn
|wg0+hq,ε |pp,g0+h = |U |pp (4.7)

lim
ε→0

ε2

εn
|∇g0+hw

g0+h
q,ε |22,g0+h = |∇U |22 (4.8)

uniformly with respect to q ∈ M and h ∈ Bρ ⊂ S k, k ≥ 2. We prove
only the first limit, the others follow in a similar way. Using the normal
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coordinates with respect to g0 + h at the point q ∈M we have

1

εn
|wg0+hq,ε |22,g0+h − |U |22 =

∣

∣

∣

∣

∫

Rn

U2(z)[|χ2(ε|z|)| |g0,q(εz) + hq(εz)|
1/2 − 1]dz

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∫

B(0,T )

U2(z)[|χ2(ε|z|)| |g0,q(εz) + hq(εz)|
1/2 − 1]dz

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫

RnrB(0,T )

U2(z)[|χ2(ε|z|)| |g0,q(εz) + hq(εz)|
1/2 − 1]dz

∣

∣

∣

∣

.

(4.9)

We point out that

(g0,q(0) + hq(0))
ij = δij and

|(g0,q(y) + hq(y))
ij − δij | = |∇[(g0,q(θy))

ij] · y +∇[(hq(θy))
ij] · y| ≤

≤ [|∇(g0,q(θy))
ij|+ |∇(hq(θy))

ij|] · |y|.

Because M is compact, we have [|∇(g0,q(θy))
ij| + |∇(hq(θy))

ij|] is bounded
independently on y ∈ B(0, r), q ∈M , and h ∈ Bρ.

At this point it is clear that the second addendum of formula (4.9) van-
ishes as T → +∞. Moreover, fixed T large enough, the first addendum of
(4.9) vanishes as ε → 0.

By the previous limits we get that lim
ε→0

t(wg0+hε,q ) = 1 uniformly with respect

to q ∈M and h ∈ Bρ. Then we have

lim
ε→0

Jε,g0+h
(

t(wg0+hε,q )wg0+hε,q

)

= m∞ (4.10)

uniformly with respect to q ∈M and h ∈ Bρ.

Remark 4.2. By Proposition 4.1 we get

lim sup
ε→0

mε,g0+h ≤ m∞, (4.11)

uniformly with respect to h ∈ Bρ. Here mε,g = inf
Nε,g

Jε,g and m∞ = inf
N∞

J∞.

5 The operator βg

For any function u ∈ Nε,g we can define its centre of mass as a point βg(u) ∈
R
N by

βg(u) =

∫

M

x(u+)pdµg
∫

M

(u+)pdµg

. (5.1)

9



The function βg is well defined on Nε,g since, if u ∈ Nε,g then u
+ 6= 0. We will

prove that, if u ∈ Nε,g∩J
m∞+δ
ε,g , then βg(u) ∈ Mr(M), using the concentration

properties of the functions in Nε,g ∩ Jm∞+δ
ε,g as ε and δ are suitably small.

In the following we use the same arguments of Section 5 of [BBM], but here
we have to take in account the dependence of the metric g, hence some
calculations are different.

Our aim is to get the following statement

Proposition 5.1. Given g0 ∈ M k, there exist δ0, ρ0 and ε0 such that, for
any δ ∈ (0, δ0), for any ε ∈ (0, ε0), for any h ∈ Bρ0, and for any u ∈
Nε,g0+h ∩ Jm∞+δ

ε,g0+h
, it holds βg0+h(u) ∈ Mr(M) where r(M) is the radius of

topological invariance of M and Mr(M) = {x ∈ R
N : d(x,M) < r(M)}.

To prove Proposition 5.1 we need some technical results.
First of all we consider partitions of the compact manifold M . Given

ε > 0 and a metric g0, a partition P = P(ε) = {Pj = PJ(ε)}j∈Λ(ε) is called
a “good” partition if:

• for any j ∈ Λ(ε) the set Pj is closed

• Pj ∩ Pi ⊂ ∂Pj ∩ ∂Pi for i 6= j

• there exists ρ > 0 such that, for any j, there exists qj ∈ Pj such that
Bg(qj , ε) ⊂ Pj ⊂ Bg(qj , (1 + 1/a)ε) with a constant a independent on
ε and g = g0 + h with h ∈ Bρ

• any point x ∈ M is contained in at most νM balls Bg(qj, (1 + 1/a)ε)
where νM does not depend on ε and g, g = g0 + h and h ∈ Bρ.

Lemma 5.2. There exist γ > 0 and ρ > 0 such that, for any δ > 0 and
ε > 0, given any “good” partition P(ε) and any u ∈ Nε,g ∩ Jm∞+δ

ε,g , where
g = g0 + h with h ∈ Bρ, there exists a set P ∈ P(ε) such that

1

εn

∫

P

(u+)pdµg0+h ≥ γ, with h ∈ Bρ (5.2)

The proof of this Lemma can be obtained following the same argument of
the proof of [5, Lemma 5.3]. Indeed, every constant appearing in [5, Lemma
5.3] can be chosen independently on h ∈ Bρ with ρ small enough.

Proposition 5.3. For any η ∈ (0, 1) there exist δ0, ρ0 and ε0 such that, for
any δ < δ0, for any ε < ε0, for any h ∈ Bρ0 and for any u ∈ Nε,g0+h∩J

m∞+δ
ε,g0+h

,
there exists q = q(u) for that

(

1

2
−

1

p

)

1

εn

∫

Bg0+h(q,r(M)/2)

(u+)pdµg0+h > (1− η)m∞ (5.3)

10



Proof. We only prove the proposition for any u ∈ Nε,g0+h ∩ J
mε,g0+h+2δ

ε,g0+h
. In-

deed, by this result and by Remark 4.2 we get

lim
(ε,h)→(0,0)

mε,g0+h = m∞. (5.4)

Hence it holds Jm∞+δ
ε,g0+h

⊂ J
mε,g0+h+2δ

ε,g0+h
for δ, ε and ||h||k small enough. So the

thesis holds.
We argue by contradiction. Suppose that there exists η ∈ (0, 1) such that

we can find sequences of vanishing numbers {δk}k, {εk}k, a sequence hk → 0

in S k and a sequence uk ∈ Nεk,g0+hk ∩J
mε,g0+hk

+2δk
εk ,g0+hk

such that, for all q ∈M ,

(

1

2
−

1

p

)

1

εnk

∫

Bg0+hk
(q,r(M)/2)

(u+k )
pdµg0+hk ≤ (1− η)m∞. (5.5)

By Ekeland variational principle (see [11]), and by definition of the Nehari
manifold, we can assume that

|J ′
εk,g0+hk

(uk)(ξ)| ≤
√

δk|||ξ|||εk ∀ξ ∈ H1
g0+hk

(M). (5.6)

By Lemma 5.2 there exists a set Pk ∈ Pεk such that

1

εnk

∫

Pk

(u+k )
pdµg0+hk ≥ γ. (5.7)

We choose a point qk interior to Pk and we consider the function wk : R
n → R

defined by

uk(x)χR(exp
−1
qk
(x)) = uk(expqk(εkz)χR(εk|z|) = wk(z) (5.8)

where x ∈M and χR is a smooth cut off function χR(t) ≡ 1 for 0 < t < R/2,
χR(t) ≡ 0 for t > R and R small enough. It easily follows that wk ∈
H1

0 (B(0, R/εk)) ⊂ H1(Rn).
We now establish some properties of the functions wk by some lemmas.

The proof of these lemmas are in Section 6

Lemma 5.4. By considering a subsequence, there exists w ∈ H1(Rn) such
that limk wk = w as a weak limit in H1(Rn) and a strong limit in Lp

loc
(Rn).

Lemma 5.5. The limit function w ∈ H1(Rn) is a weak solution of

−∆w + w = |w|p−2w, w > 0 (5.9)
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At this point we observe that, by definition of wk and by (5.5), for any
σ ∈ (0, η), and for any T > 0 we have, for k large enough,

(

1

2
−

1

p

)
∫

B(0,T )

|w+
k (x)|

pdx <
1− η

1− σ
m∞.

On the other hand by Lemma 5.5 we have
(

1

2
−

1

p

)

||w||2 =

(

1

2
−

1

p

)

|w|pp ≥ m∞.

By Lemma 5.4, for T and k large enough
(

1

2
−

1

p

)
∫

B(0,T )

|w+
k (x)|

pdx >
1− η

1− σ
m∞,

and this leads to a contradiction.

Remark 5.6. By Proposition 5.3 and by Remark 4.2, it holds

lim
(ε,h)→(0,0)

mε,g0+h = m∞

uniformly with respect to h ∈ Bρ (here ρ is given as in Proposition 5.3)

Proof of Proposition 5.1. By Proposition 5.3 for any η ∈ (0, 1) and for any
u ∈ Nε,g0+h ∩ J

m∞+δ
ε,g0+h

with ε, δ, and h small enough, there exists q ∈M such
that

(1− η)m∞ <

(

1

2
−

1

p

)

1

εn

∫

Bg0+h(q,r(M)/2)

(u+)pdµg0+h. (5.10)

Moreover, since u ∈ Nε,g0+h ∩ J
m∞+δ
ε,g0+h

, it holds
(

1

2
−

1

p

)

1

εn

∫

M

(u+)pdµg0+h < m∞ + δ. (5.11)

Then, by (5.10) and (5.11), we have

|βg(u)− q| ≤

∣

∣

∣

∣

∫

M
(x− q)(u+(x))pdµg0+h
∫

M
(u+(x))pdµg0+h

∣

∣

∣

∣

≤

≤

∣

∣

∣

∣

∣

∫

Bg0+h(q,r(M)/2)
(x− q)(u+(x))pdµg0+h

∫

M
(u+(x))pdµg0+h

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∫

MrBg0+h(q,r(M)/2)
(x− q)(u+(x))pdµg0+h

∫

M
(u+(x))pdµg0+h

∣

∣

∣

∣

∣

≤

≤
r(M)

2
+ 2D

(

1−
(1− η)m∞

m∞ + δ

)

(5.12)

12



where D is the diameter of M as a compact subset of RN . Choosing η and
δ suitably small we get the claim.

The last result of this section is that the composition Igε := βg ◦ Φε,g is
homotopic to the identity on M .

Lemma 5.7. There exists ε2 < ε0 such that, for any ε ∈ (0, ε2) and for any
h ∈ Bρ̂

Ig0+hε := βg0+h ◦ Φε,g0+h :M → Mr(M) (5.13)

is well defined and it is homotopic to the identity on M .

Proof. By Proposition 4.1 and (5.7) the map Ig0+hε is well defined. To prove
that Ig0+hε is homotopic to the identity on M it is enough to evaluate the
map. Here g = g0 + h.

Igε (q)− q =
ε
∫

B(0,R/ε)
z|U(z)χR(ε|z|)|

p|gq(εz)|
1

2dz
∫

B(0,R/ε)
|U(z)χR(ε|z|)|p|gq(εz)|

1

2dz
, (5.14)

hence |Igε (q)− q| ≤ c · ε for a constant c = c(M, g0, ρ̂) that does not depend
on q and on h ∈ Bρ̂

6 Proof of technical lemmas

Proof of Lemma 5.4. Here gk = g0 + hk with hk ∈ Bρ, hk → 0 and ũk(y) =

uk(expqk(y)). We recall that

(

1

2
−

1

p

)

|||uk|||
2
εk,gk

≤ mεk,gk +2δk. By Remark

4.2, for k large we get

2
2p

p− 2
m∞ ≥

1

εnk

∫

M

u2k(x)dµgk ≥
1

εnk

∫

Bgk
(qk,R)

χ2
R(| exp

−1
qk
(x)|)u2k(x)dµgk =

=
1

εnk

∫

B(0,R)

χ2
R(|y|)u

2
k(expqk y)|gk,qk(y)|

1/2dy =

=

∫

B(0,R/εk)

χ2
R(εk|zk|)ũ

2
k(εkz)|gk,qk(εkz)|

1/2dz ≥ const

∫

Rn

w2
k(z)dz.

Let us now estimate the L2 norm for ∇wk

∫

B(0,R/εk)

∑

i

(

∂wk
∂zi

(z)

)2

dz = I1 + I2 + I3, where

13



I1 =

∫

B(0,R/εk)

χ2
R(εk|z|)

∑

i

(

∂ũk
∂zi

(εkz)

)2

dz

I2 =

∫

B(0,R/εk)

ũ2k(εk|z|)
∑

i

(

∂χR
∂zi

(εkz)

)2

dz

I3 = 2

∫

B(0,R/εk)

χR(εk|z|)ũk(εkz)
∑

i

∂χR
∂zi

(εk|z|)
∂ũk
∂zi

(εk|z|)

By Remark 2.5 we have

2
2p

p− 2
m∞ ≥

ε2k
εnk

∫

M

|∇gkuk(x)|
2dµgk ≥

≥

∫

B(0,R/εk)

(

∑

ij

gijk,qk(εkz)
∂ũk
∂zi

(εkz)
∂ũk
∂zj

(εkz)

)

|gk,qk(εkz)|
1/2dz ≥

≥ const

∫

B(0,R/εk)

|∇ũk(εkz)|
2dz.

(6.1)

Thus I1 is bounded. Analogously for addenda I2 and I3

Proof of Lemma 5.5. For any ϕ ∈ C∞
0 (Rn) we have that, for k big enough,

wk(z) = uk(exp
−1
qk
(εkz)) for z ∈ suptϕ, because suptϕ ⊂ {z : χR(εk|z|) =

1} for k big enough. We put ϕ̂k(x) = ϕk

(

1

εk
exp−1

qk
(x)

)

for x ∈ M . If

suptϕ ⊂ B(0, T ), then supt ϕ̂k ⊂ Bgk(qk, εkT ) so we have

J ′
εk
(uk)[ϕ̂k] =

1

εn

∫

M

ε2k∇gkuk∇gkϕ̂k + ukϕ̂k − (u+k )
p−1ϕ̂kdµgk =

=

∫

B(0,T )

|gk,qk(εkz)|
1/2

[

∑

ij

gijk,qk(εkz)
∂wk
∂zi

∂ϕ̂k
∂zj

+ wkϕ̂k − (w+
k )

p−1ϕ̂kdz.

]

(6.2)

By the Ekeland principle we have

|J ′
εk
(uk)[ϕ̂k]| ≤

√

δk|||ϕ̂k|||εk . (6.3)

It is sufficient to prove that |||ϕ̂k|||εk is bounded to obtain that

J ′
εk
(uk)[ϕ̂k] → 0 as k → ∞. (6.4)

In fact we have

|||ϕ̂k|||
2
εk

=

∫

B(0,T )

[

∑

ij

gijk,qk(εkz)
∂ϕ̂k
∂zi

∂ϕ̂k
∂zj

+ ϕ̂2
k

]

|gk,qk(εkz)|
1/2dz (6.5)
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and

gijk,qk(εkz) = gij0,qk(εkz) + hijk (εkz) =

= δij + εkdg0,qk(θεkz)(z) + hijk (εkz).
(6.6)

Because hk → 0 as k → ∞ in the Banach space S k, by (6.4) and (6.5) we
get the boundness of |||ϕ̂k|||

2
εk
.

By (6.2) and (6.6) we have

J ′
εk
(uk)[ϕ̂k] → J ′

∞(w)[ϕ] ∀ϕ ∈ C∞
0 (Rn). (6.7)

So by (6.7) and (6.4) we have −∆w + w = |w|p−2w with w ≥ 0. Now we
show that w 6= 0. By the definition of “good” partition, by Lemma 5.2 and
by (5.7) we can choose a number T > 0 and qk ∈ M such that, for k big
enough qk ∈ Pk ⊂ Bgk(qk, εkT ). By Remark 2.5 and Lemma 5.2 we get, for
k large enough

∫

B(0,T )

(w+
k )

p =

∫

B(0,T )

(u+k (expqk(εkz)))
p |gk,qk(εkz)|

1/2

|gk,qk(εkz)|
1/2
dz ≥

≥ const
1

εn

∫

Bgk
(qk,εkT )

|u+(x)|pdµg ≥ const · γ.

(6.8)

So we get w 6= 0 because wk converges strongly to w ∈ Lp(B(0, T )) by Lemma
5.4, hence w+

k converge strongly to w+ = w in Lp(B(0, T )).
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