On the number of nodal solutions for a nonlinear elliptic problem on symmetric Riemannian manifolds

M.Ghimenti* A.M.Micheletti*

Abstract

We consider the problem $-\varepsilon^{2} \Delta_{g} u+u=|u|^{p-2} u$ in M, where (M, g) is a symmetric Riemannian manifold. We give a multiplicity result for antisymmetric changing sign solutions.

Keywords: Riemannian Manifolds, Nodal Solutions, Topological Methods
Mathematics Subject Classification: 35J60, 58G03

1 Introduction

Let (M, g) be a smooth connected compact Riemannian manifold of finite dimension $n \geq 2$ embedded in \mathbb{R}^{N}. We consider the problem

$$
\begin{equation*}
-\varepsilon^{2} \Delta_{g} u+u=|u|^{p-2} u \text { in } M, \quad u \in H_{g}^{1}(M) \tag{P}
\end{equation*}
$$

where $2<p<2 *=\frac{2 N}{N-2}$, if $N \geq 3$.
Here $H_{g}^{1}(M)$ is the completion of $C^{\infty}(M)$ with respect to

$$
\begin{equation*}
\|u\|^{2}: g=\int_{M}\left|\nabla_{g} u\right|^{2}+u^{2} d \mu_{g} \tag{1}
\end{equation*}
$$

It is well known that the problem (匂) has a mountain pass solution u_{ε}. In [3] the authors showed that u_{ε} has a spike layer and its peak point converges to the maximum point of the scalar curvature of M as ε goes to 0 .

Recently there have been some results on the influence of the topology and the geometry of M on the number of solutions of the problem. In

[^0][1] the authors proved that, if M has a rich topology, problem (:P) has multiple solutions. More precisely they show that problem (承) has at least $\operatorname{cat}(M)+1$ positive nontrivial solutions for ε small enough. Here $\operatorname{cat}(M)$ is the Lusternik-Schnirelmann category of M. In [17] there is the same result for a more general nonlinearity. Furthermore in [9] it was shown that the number of solution is influenced by the topology of a suitable subset of M depending on the geometry of M. To point out the role of the geometry in finding solutions of problem (㞮), in [13] it was shown that for any stable critical point of the scalar curvature it is possible to build positive single peak solutions. The peak of these solutions approaches such a critical point as ε goes to zero.

Successively in [6] the authors build positive k-peak solutions whose peaks collapse to an isolated local minimum point of the scalar curvature as ε goes to zero.

The first result on sign changing solution is in [12] where it is showed the existence of a solution with one positive peak η_{1}^{ε} and one negative peak η_{2}^{ε} such that, as ε goes to zero, the scalar curvature $S_{g}\left(\eta_{1}^{\varepsilon}\right)$ (respectively $\left.S_{g}\left(\eta_{2}^{\varepsilon}\right)\right)$ goes to the minimum (resp. maximum) of the scalar curvature when the scalar curvature of (M, g) is non constant. Here we give a multiplicity result for changing sign solutions when the Riemannian manifold (M, g) is symmetric.

We look for solutions of the problem

$$
\begin{cases}-\varepsilon^{2} \Delta_{g} u+u=|u|^{p-2} u & u \in H_{g}^{1}(M) ; \\ u(\tau x)=-u(x) & \forall x \in M\end{cases}
$$

where $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is an orthogonal linear transformation such that $\tau \neq \mathrm{Id}$, $\tau^{2}=\mathrm{Id}$, Id being the identity of \mathbb{R}^{N}. Here M is a compact connected Riemannian manifold of dimension $n \geq 2$ and M is a regular submanifold of \mathbb{R}^{N} which is invariant with respect to τ. Let $M_{\tau}:=\{x \in M: \tau x=x\}$ be the set of the fixed points with respect to the involution τ; in the case $M_{\tau} \neq \emptyset$ we assume that M_{τ} is a regular submanifold of M.

We obtain the following result.
Theorem 1. The problem \mathscr{P}_{τ} has at least $G_{\tau}-\operatorname{cat}\left(M-M_{\tau}\right)$ pairs of solutions $(u,-u)$ which change sign (exactly once) for ε small enough

Here G_{τ} - cat is the G_{τ}-equivariant Lusternik Schnirelmann category for the group $G_{\tau}=\{\operatorname{Id}, \tau\}$.

In [4] the authors prove a result of this type for the Dirichlet problem

$$
\left\{\begin{array}{l}
-\Delta u-\lambda u-|u|^{2^{*}-2} u=0 \quad u \in H_{0}^{1}(\Omega) \\
u(\tau x)=-u(x)
\end{array}\right.
$$

Here Ω is a bounded smooth domain invariant with respect to τ and λ is a positive parameter.

We point out that in the case of the unit sphere $S^{N-1} \subset \mathbb{R}^{N}$ (with the metric g induced by the metric of \mathbb{R}^{N}) the theorem of existence of changing sign solutions of [12] can not be used because it holds for manifold of non constant curvature. Instead, we can apply Theorem 1 to obtain sign changing solutions because we can consider $\tau=-\mathrm{Id}$, and we have $G_{\tau}-\operatorname{cat} S^{N-1}=N$.

Equation like (\mathscr{P}) has been extensively studied in a flat bounded domain $\Omega \subset \mathbb{R}^{N}$. In particular, we would like to compare problem ($\left.\mathscr{P}\right)$ with the following Neumann problem

$$
\begin{cases}-\varepsilon^{2} \Delta u+u=|u|^{p-2} u & \text { in } \Omega \tag{N}\\ \frac{\partial u}{\partial \nu}=0 & \text { in } \partial \Omega\end{cases}
$$

Here Ω is a smooth bounded domain of \mathbb{R}^{N} and ν is the unit outer normal to Ω. Problems ($\mathscr{P})$ and $\left(\mathscr{P}_{N}\right)$ present many similarities. We recall some classical results about the Neumann problem.

In the fundamental papers [11, 14, 15], Lin, Ni and Takagi established the existence of least-energy solution to $\left(\mathscr{P}_{N}\right.$ and showed that for ε small enough the least energy solution has a boundary spike, which approaches the maximum point of the mean curvature H of $\partial \Omega$, as ε goes to zero. Later, in [16, 18] it was proved that for any stable critical point of the mean curvature of the boundary it is possible to construct single boundary spike layer solutions, while in [7, 19, 10] the authors construct multiple boundary spike solutions at multiple stable critical points of H. Finally, in [5, 8] the authors proved that for any integer K there exists a boundary K-peaks solutions, whose peaks collapse to a local minimum point of H.

2 Setting

We consider the functional defined on $H_{g}^{1}(M)$

$$
\begin{equation*}
J_{\varepsilon}(u)=\frac{1}{\varepsilon^{N}} \int_{M}\left(\frac{1}{2} \varepsilon^{2}\left|\nabla_{g} u\right|^{2}+\frac{1}{2}|u|^{2}-\frac{1}{p}|u|^{p}\right) d \mu_{g} \tag{2}
\end{equation*}
$$

It is well known that the critical points of $J_{\varepsilon}(u)$ constrained on the Nehari manifold

$$
\begin{equation*}
\mathcal{N}_{\varepsilon}=\left\{u \in H_{g}^{1} \backslash\{0\}: J_{\varepsilon}^{\prime}(u) u=0\right\} \tag{3}
\end{equation*}
$$

are non trivial solution of problem (\mathscr{P}).
The transformation $\tau: M \rightarrow M$ induces a transformation on H_{g}^{1} we define the linear operator τ^{*} as

$$
\begin{aligned}
\tau^{*}: & H_{g}^{1}(M) \rightarrow H_{g}^{1}(M) \\
& \tau^{*}(u(x))=-u(\tau(x))
\end{aligned}
$$

and τ^{*} is a selfadjoint operator with respect to the scalar product on $H_{g}^{1}(M)$

$$
\begin{equation*}
\langle u, v\rangle_{\varepsilon}=\frac{1}{\varepsilon^{N}} \int_{M}\left(\varepsilon^{2} \nabla_{g} u \cdot \nabla_{g} v+u \cdot v\right) d \mu_{g} . \tag{4}
\end{equation*}
$$

Moreover $\left\|\tau^{*} u\right\|_{L^{p}(M)}=\|u\|_{L^{p}(M)}$, and $\left\|\tau^{*} u\right\|_{\varepsilon}=\|u\|_{\varepsilon}$, thus $J_{\varepsilon}\left(\tau^{*} u\right)=J_{\varepsilon}(u)$. Then, for the Palais principle, the nontrivial solutions of $\left(\mathscr{P}_{\tau}\right)$ are the critical points of the restriction of J_{ε} to the τ-invariant Nehari manifold

$$
\begin{equation*}
\mathcal{N}_{\varepsilon}^{\tau}=\left\{u \in \mathcal{N}_{\varepsilon}: \tau^{*} u=u\right\}=\mathcal{N}_{\varepsilon} \cap H^{\tau} . \tag{5}
\end{equation*}
$$

Here $H^{\tau}=\left\{u \in H_{g}^{1}: \tau^{*} u=u\right\}$.
In fact, since $J_{\varepsilon}\left(\tau^{*} u\right)=J_{\varepsilon}(u)$ and τ^{*} is a selfadjoint operator we have

$$
\begin{equation*}
\left\langle\nabla J_{\varepsilon}\left(\tau^{*} u\right), \tau^{*} \varphi\right\rangle_{\varepsilon}=\left\langle\nabla J_{\varepsilon}(u), \varphi\right\rangle_{\varepsilon} \quad \forall \varphi \in H_{g}^{1}(M) \tag{6}
\end{equation*}
$$

Then $\nabla J_{\varepsilon}(u)=\tau^{*} \nabla J_{\varepsilon}\left(\tau^{*} u\right)=\tau^{*} \nabla J_{\varepsilon}(u)$ if $\tau^{*} u=u$.
We set

$$
\begin{align*}
& m_{\infty}=\inf _{\int_{\mathbb{R}^{N}}|\nabla u|^{2}+u^{2}=\int_{\mathbb{R}^{N}}|u|^{p}} \frac{1}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+u^{2}-\frac{1}{p} \int_{\mathbb{R}^{N}}|u|^{p} ; \tag{7}\\
& m_{\varepsilon}=\inf _{u \in \mathcal{N}_{\varepsilon}} J_{\varepsilon} ; \tag{8}\\
& m_{\varepsilon}^{\tau}=\inf _{u \in \mathcal{N}_{\varepsilon}^{\tau}} J_{\varepsilon} . \tag{9}
\end{align*}
$$

Remark 2. It is easy to verify that J_{ε} satisfies the Palais Smale condition on $\mathcal{N}_{\varepsilon}^{\tau}$. Then there exists v_{ε} minimizer of m_{ε}^{τ} and v_{ε} is a critical point for J_{ε} on $H_{g}^{1}(M)$. Thus v_{ε}^{+}and v_{ε}^{-}belong to $\mathcal{N}_{\varepsilon}$, then $J_{\varepsilon}\left(v_{\varepsilon}\right) \geq 2 m_{\varepsilon}$.

We recall some facts about equivariant Lusternik-Schnirelmann theory. If G is a compact Lie group, then a G-space is a topological space X with a continuous G-action $G \times X \rightarrow X,(g, x) \mapsto g x$. A G-map is a continuous function $f: X \rightarrow Y$ between G-spaces X and Y which is compatible with the G-actions, i.e. $f(g x)=g f(x)$ for all $x \in X, g \in G$. Two G-maps f_{0}, $f_{1}: X \rightarrow Y$ are G-homotopic if there is a homotopy $\theta: X \times[0,1] \rightarrow Y$ such that $\theta(x, 0)=f_{0}(x), \theta(x, 1)=f_{1}(x)$ and $\theta(g x, t)=g \theta(x, t)$ for all $x \in X$, $g \in G, t \in[0,1]$. A subset A of a X is G-invariant if $g a \in A$ for every $a \in A$, $g \in G$. The G-orbit of a point $x \in X$ is the set $G x=\{g x: g \in G\}$.

Definition 3. The G-category of a G-map $f: X \rightarrow Y$ is the smallest number $k=G-\operatorname{cat}(f)$ of open G-invariant subsets X_{1}, \ldots, X_{k} of X which cover X and which have the property that, for each $i=1, \ldots, k$, there is a point $y_{i} \in Y$ and a G-map $\alpha_{i}: X_{i} \rightarrow G y_{i} \subset Y$ such that the restriction of f to X_{i} is G-homotopic to α_{i}. If no such covering exists we define $G-\operatorname{cat}(f)=\infty$.

In our applications, G will be the group with two elements, acting as $G_{\tau}=\{\operatorname{Id}, \tau\}$ on Ω, and as $\mathbb{Z} / 2=\{1,-1\}$ by multiplication on the Nehari manifold $\mathcal{N}_{\varepsilon}^{\tau}$. We remark the following result on the equivariant category.
Theorem 4. Let $\phi: M \rightarrow \mathbb{R}$ be an even C^{1} functional on a complete $C^{1,1}$ submanifold M of a Banach space which is symmetric with respect to the origin. Assume that ϕ is bounded below and satisfies the Palais Smale condition $(P S)_{c}$ for every $c \leq d$. Then ϕ has at least $\mathbb{Z} / 2-\operatorname{cat}\left(\phi^{d}\right)$ antipodal pairs $\{u,-u\}$ of critical points with critical values $\phi(\pm u) \leq d$.

3 Sketch of the proof

In our case we consider the even positive C^{2} functional J_{ε} on the C^{2} Nehari manifold $\mathcal{N}_{\varepsilon}^{\tau}$ which is symmetric with respect to the origin. As claimed in Remark 2, J_{ε} satisfies Palais Smale condition on $\mathcal{N}_{\varepsilon}^{\tau}$. Then we can apply Theorem 4 and our aim is to get an estimate of this lower bound for the number of solutions. For $d>0$ we consider

$$
\begin{align*}
M_{d} & =\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, M) \leq d\right\} \tag{10}\\
M_{d}^{-} & =\left\{x \in M: \operatorname{dist}\left(x, M_{\tau}\right) \geq d\right\} . \tag{11}
\end{align*}
$$

We choose d small enough such that

$$
\begin{align*}
& G_{\tau}-\operatorname{cat}_{M_{d}} M_{d}=G_{\tau}-\operatorname{cat}_{M} M \tag{12}\\
& G_{\tau}-\operatorname{cat}_{M} M_{d}^{-}=G_{\tau}-\operatorname{cat}_{M}\left(M-M_{\tau}\right) \tag{13}
\end{align*}
$$

Now we build two continuous operator

$$
\begin{align*}
& \Phi_{\varepsilon}^{\tau}: M_{d}^{-} \rightarrow \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)} ; \tag{14}\\
& \beta: \tag{15}\\
& \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)} \rightarrow M_{d},
\end{align*}
$$

such that $\Phi_{\varepsilon}^{\tau}(\tau q)=-\Phi_{\varepsilon}^{\tau}(q), \tau \beta(u)=\beta(-u)$ and $\beta \circ \Phi_{\varepsilon}^{\tau}$ is G_{τ} homotopic to the inclusion $M_{d}^{-} \rightarrow M_{d}$.

By equivariant category theory we obtain

$$
\begin{align*}
G_{\tau}-\operatorname{cat}_{M}\left(M-M_{\tau}\right)= & G_{\tau}-\operatorname{cat}\left(M_{d}^{-} \hookrightarrow M_{d}\right)= \\
& =G_{\tau}-\operatorname{cat} \beta \circ \Phi_{\varepsilon}^{\tau} \leq \mathbb{Z}_{2}-\operatorname{cat} \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)} \tag{16}
\end{align*}
$$

4 Technical lemmas

First of all, we recall that there exists a unique positive spherically symmetric function $U \in H^{1}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
-\Delta U+U=U^{p-1} \text { in } \mathbb{R}^{n} \tag{17}
\end{equation*}
$$

It is well known that $U_{\varepsilon}(x)=U\left(\frac{x}{\varepsilon}\right)$ is a solution of

$$
\begin{equation*}
-\varepsilon^{2} \Delta U_{\varepsilon}+U_{\varepsilon}=U_{\varepsilon}^{p-1} \text { in } \mathbb{R}^{n} . \tag{18}
\end{equation*}
$$

Secondly, let us introduce the exponential map exp : $T M \rightarrow M$ defined on the tangent bundle $T M$ of M which is a C^{∞} map. Then, for ρ sufficiently small (smaller than the injectivity radius of M and smaller than $d / 2$), the Riemannian manifold M has a special set of charts $\left\{\exp _{x}: B(0, \rho) \rightarrow M\right\}$. Throughout the paper we will use the following notation: $B_{g}(x, \rho)$ is the open ball in M centered in x with radius ρ with respect to the distance given by the metric g. Corresponding to this chart, by choosing an orthogonal coordinate system $\left(x_{1}, \ldots, x_{n}\right) \subset \mathbb{R}^{n}$ and identifying $T_{x} M$ with \mathbb{R}^{n} for $x \in M$, we can define a system of coordinates called normal coordinates.

Let χ_{ρ} be a smooth cut off function such that

$$
\begin{aligned}
\chi_{\rho}(z)=1 & \text { if } z \in B(0, \rho / 2) ; \\
\chi_{\rho}(z)=0 & \text { if } z \in \mathbb{R}^{n} \backslash B(0, \rho) ; \\
\left|\nabla \chi_{\rho}(z)\right| \leq 2 & \text { for all } x .
\end{aligned}
$$

Fixed a point $q \in M$ and $\varepsilon>0$, let us define the function $w_{\varepsilon, q}(x)$ on M as

$$
w_{\varepsilon, q}(x)=\left\{\begin{array}{cl}
U_{\varepsilon}\left(\exp _{q}^{-1}(x)\right) \chi_{\rho}\left(\exp _{q}^{-1}(x)\right) & \text { if } x \in B_{g}(q, \rho) \tag{19}\\
0 & \text { otherwise }
\end{array}\right.
$$

For each $\varepsilon>0$ we can define a positive number $t\left(w_{\varepsilon, q}\right)$ such that

$$
\begin{equation*}
\Phi_{\varepsilon}(q)=t\left(w_{\varepsilon, q}\right) w_{\varepsilon, q} \in H_{g}^{1}(M) \cap \mathcal{N}_{\varepsilon} \text { for } q \in M . \tag{20}
\end{equation*}
$$

Namely, $t\left(w_{\varepsilon, q}\right)$ turns out to verify

$$
\begin{equation*}
t\left(w_{\varepsilon, q}\right)^{p-2}=\frac{\int_{M} \varepsilon^{2}\left|\nabla_{g} w_{\varepsilon, q}\right|^{2}+\left|w_{\varepsilon, q}\right|^{2} d \mu_{g}}{\int_{M}\left|w_{\varepsilon, q}\right|^{p} d \mu_{g}} \tag{21}
\end{equation*}
$$

Lemma 1. Given $\varepsilon>0$ the application $\Phi_{\varepsilon}(q): M \rightarrow H_{g}^{1}(M) \cap \mathcal{N}_{\varepsilon}$ is continuous. Moreover, given $\delta>0$ there exists $\varepsilon_{0}=\varepsilon_{0}(\delta)$ such that, if $\varepsilon<\varepsilon_{0}(\delta)$ then $\Phi_{\varepsilon}(q) \in \mathcal{N}_{\varepsilon} \cap J_{\varepsilon}^{m_{\infty}+\delta}$.

For the proof see [1, Proposition 4.2].
At this point, fixed a point $q \in M_{d}^{-}$, let us define the function

$$
\begin{equation*}
\Phi_{\varepsilon}^{\tau}(q)=t\left(w_{\varepsilon, q}\right) w_{\varepsilon, q}-t\left(w_{\varepsilon, \tau q}\right) w_{\varepsilon, \tau q} \tag{22}
\end{equation*}
$$

Lemma 2. Given $\varepsilon>0$ the application $\Phi_{\varepsilon}^{\tau}(q): M_{d}^{-} \rightarrow H_{g}^{1}(M) \cap \mathcal{N}_{\varepsilon}^{\tau}$ is continuous. Moreover, given $\delta>0$ there exists $\varepsilon_{0}=\varepsilon_{0}(\delta)$ such that, if $\varepsilon<\varepsilon_{0}(\delta)$ then $\Phi_{\varepsilon}^{\tau}(q) \in \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)}$.

Proof. Since $U_{\varepsilon}(z) \chi_{\rho}(z)$ is radially symmetric we set $U_{\varepsilon}(z) \chi_{\rho}(z)=\tilde{U}_{\varepsilon}(|z|)$. We recall that

$$
\begin{aligned}
\left|\exp _{\tau q}^{-1} \tau x\right| & =d_{g}(\tau x, \tau q)=d_{g}(x, q)=\left|\exp _{q}^{-1} x\right| \\
\left|\exp _{q}^{-1} \tau x\right| & =d_{g}(\tau x, q)=d_{g}(x, \tau q)
\end{aligned}
$$

We have

$$
\begin{aligned}
& \tau^{*} \Phi_{\varepsilon}^{\tau}(q)(x)=-t\left(w_{\varepsilon, q}\right) w_{\varepsilon, q}(\tau x)+t\left(w_{\varepsilon, \tau q}\right) w_{\varepsilon, \tau q}(\tau x)= \\
& =-t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(\tau x)\right|\right)+t\left(w_{\varepsilon, \tau q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{\tau q}^{-1}(\tau x)\right|\right)= \\
& =t\left(w_{\varepsilon, \tau q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(x)\right|\right)-t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(\tau x)\right|\right)= \\
& \quad=t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{q}^{-1}(x)\right|\right)-t\left(w_{\varepsilon, q}\right) \tilde{U}_{\varepsilon}\left(\left|\exp _{\tau q}^{-1}(x)\right|\right)
\end{aligned}
$$

because by the definition we have $t\left(w_{\varepsilon, q}\right)=t\left(w_{\varepsilon, \tau q}\right)$.
Moreover by definition the support of the function $\Phi_{\varepsilon}^{\tau}$ is $B_{g}(q, \rho) \cup B_{g}(\tau q, \rho)$, and $B_{g}(q, \rho) \cap B_{g}(\tau q, \rho)=\emptyset$ because $\rho<d / 2$ and $q \in M_{d}^{-}$. Finally, because

$$
\begin{align*}
& \int_{M}\left|w_{\varepsilon, q}\right|^{\alpha} d \mu_{g}=\int_{M}\left|w_{\varepsilon, \tau q}\right|^{\alpha} d \mu_{g} \text { for } \alpha=2, p ; \tag{23}\\
& \int_{M}\left|\nabla w_{\varepsilon, q}\right|^{2} d \mu_{g}=\int_{M}\left|\nabla w_{\varepsilon, \tau q}\right|^{2} d \mu_{g}, \tag{24}
\end{align*}
$$

we have

$$
\begin{equation*}
J_{\varepsilon}\left(\Phi_{\varepsilon}^{\tau}(q)\right)=\left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{\varepsilon^{n}} \int_{M}\left|\Phi_{\varepsilon}^{\tau}(q)\right|^{p} d \mu_{g}=2 J_{\varepsilon}\left(\Phi_{\varepsilon}(q)\right) . \tag{25}
\end{equation*}
$$

Then by previous lemma we have the claim.
Lemma 3. We have $\lim _{\varepsilon \rightarrow 0} m_{\varepsilon}^{\tau}=2 m_{\infty}$

Proof. By the previous lemma and by Remark 2 we have that for any $\delta>0$ there exists $\varepsilon_{0}(\delta)$ such that, for $\varepsilon<\varepsilon_{0}(\delta)$

$$
\begin{equation*}
2 m_{\varepsilon} \leq m_{\varepsilon}^{\tau} \leq 2 J_{\varepsilon}\left(\Phi_{\varepsilon}(q)\right) \leq 2\left(m_{\infty}+\delta\right) \tag{26}
\end{equation*}
$$

Since $\lim _{\varepsilon \rightarrow 0} m_{\varepsilon}=m_{\infty}$ (see [1, Remark 5.9]) we get the claim.
For any function $u \in \mathcal{N}_{\varepsilon}^{\tau}$ we can define a point $\beta(u) \in \mathbb{R}^{N}$ by

$$
\begin{equation*}
\beta(u)=\frac{\int_{M} x\left|u^{+}(x)\right|^{p} d \mu_{g}}{\int_{M}\left|u^{+}(x)\right|^{p} d \mu_{g}} \tag{27}
\end{equation*}
$$

Lemma 4. There exists δ_{0} such that, for any $0<\delta<\delta_{0}$ and any $0<\varepsilon<$ $\varepsilon_{0}(\delta)$ (as in Lemma 圆) and for any function $u \in \mathcal{N}_{\varepsilon}^{\tau} \cap J_{\varepsilon}^{2\left(m_{\infty}+\delta\right)}$, it holds $\beta(u) \in M_{d}$.

Proof. Since $\tau^{*} u=u$ we set

$$
M^{+}=\{x \in M: u(x)>0\} \quad M^{-}=\{x \in M: u(x)<0\} .
$$

It is easy to see that $\tau M^{+}=M^{-}$. Then we have

$$
\begin{align*}
J_{\varepsilon}(u)= & \left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{\varepsilon^{n}} \int_{M}|u|^{p} d \mu_{g}= \\
& =\left(\frac{1}{2}-\frac{1}{p}\right) \frac{1}{\varepsilon^{n}}\left[\int_{M^{+}}\left|u^{+}\right|^{p} d \mu_{g}+\int_{M^{-}}\left|u^{-}\right|^{p} d \mu_{g}\right]=2 J_{\varepsilon}\left(u^{+}\right) \tag{28}
\end{align*}
$$

By the assumption $J_{\varepsilon}(u) \leq 2\left(m_{\infty}+\delta\right)$ we have $J_{\varepsilon}\left(u^{+}\right) \leq m_{\infty}+\delta$ then by Proposition 5.10 of [1] we get the claim.

Lemma 5. There exists $\varepsilon_{0}>0$ such that for any $0<\varepsilon<\varepsilon_{0}$ the composition

$$
\begin{equation*}
I_{\varepsilon}=\beta \circ \Phi_{\varepsilon}^{\tau}: M_{d}^{-} \rightarrow M_{d} \subset \mathbb{R}^{N} \tag{29}
\end{equation*}
$$

is well defined, continuous, homotopic to the identity and $I_{\varepsilon}(\tau q)=\tau I_{\varepsilon}(q)$.
Proof. It is easy to check that

$$
\begin{equation*}
\Phi_{\varepsilon}^{\tau}(\tau q)=-\Phi_{\varepsilon}^{\tau}(q) \quad \beta(-u)=\tau \beta(u) \tag{30}
\end{equation*}
$$

Moreover, by Lemma 2 and by Lemma 4, for any $q \in M_{d}^{-}$we have $\beta \circ \Phi_{\varepsilon}^{\tau}(q)=$ $\beta\left(\Phi_{\varepsilon}(q)\right) \in M_{d}$, and I_{ε} is well defined.

In order to show that I_{ε} is homotopic to identity, we evaluate the difference between I_{ε} and the identity as follows.

$$
\begin{align*}
I_{\varepsilon}(q)-q=\frac{\int_{M}(x-q)\left|u^{+}\right|^{p} d \mu_{g}}{\int_{M}\left|u^{+}\right|^{p} d \mu_{g}} & =\frac{\int_{B(0, \rho)} z\left|U\left(\frac{z}{\varepsilon}\right) \chi_{\rho}(|z|)\right|^{p}\left|g_{q}(z)\right|^{\frac{1}{2}}}{\int_{B(0, \rho)}\left|U\left(\frac{z}{\varepsilon}\right) \chi_{\rho}(|z|)\right|^{p}\left|g_{q}(z)\right|^{\frac{1}{2}}}= \\
& =\frac{\varepsilon \int_{B\left(0, \frac{\rho}{\varepsilon}\right)} z\left|U(z) \chi_{\rho}(|\varepsilon z|)\right|^{p}\left|g_{q}(\varepsilon z)\right|^{\frac{1}{2}}}{\int_{B\left(0, \frac{\rho}{\varepsilon}\right)}\left|U(z) \chi_{\rho}(|\varepsilon z|)\right|^{p}\left|g_{q}(\varepsilon z)\right|^{\frac{1}{2}}}, \tag{31}
\end{align*}
$$

hence $\left|I_{\varepsilon}(q)-q\right|<\varepsilon c(M)$ for a constant $c(M)$ that does not depend on q.
Now, by previous lemma and by Theorem 4 we can prove Theorem 1 .
In fact, we know that, if ε is small enough, there exist $G_{\tau}-\operatorname{cat}\left(M-M_{\tau}\right)$ minimizers which change sign, because they are antisymmetric. We have only to prove that any minimizer changes sign exactly once. Let us call $\omega=\omega_{\varepsilon}$ one of these minimizers. Suppose that the set $\left\{x \in M: \omega_{\varepsilon}(x)>0\right\}$ has k connected components M_{1}, \ldots, M_{k}. Set

$$
\omega_{i}= \begin{cases}\omega_{\varepsilon}(x) & x \in M_{i} \cup \tau M_{i} \tag{32}\\ 0 & \text { elsewhere }\end{cases}
$$

For all $i, \omega_{i} \in \mathcal{N}_{\varepsilon}^{\tau}$. Furthermore we have

$$
\begin{equation*}
J_{\varepsilon}(\omega)=\sum_{i} J_{\varepsilon}\left(\omega_{i}\right), \tag{33}
\end{equation*}
$$

thus

$$
\begin{equation*}
m_{\varepsilon}^{\tau}=J_{\varepsilon}(\omega)=\sum_{i=1}^{k} J_{\varepsilon}\left(\omega_{i}\right) \geq k \cdot m_{\varepsilon}^{\tau} \tag{34}
\end{equation*}
$$

so $k=1$, that concludes the proof.

References

[1] V. Benci, C. Bonanno, and A.M. Micheletti, On the multiplicity of solutions of a nonlinear elliptic problem on Riemannian manifolds, J. Funct. Anal. 252 (2007), no. 2, 464-489.
[2] V. Benci and G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991), no. 1, 79-93.
[3] J. Byeon and J. Park, Singularly perturbed nonlinear elliptic problems on manifolds, Calc. Var. Partial Differential Equations 24 (2005), no. 4, 459-477.
[4] A. Castro and M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003), no. 2, 579-590.
[5] E. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann problem, Pacific J. Math 189 (1999), no. 2, 241-262.
[6] E. Dancer, A.M. Micheletti, and Angela Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems in a Riemannian manifold, to appear on Manus. Math.
[7] C. Gui, Multipeak solutions for a semilinear Neumann problem, Duke Math J. 84 (1996), no. 3, 739-769.
[8] C. Gui, J. Wei, and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000), no. 1, 47-82.
[9] N. Hirano, Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold, Nonlinear Anal., 70 (2009), no. 2, 671-692.
[10] Y.Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. Partial Differential Equations 23 (1998), no. 3-4, 487545.
[11] C.S. Lin, W.M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemiotaxis system, J. Differential Equations 72 (1988), no. 1, 1-27.
[12] A.M. Micheletti and A. Pistoia, Nodal solutions for a singularly perturbed nonlinear elliptic problem in a Riemannian manifold, to appear on Adv. Nonlinear Stud.
[13] A.M. Micheletti and A. Pistoia, The role of the scalar curvature in a nonlinear elliptic problem in a Riemannian manifold, Calc. Var. Partial Differential Equation, 34 (2009), 233-265.
[14] W.M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (1991), no. 7, 819-851.
[15] W.M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247-281.
[16] M. Del Pino, P. Felmer, and J. Wei, On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999), no. 1, 63-79.
[17] D. Visetti, Multiplicity of solutions of a zero-mass nonlinear equation in a Riemannian manifold, J. Differential Equations, 245 (2008), no. 9, 2397-2439.
[18] J. Wei, On the boundary spike layer solutions to a singularly perturbed Neumann problem, J. Differential Equations 134 (1997), no. 1, 104-133.
[19] J. Wei and M. Winter, Multipeak solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999), no. 2, 585-606.

[^0]: *Dipartimento di Matematica Applicata, Università di Pisa, via Buonarroti 1c, 56100, Pisa, Italy, e-mail ghimenti@mail.dm.unipi.it, a.micheletti@dma.it

