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SMOOTH DISTRIBUTIONS ARE FINITELY GENERATED

LANCE D. DRAGER, JEFFREY M. LEE, EFTON PARK, AND KEN RICHARDSON

Abstract. A subbundle of variable dimension inside the tangent bundle of a smooth man-
ifold is called a smooth distribution if it is the pointwise span of a family of smooth vector
fields. We prove that all such distributions are finitely generated, meaning that the family
may be taken to be a finite collection. Further, we show that the space of smooth sections
of such distributions need not be finitely generated as a module over the smooth functions.
Our results are valid in greater generality, where the tangent bundle may be replaced by an
arbitrary vector bundle.

1. Introduction

Let M be a smooth manifold, and let L be a distribution on M , i.e. a subbundle of the
tangent bundle TM . The well-known Frobenius theorem states that L determines a foliation
of M if and only if L is involutive. Recall that the hypotheses of the Frobenius theorem
require that the dimension of the subspace Lp is a constant function of p ∈M .

In many fields, for example control theory and Poisson geometry, one encounters gen-

eralized distributions, where the subspace Lp can have different dimensions at different
points. We call a distribution of constant rank a regular distribution. Sussmann [7] and
Stefan [6] extended the Frobenius theorem to generalized distributions (see Michor [4, Chap-
ter 1, Section 3] for a nice exposition). Sussmann and Stefan considered a distribution L to
be smooth if for each p ∈ M , there are locally defined vector fields that are sections of L
whose values at p span Lp.

On the other hand, in the theory of exterior differential systems one encounters gener-
alized distributions that are defined as the kernels of families of one-forms. We call such
a distribution cosmooth. The subspaces of the cotangent spaces spanned by these one-
forms determine a generalized subbundle of the cotangent bundle. This motivates studying
generalized subbundles of arbitrary vector bundles.

If E is a vector bundle over M , a generalized subbundle G of E is an assignment p 7→ Gp

of a subspace Gp of the fiber Ep of E over p, for each point p ∈M . The interesting cases are
where G is smooth or cosmooth. A section s of E is said to be a section of G if s(p) ∈ Gp

for all p ∈M .
The book [1] by Bullo and Lewis has an interesting discussion of generalized distributions

and generalized subbundles; their book was an inspiration for this paper.
If F is a smooth k-dimensional subbundle of E in the usual sense, then every point has

a neighborhood U on which there are k smooth sections s1, s2, . . . , sk whose values form a
basis for Fp at every point p ∈ U . Every smooth section of F over U can be written as a
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combination of the sections s1, . . . , sk with smooth coefficients. To put it in other words, the
set of smooth sections of F over U is a module over the ring of smooth functions on U ; this
module is finitely generated with generators s1, . . . , sk.

In the case of a generalized subbundle G, we can find sections of G on an open set U that
form a basis at each point only if the dimension of G is constant on U . We can generalize
what happens in the regular case in two directions.

First, following the terminology in Bullo and Lewis [1], we say that a generalized subbundle
G of E is finitely generated over an open set U if there are smooth sections s1, s2, . . . sk
of G over U so that the values s1(p), s2(p), . . . , sk(p) span Gp for each p ∈ U . We say that
s1, . . . , sk are generators for G over U . One can ask if such generators always exist, either
locally or globally.

Second, we can consider the set of sections of G over U as a module over the ring of
smooth functions on U and ask if there are sections s1, . . . , sk as above that form a finite
set of generators for this module. If the s1, . . . , sk generate the module, Bullo and Lewis [1]
call them nondegenerate generators for G over U . One can ask if the module of sections is
finitely generated, either globally, i.e, when U = M , or locally, i.e., for some neighborhood
U of each point.

Bullo and Lewis [1] have a discussion that shows that every point of a real analytic gener-
alized subbundle has a neighborhood U on which there are nondegenerate generators. This
follows from the fact that the ring of convergent power series is Noetherian.

In this paper, we study these questions in the smooth case. For the first question, we
show that every generalized subbundle of a vector bundle is globally finitely generated,
that is, there are finitely many globally defined sections whose values span the generalized
subbundle at each point. Other researchers have conjectured that this result is not true,
even locally (see, for example, Bullo and Lewis [1, p. 125]).

We obtain a negative answer to the second question. We give an example which shows
that the module of sections of a generalized subbundle (even a tangent distribution) need
not be finitely generated, even locally.

2. Precise Formulations

Let M be a manifold. We will assume that all of our manifolds and maps are smooth.
If V is a vector space, we denote the space of smooth functions M → V by C∞(M ;V ). In

case V = R, we write this space as C∞(M).
The space of smooth sections of a vector bundle E over an open set U is denoted Γ(U ;E),

and the space of smooth globally defined sections of E is denoted Γ(E). A local section of
E is a smooth section of E defined on some open set. We denote by Γloc(E) the set of local
sections of E. Thus Γloc(E) is the union of the spaces Γ(U ;E) as U ranges over all open
sets. If s ∈ Γloc(E), we denote the domain of s by dom(s).

A generalized subbundle G of E is an assignment of a subspace Gp ⊆ Ep for each point
p ∈ M . We do not assume the subspaces Gp vary continuously with p or have constant
dimension.
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If U ⊆ M , we say a local section s of E over U belongs to G or is a section of G if
s(p) ∈ Gp for all p ∈ U . The set of sections of E over U that belong to G is denoted by
Γ(U ;G). The set of local sections of E that belong to G on their domains is denoted Γloc(G).

Given a generalized subbundle G, there need not be any nonzero smooth sections of G.
The following condition on G ensures a supply of sections of G.

Definition 2.1. A generalized subbundle G of a vector bundle E is smooth if for every point
p we can find a family of sections s1, . . . , sk ∈ Γloc(G) which contain p in the intersection of
their domains such that

Gp = span {s1(p), . . . , sk(p)} .
The next proposition gives an equivalent definition of smoothness; the elementary proof

is omitted.

Proposition 2.2. A generalized subbundle of G of a vector bundle E is smooth if and only

if for every point p and every v ∈ Gp there is some section s ∈ Γloc(G) such that s(p) = v.

Definition 2.3. If F ⊆ Γloc(E), we define a generalized subbundle Span(F) of E by

Span(F)p = span {s(p) : s ∈ F , p ∈ dom(s)} .
We follow the convention that if V is a vector space, the span of ∅ ⊆ V is {0} ⊆ V . Thus,

if p is not in the domain of any element of F , then Span(F)p = {0}.
For any family F ⊆ Γloc(E), the subbundle Span(F) is smooth by definition. Note that a

generalized subbundle G is smooth if and only if G = Span(Γloc(G)).
The following observation will be important. Let G be smooth. For any point p, we can find

sections s1 . . . sk of G defined on some open neighborhood U of p such that s1(p), . . . , sk(p)
form a basis of Gp. These sections will remain linearly independent on some open neighbor-
hood V ⊆ U of p. Because these sections belong to G, at a point q ∈ V other than p, the set
{s1(q), . . . , sk(q)} is a linearly independent set in Gq. Thus dim(Gq) ≥ k = dim(Gp). This
implies that dim(p) = dim(Gp) is a lower semicontinuous function of p ∈M .

We say that p ∈ M is a regular point of G if dim is constant on a neighborhood of p.
The set of regular points is open and dense, as is well known.

Definition 2.4. If F is a family of local sections of the dual bundle E∗, we define a gener-
alized subbundle Ker(F) of E by

Ker(F)p = {v ∈ Ep : s(p)(v) = 0 for all s ∈ F with p ∈ dom(s)}.
Note that we can always add the globally defined zero section of E∗ to F without changing

Ker(F).

Definition 2.5. A generalized subbundle G of E is cosmooth if G = Ker(F) for some
family F ⊆ Γloc(E

∗).

Definition 2.6. If F is a generalized subbundle of E∗, we define a generalized subbundle
F⊥ of E by

F⊥
p = {v ∈ Ep : λ(v) = 0 for all λ ∈ Fp} .

Observe that Ker(F) = (Span(F))⊥.
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Theorem 2.7. A generalized subbundle G of E is cosmooth if and only if G = F⊥ for some

smooth generalized subbundle F of E∗.

Proof. Suppose G is cosmooth, so that G = Ker(F) = (Span(F))⊥ for some family F of
local sections of E∗. Since Span(F) is by definition a smooth generalized subbundle of E∗,
the conclusion follows.

Conversely, suppose that G = F⊥ for some smooth generalized subbundle F of E∗. Let
F = Γloc(F ). We claim that F⊥ = Ker(F).

Let v ∈ F⊥
p . If s ∈ F and p ∈ dom(F), then s(p) ∈ Fp and s(p)(v) = 0. Thus, v ∈ Ker(F),

and we conclude F⊥ ⊆ Ker(F).
Next, take v ∈ Ker(F)p. Let λ ∈ Fp. Since F is smooth, Proposition 2.2 shows there

is an s ∈ Γloc(F ) with s(p) = λ. Then λ(v) = s(p)(v) = 0, and thus v ∈ F⊥
p . Therefore

Ker(F) ⊆ F⊥. �

If F is a smooth generalized subbundle of E∗, then the function p 7→ dim(Fp) is lower
semicontinuous. The dimension of F⊥

p is dim(Ep) − dim(Fp). Hence the function p 7→
dim(F⊥

p ) is upper semicontinuous. Thus a cosmooth generalized subbundle need not be
smooth.

Example 2.8. Let E and F be vector bundles over M and let ϕ : E → F be a vector
bundle map. It is well known that if ϕ has constant rank, the image and kernel of ϕ are
regular subbundles. If ϕ does not have constant rank, the image of ϕ is a smooth generalized
subbundle of F and the kernel of ϕ is a cosmooth generalized subbundle of E.

Definition 2.9. Let E be a vector bundle over a manifold M and let G be a generalized
subbundle of E. If U ⊆ M is an open set, we say G is finitely generated over U (or, is
finitely spanned over U) if there are a finite number of sections s1, . . . , sk ∈ Γ(U ;G) so
that, for all p ∈ U ,

Gp = span {s1(p), . . . , sk(p)} .
We say that s1, . . . , sk generate G over U . If we can take U = M , we say that G is
globally finitely generated.

3. Fréchet spaces of smooth functions

We now introduce the function spaces we need. We denote by |·| the Euclidean norm on
any of the spaces Rn.

If f : Rn → R
m is a bounded function, let

‖f‖ = sup {|f(x)| : x ∈ R
n}

be the supremum norm.
We say that f : Rn → R

m is in BC∞(Rn;Rm) if f is C∞ and f and all of its partial
derivatives are bounded on R

n. If f is such a function, we can define seminorms pk for
k = 0, 1, 2, . . . by

pk(f) = max

{ ∥∥∥∥
∂|α|f

∂xα

∥∥∥∥ : |α| = k

}
,
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where the maximum is taken over all multi-indices α of order k. We combine the pk’s to
form seminorms ‖·‖k by

‖f‖k =
k∑

j=0

pj(f).

Thus ‖f‖k ≤ ‖f‖k+1
. Note that these seminorms are actually norms.

These norms ‖·‖k (or, equivalently, the seminorms pk) induce a topology on BC∞(Rn;Rm)
which makes BC∞(Rn;Rm) into a Fréchet space.

Recall that a sequence {fi}∞i=1
in BC∞(Rn;Rm) is Cauchy if it is Cauchy with respect to

the norm ‖·‖k for each k. Therefore, to show that a series
∑∞

i=0
fi converges in BC∞(Rn;Rm),

it suffices to show that each of the series
∞∑

i=1

‖fi‖k, k = 0, 1, 2, . . . ,

converges. If
∑∞

i=1
fi converges in BC∞(Rn;Rm) then f :=

∑∞
i=1

fi can be evaluated point-
wise, because convergence in BC∞(Rn;Rm) implies pointwise convergence.

4. The Main Theorem

Theorem 4.1. Let M be a connected manifold and let E be a vector bundle over M . Let G

be a smooth generalized subbundle of E. Then G is globally finitely generated.

As we will see, it is possible to give an explicit upper bound on the number of global
sections needed to generate G under appropriate assumptions. The remainder of this section
contains the proof of this theorem. Before we begin the proof, we note this important
corollary.

Corollary 4.2. LetM and E be as in Theorem 4.1. If G is a cosmooth generalized subbundle

of E, then there are finitely many globally defined sections s1, . . . , sk of E∗ such that for each

p ∈M ,

Gp = {v ∈ Ep : s1(p)(v) = 0, . . . , sk(p)(v) = 0} .
In other words, G is defined as the kernel of a finite collection of global sections of E∗.

We now prove Theorem 4.1. Let M be a connected manifold and let E be a vector bundle
over M . The fiber dimension of E will be denoted by rk(E). Let G be a smooth generalized
subbundle of E.

We begin by making two reductions in the problem. First, we invoke the theorem that
every vector bundle over a connected manifold is isomorphic to a subbundle of a trivial
bundle. Thus, for our problem, we may assume that E is a subbundle of a trivial bundle
Θm(M) = M × R

m for some integer m. This theorem, without an estimate on m, is well
known in the case where M is compact. The proof in the noncompact case, which gives an
estimate of m, uses topological dimension theory. A reference for this material is Greub,
Halperin and Vanstone [3, p. 77], but we will need to use a more refined treatment of the
dimension theory, as in Munkres [5] or Engelking [2]. The main point for our purposes is
that an upper bound for m is rk(E)(dim(M) + 1).



6 LANCE D. DRAGER, JEFFREY M. LEE, EFTON PARK, AND KEN RICHARDSON

Our generalized subbundle G ⊆ E is now contained in Θm(M) and is smooth when
considered as a generalized subbundle of Θm(M). Thus, to prove the theorem, it will suffice
to consider a smooth generalized subbundle G of a trivial bundle Θm(M). We identify each
subspace Gp with a subspace of Rm and identify sections of Θm(M), and hence sections of
G, with R

m-valued functions. We will switch between these points of view as convenient.
Next, we can properly embedM in R

n for some n. This is not really necessary for our proof
to work, but it makes dealing with the functions spaces involved simpler. If f : U → R

m is
a smooth function defined on an open subset U of M , we can find a smooth extension of f

to a function f̃ : Ũ → R
m, where Ũ is an open subset of Rn such that Ũ ∩M = U . This can

be done by a partition of unity argument, but perhaps the fastest proof is to note that the
tubular neighborhood theorem says there is an open set O in R

n containingM and a smooth
retraction r : O →M (i.e., r(p) = p for p ∈M). We define Ũ = r−1(U) and f̃ = f ◦ r.

Because G is smooth, it is the span of the family F = Γloc(G) of local sections of Θ
m(M).

Considering the elements of F to be locally defined vector-valued functions on M , we can

extend them to locally defined vector-valued functions on R
n. This gives us a family F̃ =

{f̃ : f ∈ F} of locally defined vector-valued functions whose restriction to M is F .

Considering F̃ as a subset of Γloc(Θ
m(Rn)), we define a generalized subbundle G̃ of Θm(Rn)

by G̃ = Span(F̃). For each p ∈M , G̃p = Gp, and thus the restriction of G̃ to M is G.

Given a set of global generators for G̃, the restriction of these generators toM determines
a set of global generators for G. Thus, to prove Theorem 4.1, it suffices to prove the following
proposition.

Proposition 4.3. If G is a smooth generalized subbundle of the trivial bundle Θm(Rn), then
G is globally finitely generated.

The proof of this proposition will occupy most of the rest of this section. To begin, we
adopt some notation and terminology.

If B is a Euclidean ball in R
n, we denote by 2B the ball with the same center and twice

the radius. Let B denote the set of all balls of rational radius centered at points that have
rational coordinates; B is a countable basis for the topology of Rn.

For 0 ≤ d ≤ m, let

Σd = {p ∈ R
n : dim(Gp) = d} .

Fix d ≥ 1 such that Σd 6= ∅. Our goal now is to construct finitely many globally defined
sections which span G at each point of Σd. Note that spanning is automatic for points in
Σ0.

The usual Euclidean metric on R
m induces a metric on the bundle Θm(Rn); we use this

metric throughout the rest of the proof. For each p ∈ R
n, let Qp denote the orthogonal

projection operator on Θm(Rn)p whose image is Gp.
Let p be a point of Σd. We can find sections s1, . . . , sd of G defined on some open neighbor-

hood of p such that s1(p), . . . , sd(p) is a basis of Gp. These sections are linearly independent
on some open neighborhood U of p. At each point q ∈ U , define Dq ⊆ Gq to be the span of
s1(q), . . . , sd(q). For each q ∈ U , let P (q) be the orthogonal projection operator on Θm(Rn)q
whose image is Dq. At any point q in U ∩ Σd, we have Dq = Gq, and so P (q) = Qq at such
points.



SMOOTH DISTRIBUTIONS ARE FINITELY GENERATED 7

We can think of P as a vector bundle mapping of Θm(U) to itself, or as a section of the
bundle Hom(Θm(U),Θm(U)), whose fiber at q is the vector space Hom(Θm(U)q,Θ

m(U)q) of
linear maps Θm(U)q → Θm(U)q. Because Θm(U) is a trivial bundle, P can be thought of
as a map U → Hom(Rm,Rm). The mapping q 7→ P (q) is smooth. Indeed, if we think of
P (q) as a linear map on R

m, its matrix with respect to the standard basis can be explicitly
constructed by applying the Gram-Schmidt process to the vectors s1(q), . . . , sd(q), which
shows that the matrix entries are smooth functions of q.

The following lemma summarizes the discussion above.

Lemma 4.4. For each p ∈ Σd, choose a ball B ∈ B such that p ∈ B and 2B ⊆ U . There

exists a smooth vector bundle map P of Θm(2B) to itself with the following properties: For

each q ∈ 2B,

(1) P (q) is an orthogonal projection operator.

(2) im(P (q)), the image of P (q), is contained in Gq.

(3) im(P (q)) has dimension d.

(4) If q ∈ 2B ∩ Σd then im(P (q)) = Gq and so P (q) = Qq.

Since B is countable, the lemma shows that we can find a countable collection of balls
{B}i∈I that covers Σd, where for each ball Bi there is a vector bundle map Pi over 2Bi with
the properties in the lemma. There may be many such vector bundle maps over a given ball
2Bi; we only need one, so we just pick one arbitrarily.

Let e1, . . . , em denote the standard basis of Rm. Let E1, . . . , Em be the corresponding
constant sections of Θm(Rn).

For each i ∈ I, choose a smooth bump function ψi on R
n so that 0 ≤ ψi ≤ 1, ψi = 1 on

Bi and supp(ψi) ⊂ 2Bi.
On 2Bi we define smooth sections PiEα of G by p 7→ Pi(p)Eα(p) for α = 1, . . . , m.

Multiplying by ψi we get sections ψiPiEα such that supp(ψiPiEα) ⊂ 2Bi. We extend the
section ψiPiEα smoothly to R

n by defining it to be zero outside 2Bi. We use the same
notation for the extended sections. We also adopt the notational convention that

0 · (undefined) = 0 (4.1)

in this context, as many authors do implicitly.
Let us deal first with the case where our collection of balls {Bi}i∈I is countably infinite,

in which case we can assume the index set I is the natural numbers.
Since ψi has compact support, ψi and its derivatives are bounded, so ψi ∈ BC∞(Rn;R).

Similarly, the sections ψiPiEα have compact support, so we can view them as vector-valued
functions in BC∞(Rn;Rm).

For each i, we can find a constant ci > 0 so that

ci‖ψi‖i ≤
1

2i
,

ci‖ψiPiEα‖i ≤
1

2i
, α = 1, . . . , m.

Note that the order of the seminorm is the same as the index here.
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Now define functions ϕi = ciψi, so we can rewrite the inequalities above as

‖ϕi‖i ≤
1

2i
,

‖ϕiPiEα‖i ≤
1

2i
, α = 1, . . . , m.

We now attempt to define a smooth function ϕ and smooth sections Sα of G by

ϕ =

∞∑

i=1

ϕi ,

Sα =

∞∑

i=1

ϕiPiEα.

To do this, we must show these series are convergent in the appropriate function spaces.
To show that the series

∑
i ϕi is convergent in BC∞(Rn;R), it suffices to show that the

series
∞∑

i=1

‖ϕi‖k (4.2)

converges for each k. To show that the series (4.2) converges, it suffices to show for fixed k
that the tail

∞∑

i=k

‖ϕi‖k

of the series converges. Since the norms ‖·‖j are increasing in j, we have

∞∑

i=k

‖ϕi‖k ≤
∞∑

i=k

‖ϕi‖i ≤
∞∑

i=k

1

2i
= 2−k+1.

We conclude that the series
∑

i ϕi converges in BC∞(Rn;R), so ϕ =
∑

i ϕi is a smooth
function. As previously mentioned, we can evaluate this series pointwise, so at any point
p ∈M we have

ϕ(p) =
∞∑

i=1

ϕi(p). (4.3)

It follows that ϕ > 0 on Σd, since a point p ∈ Σp is in one of the balls Bj and ϕj = cjψj =
cj > 0 on Bj . Since all of the terms in the sum (4.3) are nonnegative, we conclude that
ϕ(p) ≥ cj > 0.

Similarly, we can show that the series
∑

i ϕiPiEα is convergent in BC∞(Rn;Rm). As above,
the sum

∞∑

i=1

‖ϕiPiEα‖k

converges since we have
∞∑

i=k

‖ϕiPiEα‖k ≤
∞∑

i=k

‖ϕiPiEα‖i ≤
∞∑

i=k

1

2i
= 2−k+1.
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Thus, we have smooth vector-valued functions, or to look at it another way, sections of the
trivial bundle, defined by

Sα =
∞∑

i=1

ϕiPiEα.

We can evaluate this sum pointwise and write

Sα(p) =

∞∑

i=1

ϕi(p)Pi(p)Eα(p),

using the convention (4.1). Since the image of each Pi is in G, the sum on the right-hand
side of the equation above is a convergent series in the closed subspace Gp ⊆ Θm(Rn)p, so
Sα(p) ∈ Gp. Thus, Sα is a section of G.

We now claim that if p ∈ Σd, then the sections Sα(p) span Gp. Recall from Lemma 4.4
that if p ∈ 2Bi then im(Pi(p)) = Gp and Pi(p) = Qp. We then have

Sα(p) =
∞∑

i=1

ϕi(p)Pi(p)Eα(p)

=
∞∑

i=1

ϕi(p)QpEα(p)

=

∞∑

i=1

Qp[ϕi(p)Eα(p)] = Qp[ϕ(p)Eα(p)].

For each p, {E1(p), . . . , Em(p)} is a basis of Θm(Rn)p. Since ϕ(p) 6= 0,

ϕ(p)E1(p), . . . , ϕ(p)Em(p)

also form a basis. Thus,
{Qpϕ(p)E1(p), . . . , Qpϕ(p)Em(p)}

spans Gp, and thus the vectors Sα(p) span Gp.
This completes the construction of a finite number of generators for G|

Σd
in the case

where we have a countably infinite collection of balls. In the case where our collection of
balls {Bi}i∈I is finite, we can dispense with the convergence questions and just define

ϕ =
∑

i∈I

ψi

Sα =
∑

i∈I

ψiPiEα,

where these are finite sums. A similar analysis shows that the sections Sα span Gp at every
p ∈ Σd.

Finally, to complete the proof of Proposition 4.3, we apply this construction for each d

such that Σd 6= ∅. For each such integer d, we get m sections. Putting all these sections
together we get a finite set of globally defined sections that span G at each point, i.e., a
finite set of global generators for G. �
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To finish this section, we discuss the number of sections this construction yields and the
case of disconnected manifolds.

If we denote by maxdim(G) the maximum dimension of the fibers of G, the above con-
struction will yield m sections for every integer d, 1 ≤ d ≤ maxdim(G) such that Σd 6= ∅,
and so a maximum of mmaxdim(G) sections. If desired, we can get exactly mmaxdim(G)
sections by adding in m copies of the zero section for each d such that Σd = ∅.

Recall that our original vector bundle E is isomorphic to a subbundle of the trivial bundle
Θm(M). As mentioned above, an upper estimate on m is (dim(M) + 1) rk(E). In the case
where E = TM , we can get a better estimate. By the hard Whitney embedding theorem,
M can be embedded in R

n where n = 2dim(M). Then TM is isomorphic to a subbundle of
the restriction of TRn to M . Since TRn is canonically trivial, we see that TM is isomorphic
to a subbundle of a trivial bundle of fiber dimension n, so we can take m = n = 2dim(M)
in this case.

Different authors use slightly different definitions of manifolds and vector bundles. One
can define a manifold so that the dimension is allowed to be different at different points.
In this case the dimension is locally constant, and so must be constant on components.
With this definition, a manifold M that is not connected can have components of different
dimensions. If the number of components is infinite, it is conceivable the dimensions of the
components could be unbounded, although one might be hesitant to use the word “manifold”
in that case.

Similarly, one can give a definition of the concept of a vector bundle E over a manifold M
that allows the fiber dimension to vary with the point. The local triviality condition makes
the fiber dimension locally constant, and so constant on the components of M . This point
of view is taken in some of the foundational literature behind this paper, such as Swan [8].
If M has infinitely many components, E could have fibers of arbitrarily large dimension.

For each component C of M , we can find an mC so that EC = E |C is isomorphic to
a subbundle of ΘmC (C). If we have an upper bound on the dimension of the components
of M and on the dimension of the fibers of E, we can get an upper bound m on mC .
Then, for each C, EC is isomorphic to a subbundle of Θm(C). Since we have an upper
bound of the dimension of the fibers of E, there is an upper bound on the dimension of the
fibers of G. As above, we can construct on each C a finite set of global generators SC

j for
j = 1, . . . , m maxdim(G). We can then define global sections Sj, j = 1, . . . , m maxdim(G)
by defining Sj(p) = SC

j (p), where C is the component containing p. Thus, we will still have
a finite number of global generators in this case.

5. Modules of Sections

Let E be a vector bundle over M of fiber dimension k. For any open set U ⊆ M , the
space Γ(U ;E) of sections of E over U is a module over the ring C∞(U) of smooth functions
on U . Every point p ∈ M has a neighborhood U on which there are sections s1, . . . , sk
such that s1(q), . . . , sk(q) form a basis of Eq for all q ∈ U . Thus, for an arbitrary section
s ∈ Γ(U ;E), we have s(q) = f1(q)s1(q) + · · · + fk(q)sk(q) for some uniquely determined
functions f1, . . . , fk. The definition of vector bundle shows that these functions are smooth.
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As elements of the module Γ(U ;E) we have s = f1s1 + · · · + fksk, so s1, . . . , sk is set of
generators for Γ(U ;E).

The space Γ(E) of global sections of E is a module over the ring C∞(M) of smooth
functions on M . This module is also finitely generated. This fact is part of the proof that E
is isomorphic to a subbundle of a trivial bundle; see Greub, Halperin and Vanstone [3, p. 77]
and Swan [8].

One can ask the same questions about the modules of sections of a generalized subbundle
G ⊆ E. The fact that we can find a finite set of global generators for Gmight lead one to hope
that the module Γ(G) is finitely generated. Alas, we will give an example to show that Γ(G)
is not in general finitely generated and that there may be arbitrarily small neighborhoods U
of a point p such that the module Γ(U ;G) is not finitely generated.

To begin the construction of our example, we introduce some notation. Let J = (−a, a) ⊆
R be an open interval, where we allow the case a = ∞. Let I(J) ⊆ C∞(J) be the space of
smooth functions on J that are zero on (−a, 0]. Recall that one can construct a function
ψ ∈ I(R) by

ψ(x) =

{
e−1/x, 0 < x <∞
0, −∞ < x ≤ 0,

for example. The restriction of ψ to J = (−a, a) is an element of I(J).
We require the following lemmas. The first lemma follows from standard one-variable

calculus.

Lemma 5.1. Let J = (−a, a) be an open interval around 0.

(1) If f is a smooth function on J such that f = 0 on (−a, 0], then

lim
x→0

f(x)

xn
= 0, n = 0, 1, 2, . . . . (5.1)

(2) Let g be a smooth function on (0, a) and suppose that

lim
x→0+

g(x)

xn
= 0, n = 0, 1, 2, . . . . (5.2)

Then, the function f defined by

f(x) =

{
g(x), 0 < x < a

0, −a < x ≤ 0
(5.3)

is smooth.

Lemma 5.2. Let h ∈ I(J) be strictly positive on (0, a). Then, the function
√
h is in I(J).

Proof. Clearly
√
h = 0 on (−a, 0] and

√
h is smooth on (0, a). We have

lim
x→0+

√
h(x)

xn
= lim

x→0+

√
h(x)

x2n
=

√
0 = 0, n = 0, 1, 2, 3, . . . ,

so h ∈ I(J) by Lemma 5.1.
�
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Proposition 5.3. Let G be the generalized subbundle of Θ1(R) given by

Gx =

{
Θ1(R)x, x > 0,

{0} ⊂ Θ1(R)x, x ≤ 0.

This is a smooth generalized subbundle of Θ1(R); indeed it is spanned by the single smooth

section ψ.

The module of sections Γ(G) is not finitely generated, and Γ(J ;G) is not finitely generated

for any interval J = (−a, a), a > 0.

Proof. Regarding sections of the trivial bundle as functions, we have Γ(J ;G) = I(J). Clearly
I(J) is an ideal in the ring C∞(J), and our assertion is that I(J) is not finitely generated.

Suppose, for a contradiction, that g1, . . . , gk is a finite set of generators for I(J). Thus, if
f is any function in I(J),

f =
k∑

i=1

aigi (5.4)

for some functions a1, . . . , ak belonging to C∞(J).
We claim that g1, . . . , gk have no common zero in (0, a). Indeed, if all the gi’s vanish at

p ∈ (0, a), then (5.4) shows that f(p) = 0 for all f ∈ I(J). But there is no such point. For
example, ψ |J is an element of I(J) that does not vanish at any point in (0, a).

If we define h = g21 + g
2
2 + . . . , g

2
k then h ∈ I(J) and h ≥ 0. Since the gi’s have no common

zero in (0, a), h is strictly positive on (0, a). It follows that
√
h ∈ I(J). Since

√
h is strictly

positive on (0, a) we have h1/4 =
√√

h ∈ I(J).
Since the gi’s generate I(J), we have

h1/4 =

k∑

i=1

bigi (5.5)

for some bi’s in C∞(J). Applying the Cauchy-Schwartz inequality to (5.5) we have

h1/4 =

∣∣∣∣
k∑

i=1

bigi

∣∣∣∣ ≤
[ k∑

i=1

b2i

]1/2[ k∑

i=1

g2i

]1/2
=

[ k∑

i=1

b2i

]1/2√
h (5.6)

If we restrict x to (0, a) so that h(x) > 0, we can divide both sides of this inequality by√
h(x) to get

[ k∑

i=1

bi(x)
2

]1/2
≥ 1

[h(x)]1/4
. (5.7)

But, if we let x go to zero from the right, the right-hand side of (5.7) goes to +∞ while the
the continuity of the bi’s implies that the left-hand side approaches some finite value.

This contradiction shows that I(J) has no finite set of generators. �

Proposition 5.3 implies that C∞(J) is not noetherian, which is no surprise.
Because TR ∼= Θ1(R), the proposition above shows that tangent distributions are no

better behaved than generalized subbundles of arbitrary vector bundles in this respect.
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