COMPLETE REDUCIBILITY AND STEINBERG ENDOMORPHISMS

SEBASTIAN HERPEL AND GERHARD RÖHRLE

ABSTRACT. Let G be a connected reductive algebraic group defined over an algebraically closed field of positive characteristic. We study a generalization of the notion of G-complete reducibility in the context of Steinberg endomorphisms of G. Our main theorem extends a special case of a rationality result in this setting.

1. INTRODUCTION

Let p be a prime number and let $k = \overline{\mathbb{F}_p}$ be the algebraic closure of the field of p elements. Let G be a connected reductive linear algebraic group defined over k and let H be a closed subgroup of G. Let $\mathbb{F}_p \subseteq k' \subseteq k$ be a field extension of \mathbb{F}_p . Following Serre [12], we say that a k'-defined subgroup H of G is G-completely reducible over k' provided that whenever H is contained in a k'-defined parabolic subgroup P of G, it is contained in a k'-defined Levi subgroup of P. If k' = k, then H is G-completely reducible over k' if and only if H is G-completely reducible (or G-cr for short). For an overview of this concept see for instance [11] and [12].

The starting point for our discussion is the following special case of the rationality result [1, Thm. 5.8]. Let q be a power of p and let \mathbb{F}_q be the field of q elements.

Theorem 1.1. Suppose that both G and H are defined over \mathbb{F}_q . Then H is G-completely reducible if and only if it is G-completely reducible over \mathbb{F}_q .

Let $\sigma : G \to G$ be a *Steinberg endomorphism* of G, i.e. a surjective endomorphism of G that fixes only finitely many points, see Steinberg [14] for a detailed discussion (for this terminology, see [6, Def. 1.15.1b]). The set of all Steinberg endomorphisms of G is a subset of all isogenies $G \to G$ (see [14, 7.1(a)]) that encompasses in particular all (generalized) Frobenius endomorphisms, i.e. endomorphisms of G some power of which are Frobenius endomorphisms corresponding to some \mathbb{F}_q -rational structure on G.

Example 1.2. Let F_1, F_2 be the Frobenius maps of $G = SL_2$ given by raising coefficients to the *p*th and p^2 th powers, respectively. Then the map $\sigma = F_1 \times F_2 : G \times G \to G \times G$ is a Steinberg morphism of $G \times G$ that is not a Frobenius morphism, cf. the remark following [6, Thm. 2.1.11].

If G is almost simple, then σ is a (generalized) Frobenius map (e.g. see [6, Thm. 2.1.11]), and the possibilities for σ are well known ([14, §11], e.g. see [7, Thm. 1.4]): σ is conjugate to either σ_q , $\tau \sigma_q$, $\tau' \sigma_q$ or τ' , where σ_q is a standard Frobenius morphism, τ is an automorphism of algebraic groups coming from a graph automorphism of types A_n , D_n or E_6 , and τ' is a bijective endomorphism coming from a graph automorphism of type B_2 (p = 2), F_4 (p = 2) or G_2 (p = 3).

²⁰¹⁰ Mathematics Subject Classification. 20G15.

Key words and phrases. G-complete reducibility, Steinberg endomorphism, Frobenius endomorphism.

Example 1.3. If G is not simple, then a generalized Frobenius map may fail to factor into a field and a graph automorphism as stated above. For example, let p = 2 and let H_1, H_2 be simple, simply connected groups of type B_n and C_n $(n \ge 3)$, respectively. Then there are special isogenies $\phi_1 : H_1 \to H_2$ and $\phi_2 : H_2 \to H_1$ whose composites $\phi_1 \circ \phi_2$ and $\phi_2 \circ \phi_1$ are standard Frobenius maps with respect to p on H_2 , respectively H_1 , see [4, p 5 of Exp. 24]. Let $G = H_1 \times H_2$ and define $\sigma : G \to G$ by $\sigma(h_1, h_2) = (\phi_2(h_2), \phi_1(h_1))$. Then σ is an example of such a more complicated generalized Frobenius map.

We now give an extension of Serre's notion of G-complete reducibility in this setting of Steinberg endomorphisms: Let σ be a Steinberg endomorphism of G and let H be a subgroup of G. We say that H is σ -completely reducible (or σ -cr for short), provided that whenever H lies in a σ -stable parabolic subgroup P of G, it lies in a σ -stable Levi subgroup of P. This notion is motivated as follows: If σ_q is a standard Frobenius morphism of G, then a subgroup H of G is defined over \mathbb{F}_q if and only if it is σ_q -stable and if so, H is G-completely reducible over \mathbb{F}_q if and only if it is σ_q -completely reducible. In view of this new notion, the goal of this note is the following generalization of Theorem 1.1 to arbitrary Steinberg endomorphisms of G (the special case of Theorem 1.4 when $\sigma = \sigma_q$ gives Theorem 1.1).

Theorem 1.4. Let σ be a Steinberg endomorphism of G. Let H be a σ -stable subgroup of G. Then H is G-completely reducible if and only if H is σ -completely reducible.

Theorem 1.4 follows from Theorems 2.4 and 2.5 proved in the next section.

Example 1.5. Theorem 1.4 is false without the σ -stability condition on H. For instance, a maximal torus T of G is always G-cr, cf. [1, Lem. 2.6]. But it may happen that T is contained in a σ -stable Borel subgroup of G, without being itself σ -stable. Then T clearly fails to be σ -cr. In the other direction, G may contain a maximal parabolic subgroup P of G that is not σ -stable. The only σ -stable parabolic subgroup of G containing P is G itself. Then P is σ -cr for trivial reasons, whereas a proper parabolic subgroup of G is not G-cr.

Remark 1.6. Even if H is not σ -stable, Theorem 1.4 gives some information about the notion of σ -complete reducibility, as follows. Let \overline{H}^{σ} be the algebraic subgroup of G generated by all translates $\sigma^{i}H$, $i \geq 0$. Then \overline{H}^{σ} is σ -stable and contained in the same σ -stable subgroups of G as H. In particular, H is σ -cr if and only if \overline{H}^{σ} is σ -cr. Thus, by Theorem 1.4, this is equivalent to \overline{H}^{σ} being G-cr.

2. Proof of Theorem 1.4

In addition to the notation already fixed in the Introduction, $\sigma : G \to G$ is always a Steinberg endomorphism of G and from now on the subgroup H of G is assumed to be σ -stable. We begin with a generalization of (a special case of) [8, Prop. 2.2 and Rem. 2.4].

Proposition 2.1. If H is not G-completely reducible, then there exists a proper σ -stable parabolic subgroup of G containing H.

Proof. First we assume that G is almost simple. We want to reduce to the case where H is a finite, σ -stable subgroup of G, and then apply [8, Prop. 2.2 and Rem. 2.4]. Since G is almost simple, we can assume that $\sigma^m = \sigma_q$ is a standard Frobenius map for some positive integer m. We choose a closed embedding $G \to \operatorname{GL}_n(k)$ so that σ_q is the restriction of the standard Frobenius map of $\operatorname{GL}_n(k)$ that raises coefficients to the qth power (see [5, Prop.

4.1.11]). For $r \in \mathbb{Z}, r \geq 1$, let $\tilde{H}(r) = H \cap \operatorname{GL}_n(\mathbb{F}_{q^{r!}})$. Then we can write H as the directed union of finite subgroups $H = \bigcup_{r>1} \tilde{H}(r)$. Note that the union is indeed directed, that is

(2.2)
$$\tilde{H}(r) \subseteq \tilde{H}(r+1) \ \forall r \ge 1.$$

We wish to construct a similar, but σ -stable filtration of H. For this purpose we set $H(r) = \bigcap_{l=0}^{m-1} \sigma^l \tilde{H}(r)$. Then each H(r) is a finite, σ -stable subgroup of H (for the σ -stability, we use that each $\tilde{H}(r)$ is stable under $\sigma^m = \sigma_q$). Moreover, we claim that H is the directed union $H = \bigcup_{r\geq 1} H(r)$. Indeed, if $h \in H$, then the identities $H = \sigma H$ and $H = \bigcup_{r\geq 1} \tilde{H}(r)$ imply that for each $l = 0, \ldots, m-1$ we can find some r_l such that $h \in \sigma^l \tilde{H}(r_l)$. But then (2.2) implies that $h \in H(r)$ for $r \geq \max\{r_0, \ldots, r_{m-1}\}$. It follows from the argument in the proof of [1, Lem. 2.10] that there is an integer r' so that H(r') has the following property: H is contained in a parabolic subgroup P of G (respectively a Levi subgroup L of G) if and only if H(r') is contained in P (respectively in L). Therefore, if H is not G-cr, then neither is H(r'), and we can apply [8, Prop. 2.2 and Rem. 2.4] to obtain a proper σ -stable parabolic subgroup P of G that contains H(r'). But then P also contains H.

Next we drop the simplicity assumption on G. Then we can use the almost simple components of G to reduce to the almost simple case: Let $\pi: G' := Z(G)^{\circ} \times G_1 \times \cdots \times G_r \to G$ be the product map, where G_1, \ldots, G_r are the almost simple components of the semisimple group [G,G] and let $\pi_i: G' \to G_i$ be the projection $(1 \le i \le r)$. Then π is an isogeny. Let $H' = \pi^{-1}(H)$. Using [1, Lem. 2.12] and the fact that $Z(G)^{\circ}$ is a torus, we find that there is some index i such that $H_i := \pi_i(H') \subseteq G_i$ is not G_i -cr. We can assume that i = 1. We are now in the situation of the first part of the proof (for $H_1 \subseteq G_1$), except that we have yet to specify a Steinberg endomorphism of G_1 that stabilizes H_1 . Since σ stabilizes [G,G] and maps components to components ([4, Exp. 18, Prop. 2]), we can assume that σ permutes G_1, \ldots, G_s cyclically for some $s \leq r$. Moreover, σ stabilizes $Z(G)^\circ = R(G)$ (because σ is an isogeny). Using the restrictions $\sigma|_{Z(G)^{\circ}}$ and $\sigma|_{[G,G]}$, we can define a Steinberg endomorphism $\sigma': G' \to G'$ of G' such that $\pi \circ \sigma' = \sigma \circ \pi$. We denote by H'' the image (under the projection) of H' in $G'' := G_1 \times \cdots \times G_s$. Now let $\tau = \sigma^s|_{G_1} : G_1 \to G_1$ denote the generalized Frobenius map on G_1 induced by σ ([6, Thms. 2.1.2(g) and 2.1.11]). Then H_1 is τ -stable, since H is σ^s -stable. We apply the first part of the proof to $H_1 \subseteq G_1$ to obtain a proper τ -stable parabolic subgroup P_1 of G_1 containing H_1 . Then $P'' := P_1 \times \sigma P_1 \times \cdots \times \sigma^{s-1} P_1 \subseteq G''$ is a proper $\sigma'|_{G''}$ -stable parabolic subgroup of G'' ([13, Cor. 6.2.8]). The bijectivity of $\sigma^s|_{H_i}: H_i \to H_i$ for $1 \le i \le s$ implies that $H_i = \sigma^{i-1} H_1$ for $1 \le i \le s$. We get that P'' contains H'', since we have $H'' \subseteq H_1 \times H_2 \times \cdots \times H_s$ and $H_1 \subseteq P_1$. Consequently, $P' = Z(G)^{\circ} \times P'' \times G_{s+1} \times \cdots \times G_r$ is a proper σ' -stable parabolic subgroup of G' containing H'. Finally, $P = \pi(P')$ is a proper σ -stable parabolic subgroup of G containing H, as desired.

Remark 2.3. In [8, Prop. 2.2 and Rem. 2.4], Liebeck, Martin and Shalev prove the following: Let G be an almost simple algebraic group over k as above. Let $\operatorname{Aut}^{\#}(G)$ denote the group generated by inner automorphisms of G, together with p^i -power field morphisms $(i \ge 1)$, and graph automorphisms (which may include the bijective endomorphisms coming from a graph automorphism of type B_2 (p = 2), F_4 (p = 2) or G_2 (p = 3)). (Note that $\operatorname{Aut}^{\#}(G)$ is an extension of the group $\operatorname{Aut}^+(G)$ from [8].) Let S be a subgroup of $\operatorname{Aut}^{\#}(G)$ and suppose that $H \subseteq G$ is a finite, S-stable subgroup that is not G-cr. Then H is contained in a proper S-invariant parabolic subgroup of G (note that the notion of strongly reductive subgroups in G is equivalent to the notion of G-completely reducible subgroups, cf. [1, Thm. 3.1]). If we take S to be generated by a (generalized) Frobenius endomorphism σ of G, then we get the assertion of Proposition 2.1 for G almost simple and H finite.

Theorem 2.4. If H is σ -completely reducible, then it is G-completely reducible.

Proof. If H is not contained in any proper σ -stable parabolic subgroup of G, then it is G-cr according to Proposition 2.1. So we can assume that there is a proper σ -stable parabolic subgroup P of G containing H. We choose P minimal with these properties. Since H is σ -cr, it is contained in a σ -stable Levi subgroup L of P. Suppose there is a proper σ -stable parabolic subgroup P_L of L containing H. Then $P' = P_L R_u(P) \subsetneq P$ is another parabolic subgroup of G (see [3, Prop. 4.4(c)]) containing H, and P' is σ -stable (σ stabilizes $R_u(P)$ as any isogeny does). But this contradicts our choice of P. So we can use Proposition 2.1 again to deduce that H is L-cr, which in turn implies that H is G-cr ([1, Cor. 3.22]).

For the converse of Theorem 2.4 we argue as in the last part of the proof of [9, Thm. 9]. But first we recall a parametrization of the parabolic and Levi subgroups of G in terms of cocharacters of G, e.g. see [1, Lem. 2.4]: Given a parabolic subgroup P of G and any Levi subgroup L of P, there exists some cocharacter λ of G such that P and L are of the form $P = P_{\lambda} = \{g \in G \mid \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1} \text{ exists}\}$ and $L = L_{\lambda} = C_G(\lambda(k^*))$, respectively. The unipotent radical of P_{λ} is then given by $R_u(P_{\lambda}) = \{g \in G \mid \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1} = 1\}$.

Theorem 2.5. If H is G-completely reducible, then it is σ -completely reducible.

Proof. Suppose that P is a σ -stable parabolic subgroup of G containing H. Since H is G-cr, there is some Levi subgroup L of P that contains H. Let $U = R_u(P)$. Then $\Lambda = \{uLu^{-1} \mid u \in U, H \subseteq uLu^{-1}\}$ is the set of all Levi subgroups of P that contain H. Clearly, Λ is σ -stable, since H and P are. We need to prove that Λ contains an element fixed by σ .

If uLu^{-1} is in Λ , then $u^{-1}Hu \subseteq L \cap UH = H$, so that u normalizes H. In fact, u centralizes H, since $[N_U(H), H] \subseteq H \cap U = \{1\}$. So the group $C = C_U(H)$ acts transitively on Λ . We claim that C is connected. In order to prove this, write $P = P_{\lambda}$, $L = L_{\lambda}$ and $U = R_u(P_{\lambda})$ for some suitable cocharacter λ of G. The torus $\lambda(k^*)$ normalizes $C_G(H)$ (because H is contained in L) and U, hence it normalizes C. Whence, for any fixed $c \in C$, the map $\phi_c : k^* \to C$, given by $t \mapsto \lambda(t)c\lambda(t)^{-1}$, is well-defined. Moreover, $C \subseteq U$ implies that ϕ_c extends to a morphism $\hat{\phi}_c : k \to C$ that maps 0 to 1 and 1 to c. Since the image of $\hat{\phi}_c$ is connected, we get $c \in C^\circ$. It follows that $C = C^\circ$. But now we can apply the Lang-Steinberg theorem (see [14, Thm. 10.1]) to conclude that Λ contains an element fixed by σ .

Remark 2.6. We conclude by outlining a short alternative approach to Proposition 2.1; the latter was crucial in the proof of Theorem 2.4. This variant utilizes the so called *Centre Conjecture* for spherical buildings due to J. Tits from the 1950s. This deep conjecture has recently been established by work of Leeb and Ramos-Cuevas, e.g. see [2, §2] and the references therein for further details. This conjecture states that in the building $\Delta = \Delta(G)$ of G any convex contractible subcomplex Σ has a simplex which is fixed under any building automorphism of Δ which stabilizes Σ as a subcomplex. Such a fixed simplex is often referred to as a *centre* giving this conjecture its name. Here is a sketch of a building theoretic alternative to the proof of Proposition 2.1: Let H be a σ -stable subgroup of G which is not G-cr. Consider the subcomplex Δ^H of H-fixed points of the building Δ , i.e., Δ^H corresponds to the set of all parabolic subgroups of G that contain H. Note that Δ^H is always convex ([12, Prop. 3.1]) and since H is not G-cr, Δ^H is also contractible ([10, Thm. 2]). The Steinberg morphism σ of G affords a building automorphism of Δ , also denoted by σ . Since H is σ -stable, so is Δ^H . Now since Δ^H is convex and contractible, the Centre Conjecture asserts the existence of a centre of Δ^H with respect to the action of σ which corresponds to a proper parabolic subgroup of G which is σ -stable and contains H. This is precisely the conclusion of Proposition 2.1.

Acknowledgments: The authors acknowledge the financial support of the DFG-priority program SPP 1388 "Representation Theory". We are grateful to Olivier Brunat for helpful discussions on the material of this note.

References

- M. Bate, B. Martin, and G. Röhrle. A geometric approach to complete reducibility. Invent. Math., 161(1):177–218, 2005.
- [2] _____, Complete reducibility and separable field extensions. C. R. Math. Acad. Sci. Paris, 348(9-10):495-497, 2010.
- [3] A. Borel and J. Tits. Groupes réductifs. Inst. Hautes Études Sci. Publ. Math., (27):55–150, 1965.
- [4] C. Chevalley. Classification des groupes algébriques semi-simples. Collected works. Vol. 3. Springer-Verlag, Berlin, 2005.
- [5] M. Geck. An introduction to algebraic geometry and algebraic groups, volume 10 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford, 2003.
- [6] D. Gorenstein, R. Lyons, and R. Solomon. The classification of the finite simple groups. Part I. Chapter A: Almost simple K-groups. vol. 40 No. 3 Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
- [7] M. W. Liebeck. Subgroups of simple algebraic groups and of related finite and locally finite groups of Lie type. In *Finite and locally finite groups (Istanbul, 1994)*, volume 471 of *NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.*, pages 71–96. Kluwer Acad. Publ., Dordrecht, 1995.
- [8] M. W. Liebeck, B. M. S. Martin, and A. Shalev. On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function. *Duke Math. J.*, 128(3):541–557, 2005.
- [9] M. W. Liebeck and G. M. Seitz. On the subgroup structure of exceptional groups of Lie type. Trans. Amer. Math. Soc., 350(9):3409–3482, 1998.
- [10] J-P. Serre. La notion de complète réductibilité dans les immeubles sphériques et les groupes réductifs, Séminaire au Collège de France, résumé dans [15, pp. 93–98], (1997).
- [11] _____, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon, 1998, arXiv:math/0305257v1 [math.GR].
- [12] _____, Complète réductibilité, Séminaire Bourbaki, 56ème année, 2003–2004, nº 932.
- [13] T. A. Springer. Linear algebraic groups, volume 9 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 1998.
- [14] R. Steinberg. Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, No. 80. American Mathematical Society, Providence, R.I., 1968.
- [15] J. Tits. Théorie des groupes, Résumé des Cours et Travaux, Annuaire du Collège de France, 97^e année, (1996–1997), 89–102.

FAKULTÄT FÜR MATHEMATIK, RUHR-UNIVERSITÄT BOCHUM, D-44780 BOCHUM, GERMANY *E-mail address*: sebastian.herpel@rub.de

FAKULTÄT FÜR MATHEMATIK, RUHR-UNIVERSITÄT BOCHUM, D-44780 BOCHUM, GERMANY *E-mail address*: gerhard.roehrle@rub.de