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COMPLETE REDUCIBILITY AND STEINBERG ENDOMORPHISMS

SEBASTIAN HERPEL AND GERHARD RÖHRLE

Abstract. Let G be a connected reductive algebraic group defined over an algebraically
closed field of positive characteristic. We study a generalization of the notion of G-complete
reducibility in the context of Steinberg endomorphisms of G. Our main theorem extends a
special case of a rationality result in this setting.

1. Introduction

Let p be a prime number and let k = Fp be the algebraic closure of the field of p elements.
Let G be a connected reductive linear algebraic group defined over k and let H be a closed
subgroup of G. Let Fp ⊆ k′ ⊆ k be a field extension of Fp. Following Serre [12], we say
that a k′-defined subgroup H of G is G-completely reducible over k′ provided that whenever
H is contained in a k′-defined parabolic subgroup P of G, it is contained in a k′-defined
Levi subgroup of P . If k′ = k, then H is G-completely reducible over k′ if and only if H is
G-completely reducible (or G-cr for short). For an overview of this concept see for instance
[11] and [12].

The starting point for our discussion is the following special case of the rationality result
[1, Thm. 5.8]. Let q be a power of p and let Fq be the field of q elements.

Theorem 1.1. Suppose that both G and H are defined over Fq. Then H is G-completely

reducible if and only if it is G-completely reducible over Fq.

Let σ : G → G be a Steinberg endomorphism of G, i.e. a surjective endomorphism of
G that fixes only finitely many points, see Steinberg [14] for a detailed discussion (for this
terminology, see [6, Def. 1.15.1b]). The set of all Steinberg endomorphisms of G is a subset
of all isogenies G → G (see [14, 7.1(a)]) that encompasses in particular all (generalized)
Frobenius endomorphisms, i.e. endomorphisms of G some power of which are Frobenius
endomorphisms corresponding to some Fq-rational structure on G.

Example 1.2. Let F1, F2 be the Frobenius maps of G = SL2 given by raising coefficients to
the pth and p2th powers, respectively. Then the map σ = F1 × F2 : G × G → G × G is a
Steinberg morphism of G×G that is not a Frobenius morphism, cf. the remark following [6,
Thm. 2.1.11].

If G is almost simple, then σ is a (generalized) Frobenius map (e.g. see [6, Thm. 2.1.11]),
and the possibilities for σ are well known ([14, §11], e.g. see [7, Thm. 1.4]): σ is conjugate to
either σq, τσq, τ

′σq or τ
′, where σq is a standard Frobenius morphism, τ is an automorphism

of algebraic groups coming from a graph automorphism of types An, Dn or E6, and τ ′ is a
bijective endomorphism coming from a graph automorphism of type B2 (p = 2), F4 (p = 2)
or G2 (p = 3).
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Example 1.3. If G is not simple, then a generalized Frobenius map may fail to factor into
a field and a graph automorphism as stated above. For example, let p = 2 and let H1, H2

be simple, simply connected groups of type Bn and Cn (n ≥ 3), respectively. Then there
are special isogenies φ1 : H1 → H2 and φ2 : H2 → H1 whose composites φ1 ◦ φ2 and φ2 ◦ φ1

are standard Frobenius maps with respect to p on H2, respectively H1, see [4, p 5 of Exp.
24]. Let G = H1 ×H2 and define σ : G → G by σ(h1, h2) = (φ2(h2), φ1(h1)). Then σ is an
example of such a more complicated generalized Frobenius map.

We now give an extension of Serre’s notion of G-complete reducibility in this setting of
Steinberg endomorphisms: Let σ be a Steinberg endomorphism of G and let H be a subgroup
of G. We say that H is σ-completely reducible (or σ-cr for short), provided that whenever
H lies in a σ-stable parabolic subgroup P of G, it lies in a σ-stable Levi subgroup of P .
This notion is motivated as follows: If σq is a standard Frobenius morphism of G, then a
subgroup H of G is defined over Fq if and only if it is σq-stable and if so, H is G-completely
reducible over Fq if and only if it is σq-completely reducible. In view of this new notion,
the goal of this note is the following generalization of Theorem 1.1 to arbitrary Steinberg
endomorphisms of G (the special case of Theorem 1.4 when σ = σq gives Theorem 1.1).

Theorem 1.4. Let σ be a Steinberg endomorphism of G. Let H be a σ-stable subgroup of

G. Then H is G-completely reducible if and only if H is σ-completely reducible.

Theorem 1.4 follows from Theorems 2.4 and 2.5 proved in the next section.

Example 1.5. Theorem 1.4 is false without the σ-stability condition on H . For instance,
a maximal torus T of G is always G-cr, cf. [1, Lem. 2.6]. But it may happen that T is
contained in a σ-stable Borel subgroup of G, without being itself σ-stable. Then T clearly
fails to be σ-cr. In the other direction, G may contain a maximal parabolic subgroup P of
G that is not σ-stable. The only σ-stable parabolic subgroup of G containing P is G itself.
Then P is σ-cr for trivial reasons, whereas a proper parabolic subgroup of G is not G-cr.

Remark 1.6. Even if H is not σ-stable, Theorem 1.4 gives some information about the notion
of σ-complete reducibility, as follows. Let H

σ
be the algebraic subgroup of G generated by

all translates σiH , i ≥ 0. Then H
σ
is σ-stable and contained in the same σ-stable subgroups

of G as H . In particular, H is σ-cr if and only if H
σ
is σ-cr. Thus, by Theorem 1.4, this is

equivalent to H
σ
being G-cr.

2. Proof of Theorem 1.4

In addition to the notation already fixed in the Introduction, σ : G → G is always a
Steinberg endomorphism of G and from now on the subgroup H of G is assumed to be
σ-stable. We begin with a generalization of (a special case of) [8, Prop. 2.2 and Rem. 2.4].

Proposition 2.1. If H is not G-completely reducible, then there exists a proper σ-stable

parabolic subgroup of G containing H.

Proof. First we assume that G is almost simple. We want to reduce to the case where H

is a finite, σ-stable subgroup of G, and then apply [8, Prop. 2.2 and Rem. 2.4]. Since G is
almost simple, we can assume that σm = σq is a standard Frobenius map for some positive
integer m. We choose a closed embedding G → GLn(k) so that σq is the restriction of the
standard Frobenius map of GLn(k) that raises coefficients to the qth power (see [5, Prop.
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4.1.11]). For r ∈ Z, r ≥ 1, let H̃(r) = H ∩ GLn(Fqr!). Then we can write H as the directed

union of finite subgroups H =
⋃

r≥1 H̃(r). Note that the union is indeed directed, that is

H̃(r) ⊆ H̃(r + 1) ∀r ≥ 1.(2.2)

We wish to construct a similar, but σ-stable filtration of H . For this purpose we set H(r) =
⋂m−1

l=0 σlH̃(r). Then each H(r) is a finite, σ-stable subgroup of H (for the σ-stability, we use

that each H̃(r) is stable under σm = σq). Moreover, we claim that H is the directed union

H =
⋃

r≥1H(r). Indeed, if h ∈ H , then the identities H = σH and H =
⋃

r≥1 H̃(r) imply

that for each l = 0, . . . , m − 1 we can find some rl such that h ∈ σlH̃(rl). But then (2.2)
implies that h ∈ H(r) for r ≥ max{r0, . . . , rm−1}. It follows from the argument in the proof
of [1, Lem. 2.10] that there is an integer r′ so that H(r′) has the following property: H is
contained in a parabolic subgroup P of G (respectively a Levi subgroup L of G) if and only
if H(r′) is contained in P (respectively in L). Therefore, if H is not G-cr, then neither is
H(r′), and we can apply [8, Prop. 2.2 and Rem. 2.4] to obtain a proper σ-stable parabolic
subgroup P of G that contains H(r′). But then P also contains H .

Next we drop the simplicity assumption on G. Then we can use the almost simple com-
ponents of G to reduce to the almost simple case: Let π : G′ := Z(G)◦ ×G1 × · · ·×Gr → G

be the product map, where G1, . . . , Gr are the almost simple components of the semisimple
group [G,G] and let πi : G

′ → Gi be the projection (1 ≤ i ≤ r). Then π is an isogeny. Let
H ′ = π−1(H). Using [1, Lem. 2.12] and the fact that Z(G)◦ is a torus, we find that there is
some index i such that Hi := πi(H

′) ⊆ Gi is not Gi-cr. We can assume that i = 1. We are
now in the situation of the first part of the proof (for H1 ⊆ G1), except that we have yet
to specify a Steinberg endomorphism of G1 that stabilizes H1. Since σ stabilizes [G,G] and
maps components to components ([4, Exp. 18, Prop. 2]), we can assume that σ permutes
G1, . . . , Gs cyclically for some s ≤ r. Moreover, σ stabilizes Z(G)◦ = R(G) (because σ is an
isogeny). Using the restrictions σ|Z(G)◦ and σ|[G,G], we can define a Steinberg endomorphism
σ′ : G′ → G′ of G′ such that π◦σ′ = σ◦π. We denote by H ′′ the image (under the projection)
of H ′ in G′′ := G1×· · ·×Gs. Now let τ = σs|G1

: G1 → G1 denote the generalized Frobenius
map on G1 induced by σ ([6, Thms. 2.1.2(g) and 2.1.11]). Then H1 is τ -stable, since H is
σs-stable. We apply the first part of the proof to H1 ⊆ G1 to obtain a proper τ -stable para-
bolic subgroup P1 of G1 containing H1. Then P ′′ := P1×σP1×· · ·×σs−1P1 ⊆ G′′ is a proper
σ′|G′′-stable parabolic subgroup of G′′ ([13, Cor. 6.2.8]). The bijectivity of σs|Hi

: Hi → Hi

for 1 ≤ i ≤ s implies that Hi = σi−1H1 for 1 ≤ i ≤ s. We get that P ′′ contains H ′′, since we
have H ′′ ⊆ H1×H2×· · ·×Hs and H1 ⊆ P1. Consequently, P

′ = Z(G)◦×P ′′×Gs+1×· · ·×Gr

is a proper σ′-stable parabolic subgroup of G′ containing H ′. Finally, P = π(P ′) is a proper
σ-stable parabolic subgroup of G containing H , as desired. �

Remark 2.3. In [8, Prop. 2.2 and Rem. 2.4], Liebeck, Martin and Shalev prove the following:
Let G be an almost simple algebraic group over k as above. Let Aut#(G) denote the group
generated by inner automorphisms of G, together with pi-power field morphisms (i ≥ 1),
and graph automorphisms (which may include the bijective endomorphisms coming from a
graph automorphism of type B2 (p = 2), F4 (p = 2) or G2 (p = 3)). (Note that Aut#(G) is
an extension of the group Aut+(G) from [8].) Let S be a subgroup of Aut#(G) and suppose
that H ⊆ G is a finite, S-stable subgroup that is not G-cr. Then H is contained in a proper
S-invariant parabolic subgroup of G (note that the notion of strongly reductive subgroups
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in G is equivalent to the notion of G-completely reducible subgroups, cf. [1, Thm. 3.1]). If
we take S to be generated by a (generalized) Frobenius endomorphism σ of G, then we get
the assertion of Proposition 2.1 for G almost simple and H finite.

Theorem 2.4. If H is σ-completely reducible, then it is G-completely reducible.

Proof. If H is not contained in any proper σ-stable parabolic subgroup of G, then it is G-cr
according to Proposition 2.1. So we can assume that there is a proper σ-stable parabolic
subgroup P of G containing H . We choose P minimal with these properties. Since H is
σ-cr, it is contained in a σ-stable Levi subgroup L of P . Suppose there is a proper σ-stable
parabolic subgroup PL of L containing H . Then P ′ = PLRu(P ) ( P is another parabolic
subgroup of G (see [3, Prop. 4.4(c)]) containing H , and P ′ is σ-stable (σ stabilizes Ru(P )
as any isogeny does). But this contradicts our choice of P . So we can use Proposition 2.1
again to deduce that H is L-cr, which in turn implies that H is G-cr ([1, Cor. 3.22]). �

For the converse of Theorem 2.4 we argue as in the last part of the proof of [9, Thm. 9].
But first we recall a parametrization of the parabolic and Levi subgroups of G in terms of
cocharacters of G, e.g. see [1, Lem. 2.4]: Given a parabolic subgroup P of G and any Levi
subgroup L of P , there exists some cocharacter λ of G such that P and L are of the form
P = Pλ = {g ∈ G | limt→0 λ(t)gλ(t)

−1 exists} and L = Lλ = CG(λ(k
∗)), respectively. The

unipotent radical of Pλ is then given by Ru(Pλ) = {g ∈ G | limt→0 λ(t)gλ(t)
−1 = 1}.

Theorem 2.5. If H is G-completely reducible, then it is σ-completely reducible.

Proof. Suppose that P is a σ-stable parabolic subgroup of G containing H . Since H is G-cr,
there is some Levi subgroup L of P that contains H . Let U = Ru(P ). Then Λ = {uLu−1 |
u ∈ U,H ⊆ uLu−1} is the set of all Levi subgroups of P that contain H . Clearly, Λ is
σ-stable, since H and P are. We need to prove that Λ contains an element fixed by σ.

If uLu−1 is in Λ, then u−1Hu ⊆ L∩UH = H , so that u normalizes H . In fact, u centralizes
H , since [NU(H), H ] ⊆ H ∩ U = {1}. So the group C = CU(H) acts transitively on Λ. We
claim that C is connected. In order to prove this, write P = Pλ, L = Lλ and U = Ru(Pλ)
for some suitable cocharacter λ of G. The torus λ(k∗) normalizes CG(H) (because H is
contained in L) and U , hence it normalizes C. Whence, for any fixed c ∈ C, the map
φc : k∗ → C, given by t 7→ λ(t)cλ(t)−1, is well-defined. Moreover, C ⊆ U implies that φc

extends to a morphism φ̂c : k → C that maps 0 to 1 and 1 to c. Since the image of φ̂c is
connected, we get c ∈ C◦. It follows that C = C◦. But now we can apply the Lang-Steinberg
theorem (see [14, Thm. 10.1]) to conclude that Λ contains an element fixed by σ. �

Remark 2.6. We conclude by outlining a short alternative approach to Proposition 2.1; the
latter was crucial in the proof of Theorem 2.4. This variant utilizes the so called Centre

Conjecture for spherical buildings due to J. Tits from the 1950s. This deep conjecture
has recently been established by work of Leeb and Ramos-Cuevas, e.g. see [2, §2] and the
references therein for further details. This conjecture states that in the building ∆ = ∆(G)
of G any convex contractible subcomplex Σ has a simplex which is fixed under any building
automorphism of ∆ which stabilizes Σ as a subcomplex. Such a fixed simplex is often
referred to as a centre giving this conjecture its name. Here is a sketch of a building theoretic
alternative to the proof of Proposition 2.1: Let H be a σ-stable subgroup of G which is not
G-cr. Consider the subcomplex ∆H of H-fixed points of the building ∆, i.e., ∆H corresponds
to the set of all parabolic subgroups of G that containH . Note that ∆H is always convex ([12,
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Prop. 3.1]) and since H is not G-cr, ∆H is also contractible ([10, Thm. 2]). The Steinberg
morphism σ of G affords a building automorphism of ∆, also denoted by σ. Since H is
σ-stable, so is ∆H . Now since ∆H is convex and contractible, the Centre Conjecture asserts
the existence of a centre of ∆H with respect to the action of σ which corresponds to a proper
parabolic subgroup of G which is σ-stable and contains H . This is precisely the conclusion
of Proposition 2.1.
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