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PRIME FUZZY IDEALS OVER NONCOMMUTATIVE RINGS

GABRIEL NAVARRO, OSCAR CORTADELLAS, AND F. J. LOBILLO

ABSTRACT. In this paper we introduce prime fuzzy ideals over a noncommutative ring.
This notion of primeness is equivalent to level cuts being crisp prime ideals. It also gener-
alizes the one provided by Kumbhojkar and Bapat in [7], which lacks of this equivalence
in a noncommutative setting. Semiprime fuzzy ideals over a noncommutative ring are
also defined and characterized as intersection of primes. This allows us to introduce the
fuzzy prime radical and establish the basis of a Fuzzy Noncommutative Ring Theory.

1. INTRODUCTION

Since the well-known paper of Rosenfeld [25] dealing with fuzzy sets of a group, many
researches have centered on giving an algebraic structure to the universe space, defining
the classic algebraic topics on a fuzzy environment and studying their properties. For
instance, the reader may consult the papers [9] or [I0] treating with semigroups; [7],
[13], [17], [26] or [30] with ideals and rings; [16] or [24] with modules; [I8] with vector
spaces; [1] with coalgebras over a field, and a huge et cetera. Their common methodology
consists of giving some rules which link the algebraic operations with the order of the
lattice where the imprecision or uncertainty is measured. On average, as the pioneer work
of Zadeh [27] does, the unit real interval is the chosen lattice, although it is a common
generalization operating over an arbitrary completely distributive lattice. Once this is
done, two idealogies may be followed: on the one hand, the crisp algebraic structures are
studied under the perspective of these new fuzzy objects whilst, on the other hand, the
fuzzy objects are considered as new algebraic structures which deserve to be studied.

Focusing on the structure of ring, the early paper of Liu [13], defining fuzzy ideals,
initiated the investigation of rings by means of expanding the class of ideals with these
fuzzy objects. This originated a quick race between different authors during the final
eighties and nineties in order to develop a Fuzzy Ring Theory. Due to its importance on
the ring structure, as far as we know, primeness is the first notion under consideration in a
fuzzy setting, see [23]. Since then, some researchers have tried to redefine fuzzy primeness
in order to get certain properties that a correct “fuzzification” of prime ideal should verify,
see [6], [8], [26], [28] or [30]. Finally, it is generally accepted that the concept of fuzzy
primeness considered in [7] is the most appropriated, mainly, because of it is compatible
with the level cuts, i.e., it is equivalent to the level cuts being usual prime ideals, when
we work over a commutative ring.

In this paper we shall show that, in a general setting, in parallel to the problems
between crisp primeness in commutative and noncommutative rings, it is necessary to
reconsider fuzzy primeness since the one given in [7] is no longer compatible with the
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level cuts. Hence, after a short historical review, we propose a definition satisfying the
aforementioned property, see Definition A1l This definition has another virtue: fuzzy
semiprime ideals can be recovered as intersection of fuzzy prime ideals, see Theorem
G5l This gives the possibility of setting the fuzzy prime radical of a fuzzy ideal as the
intersection of all fuzzy prime ideals containing it, see Corollary After that, hopefully
we have established the basis of a Fuzzy Noncommutative Ring Theory which may be
developed in future works.

2. PRELIMINARES

All along the paper, by a fuzzy set we mean the classical concept defined in [27], that
is, a fuzzy set over a base set X is simply a set map pu : X — [0,1]. The intersection
and union of fuzzy sets is given by the point-by-point infimum and supremum. We shall
use the symbols A and V for denoting the infimum and supremum of a collection of real
numbers.

We remind from [13] that by a left (resp. right) fuzzy ideal of an arbitrary ring R we
mean a fuzzy set I : R — [0, 1] satisfying the following properties:

i) I(x —y) > I(z) N I(y) for any x,y € R, i.e., it is an additive fuzzy subgroup.

ii) I(zy) > I(y) (vesp. I(zy) > I(x)) for any =,y € R.
A (two-sided) fuzzy ideal I is a fuzzy set which is a left and right fuzzy ideal, i.e., it
satisfies the following conditions:

i) I(x —y) > I(x) A (y) for any z,y € R.

ii) I(zy) > I(x) V I(y) for any x,y € R.

From i), one may deduce that 7(0) is the maximum of the image of I, and from ii),
that, if R has unity, /(1) is the minimum. Hence, for any o < I(0), we may consider the
a-cut, I,, as the subset I, = {z € R such that I(z) > a}. It is easy to prove that I is a
fuzzy ideal if and only if I, is an ideal of R for any (1) < o < I(0). The ideal I;() has a
special relevancy in the literature and we shall denote it by I.. Observe also that I;) is
always the whole ring. Following [25], given two fuzzy sets A and B, we denote by Ao B
the fuzzy set defined by

(AoB)(z)= \/ (A1) A B(x2))

T=x122

if x can be decomposed as a product of two elements, and zero otherwise. Obviously, if
R has unity, any element can be decomposed, at least, trivially. For any fuzzy set I, the
fuzzy ideal generated by F' will be the least ideal containing F', i.e., the intersection of all
fuzzy ideal I satisfying that F' < I. We shall denote it by (F).

Throughout the paper R will be an arbitrary ring with unity. For basic facts in Non-
commutative Ring Theory the reader is referred, for instance, to the books [11] or [14].
Following Krull in [4] and [5], we remind the reader that a proper ideal P of a ring R is
said to be prime if it verifies the following:

(*) whenever IJ C P for some ideals I and J, then I C P or J C P.

If R is commutative this is equivalent to the well-known property

(**) whenever xy € P for some x,y € R, then x € P ory € P.

A ring is said to be prime if the zero ideal is prime. If R is commutative, R is prime if
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and only if it is a domain. In working in a noncommutative environment, property (**)
becomes too restrictive since one may find prime rings which are not domains. Actually,
one may find simple non-domain rings. Then, noncommutative ring theorists call an ideal
satisfying (**) completely prime since (*) is equivalent, by [12] and [15], to the following:
(***) whenever xRy C P for some x,y € R, then x € P ory € P.
Hence completely primeness implies primeness but the converse does not hold. In order
to clarify this situation for readers non-familiar with noncommutative rings, we show the
following easy exercise.

Example 2.1. Let R be the ring of 2 x 2 matrices over the real numbers. Let us show that
the zero ideal is prime following (***), and then, following (*). Indeed, let us suppose
that X = (25) and Y = (; i) are two matrices such that XTY = (38) for any other
matrix T € R. Then, in particular,

XG0V =68 (55) = (k) =0ea=c=00re=f=

X(86)Y=<23)<86)(§£)=(gﬁgh):0@a20=0 org=h=

X(?S)YZ(ZZ)(?B)(%):(gigi):()@bzd—o ore=f=0

XEDY=0H0D () =(Gam)=0sb=d=00g=h=
Hence, a solution must verify that X = (39) orY =(879)

Newvertheless, the zero ideal is not prime following (**), since
(80)(86)=1(80) although  (§5) # (§8)

3. A LITTLE SURVEY ABOUT FUZZY PRIMENESS

Let us consider a ring R. Accordingly with crisp Ring Theory, the notion of prime
fuzzy ideal was one of the first concepts under consideration in its fuzzy version. In [23],
it first appeared under the following definition.

Definition 3.1 (D1). A non-constant fuzzy ideal P : R — [0,1] is said to be prime if,
whenever [ o J < P for some fuzzy ideals I and J, it satisfies that [ < P or J < P.

This follows the standard crisp primeness once the product of ideals have been trans-
lated to the product o of fuzzy ideals. Nevertheless, since I o J is not necessarily a
subgroup [22], the product o may be replaced by I.J, given in [26], where

IJ(z) = \/ /\(I(ai) A J(bi)).
x=y, a;b; 1
Furthermore, as well as for crisp Ring Theory, Zahedi in [28] makes use of only left or

right fuzzy ideals.

Definition 3.2 (D1’). A non-constant fuzzy ideal P : R — [0, 1] is said to be prime if,
whenever IJ < P for some fuzzy ideals I and J, it satisfies that I < P or J < P.

Definition 3.3 (D1L-D1R). A non-constant fuzzy ideal P : R — [0, 1] is said to be prime
if, whenever IJ < P for some fuzzy left (right) ideals I and J, it satisfies that I < P or
J < P.
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As pointed out in [26], I.J = (I o J) the fuzzy ideal generated by I o J. Then I.J < P
if and only if [ o J < P, and both definitions are equivalent. In [28, Theorem 4.9], it
is also proven that these are equivalent to the one-side definitions. Moreover, Malik and
Mordeson [17], completing the work of Mukherjee and Sen [23], and Swamy and Swamy
[26] for L-fuzzy ideals, give a nice characterization of all fuzzy D1-prime ideals.

Lemma 3.4. [17)[26] A fuzzy ideal P : R — [0, 1] is prime if and only P is of the form
P(x):{ 1, ifreq ’

t, otherwise
where Q) is a crisp prime ideal of R and 0 <t < 1.

Albeit the former result makes fuzzy D1-primeness clear and transparent, the reader
may figure out a subtle problem about its usefulness: there is no plenty more fuzzy D1-
prime ideals than crisp ones. Hence, the additional information about the ring provided
by fuzzy D1-prime ideals is quite reduced.

Additionally, as pointed out in [6], the notion is not sufficiently “fuzzificated” since
there are fuzzy ideals whose level cuts are prime, despite of they are not D1-prime. For
instance, by [6], the fuzzy ideal of the ring of integers

1, ifx=0
P(z) =< 0.8, if z is even a non-zero
0.6, otherwise

P is not D1-prime since it is three-valued despite of each level cut is a prime ideal of Z.
Since the first inconvenient becomes much more difficult to treat, an evident solution
to the second one is defining primeness as the property that it should verify.

Definition 3.5 (D2). A non-constant fuzzy ideal P : R — [0, 1] is said to be prime if P,
is prime for any P(0) > o > P(1).

As the reader may think in reading this definition, it only translates our problem since
now we need a characterization which makes operational D2-primeness.

In [7], Kumbhojkar and Bapat deal with fuzzy prime ideals from a element-like perspec-
tive and they state primeness looking forward similarities with the standard commutative
algebra.

Definition 3.6 (D3). A non-constant fuzzy ideal P : R — [0,1] is said to be prime if,
for any x,y € R, whenever P(xy) = P(0), then P(x) = P(0) or P(y) = P(0).

They give D3-primeness in order to get a fuzzy version of a well-known result in Ring
Theory, namely, the quotient of a ring by a prime ideal is a prime ring, see [7]. Never-
theless, since the quotient R/P is exactly R/P,, D3-primeness is equivalent to P, being
a prime ideal of R. Then, trivially, D2-primeness implies D3-primeness, although the
converse does not hold. For example,

1, ifz=0
P(z)=<¢ 08, ifx =4t witht#0
0.6, otherwise

is D3-prime but it is not D2-prime. For this reason, the authors give a stronger notion
which they call strongly primeness.
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Definition 3.7 (D4). A non-constant fuzzy ideal P : R — [0,1] is said to be prime if,
for any x,y € R, P(xy) = P(z) or P(xzy) = P(y).

Obviously, D3-primeness is weaker that D4-primeness, but we are interested in the re-
lation between D2-primeness and D4-primeness. Following [8, Proposition|, both notions
are equivalent. Nevertheless, although the authors do not mention it, the proof requieres
commutativity since it makes use the aforementioned property (**). The same mistake is
committed in [3, Theorem 5.3]. In general, the equivalence becomes false as the following
example shows.

Example 3.8. Let R be the ring of 2 X 2 matrices over the real numbers. Hence we may
consider the fuzzy ideal

1, of x is the zero matriz
P(z) = { 0, otherwise

By Ezxample 2], the zero ideal is prime, therefore P is D2-prime and D1-prime. Never-
theless,

P((56)(00)) = P((50)) =1 whilst P((§5)) =0
so P 1is not Dj-prime.

Example B.8]is coherent with the circumstances which appear when dealing with prime
(*) and completely prime (**) ideals over a noncommutative ring. Therefore, one may
expect similar properties treating with fuzzy ideals.

Lemma 3.9. A fuzzy ideal P is D4-prime if and only if each level cut P, is completely
prime for all P(0) > a > P(1).

Proof. The proof is the same as in [§, Proposition 4.2]. O

Lemma 3.10. Let R be an arbitrary ring with unity and P : R — [0, 1] be a fuzzy ideal.
If P is Dj-prime then it is D2-prime.

Proof. 1t follows from the former lemma and since completely primeness implies primeness.

OJ

Remark 3.11. Observe that a slightly modification of the ideal of Example[3.8, simply
map the zero matriz to t with 0 <t < 1, provides a fuzzy ideal which is D2-prime but not
D1-prime.

In trying to get a certain element-like definition, Zahedi in [28] analyzes two notions
involving the so-called singletons. We remind the reader that, given an element z € R
and t € (0, 1], the singleton z; is defined to be the fuzzy set x;(x) =t and zero otherwise.

Definition 3.12 (D0). A non-constant fuzzy ideal P : R — [0, 1] is said to be prime if,
whenever xys < P for any singletons x; and ys, then v, < P ory, < P. This is called
completely prime by Zahedi in [28, Definition 2.7].

Definition 3.13 (D0'). A non-constant fuzzy ideal P : R — [0, 1] is said to be prime if,
whenever (xy)(ys) < P for any singletons x; and ys, then vy, < P or ys < P.
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In [28, Theorem 4.9], D0'-primeness is proving to be equivalent to D1-primeness. DO0-
primeness is proven to be equivalent to D1-primeness in [], see also [20, Theorem 2.6].
Nevertheless, once again, the proof is no longer valid when R is an arbitrary ring. The
gap underlies in the proof of [8, Theorem 3.5 i)], where the implication (z,ys) C P =
(x,) o (ys) C P only can be applied when R is commutative as the following example
shows.

Example 3.14. Let us consider R = My(R) the ring of 2 X 2 matrices over the real
numbers. Let P be the fuzzy ideal given by

1, if x is the zero matrix
P(z) = { 0, otherwise

and x1 be the singleton of the element v = (§§). Now, x1 0 x1(2) = V,_, . (z1(21) A
x1(22)) # 0 if and only if z1 = zo = x, that is, if and only if z = (39). Then xy 0oz =
z121 = P. Nevertheless, (x1) = R and then (z1) o (z1) = R ¢ P.

Observe that P is a fuzzy DI-prime, since R is a prime ring and, by Lemma
x1 £ P. Nevertheless, x; £ P and then P is not DO-prime. This contradicts [8, Theorem
3.5] and [20, Theorem 2.6] if we omit the commutativity condition on the ring.

As a summary, we recover all the facts of this section in the diagram of Figure [l By C
we mean that the implication needs commutativity.

DO

|l

D0’

N

D4 <= completely prime level cuts

DIR < D1L < D1 < D1

C

. definiti
prime level cuts === D2

D3

F1GURE 1. Notions of fuzzy primeness

As the reader may see, in a general setting, there is no characterization of primeness
consistent with the level cuts.

4. Fuzzy PRIMENESS OVER NONCOMMUTATIVE RINGS

In this section we introduce a new definition of fuzzy prime ideals, compatible with the
primeness of the level cuts, and available for any (non-necessarily commutative) ring with
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unity. We remind the reader that a (crisp) ideal P of R is said to be prime if, whenever
IJ < P with I and J (left, right) ideals of R, then I < P or J < P. Equivalently, P is
prime if and only if, whenever xRy C P for some z,y € R, then x € P or y € P.

Definition 4.1. Let R be an arbitrary ring with unity. A non-constant fuzzy ideal P :
R — [0, 1] is said to be prime if, for any x,y € R, Inf P(xRy) = P(z) V P(y).

Proposition 4.2. Let R be an arbitrary ring with unity and P : R — [0,1] be a non-

constant fuzzy ideal of R. The following are equivalent:

a) P is prime.

b) P, is prime for all P(0) > a > P(1).

c) R/P, is a prime ring for all P(0) > a > P(1).

d) For any fuzzy ideal I, if I(xry) < P(xry) for all r € R then I(z) < P(x) or I(y) <
P(y).

Moreover, if R is commutative, any of these statements is equivalent to P being D4-prime.

Proof. a) = b). Let P(0) > a > P(1) and z,y € R such that xRy C P,. Then
P(xry) > a for all r € R and then A, ., P(zry) = P(x) V P(y) > a. Hence P(x) > « or
P(y) > a,sox € P,ory€ P,.

b) = a). If InfP(xRy) > P(x)V P(y) for some z,y € R, consider t = InfP(zRy).
Hence P, is not prime since xRy C P; although =,y ¢ P,.

b) < ¢) is given by the definition of prime ring.

a) = d). Let us suppose that d) does not hold, i.e., there exist certain fuzzy ideal [
and x,y € R such that I(zry) < P(ary) for all r € R, and I(z) > P(x) and I(y) > P(y).
Then P(zry) > I(xry) > I(x) V I(y) > P(x) V P(y). Hence Inf P(zRy) > P(x) V P(y).

d) = a). Suppose that Inf P(zRy) > P(z)V P(y) for some x,y € R. Then there exists
t € (0,1) such that InfP(zRy) >t > P(x) V P(y). We define the ideal I : R — [0, 1]
given by

I(2) = { P(z), if P(z) >t

t, otherwise
This is a fuzzy ideal with t < I(xry) = P(xzry) for all r € R, but t = I(z) = I(y) >
P(z)V P(y).
Finally, if R is commutative P(zry) = P(zyr) > P(xy) V P(r) > P(zy) for any
x,y,r € R. Then InfP(zRy) = P(xy) for any z,y € R. So D4-primeness condition is
equivalent to a). O

Then we may say that a ring is prime if and only if the zero ideal, viewed as a fuzzy
ideal, is prime. Moreover, the ring is prime if and only if any zero-type fuzzy ideal is
prime. By a zero-type ideal, we mean a fuzzy ideal Q of the form Q(0) =t and O(x) = s
for x # 0, where 0 < s <t < 1. In other words, it is equivalent to the zero ideal under
the following equivalence relation: two fuzzy ideals I and J are equivalent if I(z) > I(y)
if and only if J(z) > J(y) for any z,y € R.

Remark 4.3. Note that if P is a prime fuzzy ideal, then the quotient R/P = R/P; is a
prime ring. However, the converse does not hold since it is only equivalent to P, being
prime.
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As well as with maximality, see [19], the Arquimedian property of real numbers vanishes
the possibility of defining a notion of minimal prime fuzzy ideal related with the inclusion
of fuzzy sets. For instance, consider a minimal prime (crisp) ideal P of a ring with unity
R, which always exists, and yp the fuzzy prime ideal given by its characteristic map. We
work over the family of fuzzy ideals © = {(xp):}o<i<1, given by (xp)i(z) =t if t € P,
and zero otherwise. © is a chain of prime fuzzy ideals. Nevertheless, the minimum is the
zero-constant map.

We may mend this gap, partially, making use of the equivalence relation defined above.
Then we say that a prime fuzzy ideal P is minimal if P is equivalent to the characteristic
map of a minimal prime ideal.

Proposition 4.4. Any prime fuzzy ideal contains a minimal prime fuzzy ideal.

Proof. Let Q be a prime fuzzy ideal over a ring R. Then @, is prime, so it contains a
minimal prime ideal P. Then we define

] Q), ifzeP
I(z) = { Q(1), otherwise

I is a prime fuzzy ideal contained in ) and equivalent to xp. Hence it is minimal. 0

Corollary 4.5. Let R be a noetherian ring. The number of equivalence classes of minimal
prime fuzzy ideals is finite.

Proof. 1t follows from the same property for prime crisp ideals. O

5. FUzzy SEMIPRIMENESS AND FUZZY PRIME RADICAL

Once primeness is achieved, following the usual way, semiprime fuzzy ideals may be
defined as intersection of prime ones. Nevertheless, we follow a different, although equiv-
alent, procedure. We use the Levitzki-Nagata Theorem characterizing semiprime ideals
by an element-like property and define semiprime fuzzy ideals analogously to Definition
4.1l for fuzzy prime ideals. Then we prove that semiprime fuzzy ideals are those which can
be decomposed as an intersection of prime fuzzy ideals. This allows us to give a definition
of the fuzzy prime radical which preserves the properties of a radical.

Let us first remind the reader the scheme, similar to Figure [, of different semiprimess
notions for fuzzy ideals that appear in the literature.

Definition 5.1. Let P : R — [0, 1] be a non-constant fuzzy ideal over R. P is said to be

(1) DU'-semiprime if, whenever (x;)*> < P for some fuzzy singleton x;, then x; < P.

(2) D1-semiprime (D1L-semiprime, D1R-semiprime) if, whenever I* < P for some
fuzzy (left, right) ideal I, then I < P.

(3) D2-semiprime if P, is semiprime for any P(0) > a > P(1).

(4) D4-semiprime if P(x*) = P(x) for any x € R.

Analogously to the comments of Section [3, the reader may check that those notions are
related each other as showed in Figure @ see [2] and [29]. We recall that by C we mean
that the implication needs commutativity on the base ring R.

By [12] and [15], a (crisp) ideal P of R is semiprime if and only if, whenever 2Rz C P
for some = € R, then x € P. We make use of this idea for giving the following notion of
fuzzy semiprimeness.
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Do’

D1R <= DI1L<——= D1
C

N

D4 <= completely semiprime level cuts

7

semiprime level cuts <= D2

F1GURE 2. Notions of fuzzy semiprimeness

Definition 5.2. Let R be an arbitrary ring with unity. A non-constant fuzzy ideal P :
R — [0, 1] is said to be semiprime if Inf P(xRx) = P(z) for all x € R.

Proposition 5.3. Let R be an arbitrary ring with unity and P : R — [0,1] be a non-
constant fuzzy ideal of R. The following are equivalent:

a) P is semiprime.

b) P, is semiprime for all P(0) > a > P(1).

¢) R/P, is a semiprime ring for all P(0) > o > P(1).

d) For any fuzzy ideal I, if I(xrz) < P(xrz) for all r € R, then I(x) < P(x).

Moreover, if R is commutative, any of these statements is equivalent to P being D/-
semiprime.

Proof. Tt is similar to the proof of Proposition (4.2l ([l

Then we may say that a ring is semiprime if and only if every zero-type ideal is
semiprime.

In the following theorem we prove the desired characterization of semiprime ideals as
intersection of primes. For that purpose we first need a previous lemma. This is an
application of |21, Lemma 4], nevertheless, in order to make the paper self-contained, we
add the complete proof here.

Lemma 5.4. Let R be a ring with unity, P a semiprime ideal of R and x € R such that
x & P. Then there exists a prime ideal M such that P C M and x ¢ M.

Proof. Since xp = = ¢ P and P is semiprime, there exists certain rq € R such that
x1 = xoroxg ¢ P. Then, there exists some r; € R such that o = zymz; ¢ P. Repeating
the argument, we find a sequence of elements X = {x;};50 in R with PN X = (). Observe
that, by its construction, once an element of the sequence is in an ideal, all the next ones
SO is.

By Zorn’s Lemma, there is an ideal M maximal with respect to the property X NM = ().
Clearly, P C M. We claim that M is prime. Indeed, if I and J are ideals of R such that
I' & M and J ¢ M, then, by the maximality of M, there exist some n,m > 0 such
that =, € I and z,, € J. Hence, ; € I N J for t > max{n,m}. Now, INJ C IJ so
IJ¢ M O
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Theorem 5.5. A fuzzy ideal is semiprime if and only if it is the intersection of prime
fuzzy ideals.

Proof. Let R be a ring with unity and {P;};c; be a set of prime fuzzy ideals over R.
Then, for any = € R,

Inf (ﬁ Py)(zRx) = /\(ﬂ By)(zra)

= /\ /\Pj(a:m:)

reRjeJ

= /\ /\ Pj(zrz)

jeJreR

= /\ Inf P;(xRx)
jeJ

.I.

= N\ Bil@)
jeJ

= (" P))
jeJ

where { is due to the fact that P; is prime for any j € J.
Conversely, let P be a semiprime fuzzy ideal, we denote

C = {prime fuzzy ideals @ such that P < Q}.

We claim that C # (). Since P is non-constant, then P(1) # P(0) and P* = {z €
R such that P(z) > P(1)} is a proper ideal of R. Hence, by Zorn’s Lemma, there exists
a maximal ideal M of R containing P*. We define the fuzzy ideal

| P(0), ifzeM
H(z) = { P(1), otherwise

It is clear that H is a prime fuzzy ideal, actually maximal in the sense of [6] Definition
3.8], such that P < H.

We prove that P = ﬂQec @. Obviously, P < ﬂQeC (@ by definition of C. Suppose that
there exists © € R such that P(z) < (N Q)(z) = A Q(z). Let us consider two cases:

If P(x) = P(0), we choose the prime fuzzy ideal H defined above. Then H(z) = P(0) =
P(z) < (N Q)(x) and we get a contradiction.

If P(z) < P(0), let t € (0,1) such that P(zx) < t < AQ(x). We may suppose that
t < P(0). Now, P, is semiprime and x ¢ P;,. By Lemma [5.4] there exists a prime ideal M
with P, C M and = ¢ M. Then we define the fuzzy set

[ P(0), ifzeM
I(z) = { t, otherwise

As above, the only proper level cut is M, so [ is a prime fuzzy ideal of R. Furthermore, if
ze€ M, P(z) < P(0)=1(z),and, if 2 ¢ M, then z ¢ P;,s0 P(z) <t=1(z). Hence P < I
and I € C. Although, once again, I(z) =t < ([ Q)(z) and we get a contradiction. O

In what follows we denote by Rad([l) the radical of an ideal I of R, that is, the inter-
section of all prime ideals containing 1.
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Corollary 5.6. Let R be a ring with unity and I be a non-constant fuzzy ideal over R.
The following fuzzy ideals coincide:

i) The intersection Fy of all semiprime fuzzy ideals containing I.
ii) The intersection Fy of all prime fuzzy ideals containing I.
iii) The fuzzy ideal Fy given by Fs(x) = Sup{t € [0, 1] such that x € Rad(l;)}.

Proof. Let C be the set of all prime fuzzy ideals containing I, and D the set of all semiprime
fuzzy ideals containing /. Since every semiprime fuzzy ideal is prime, C C D and then
Fy < Fy. Let z € R. Suppose that F3(x) < Fy(x) and there exists an s € [0, 1] such that
F3(z) < s < Fy(x). Then = ¢ Rad(I;), so, by Lemma [5.4] there exists a prime ideal M
such that x ¢ M. We define the ideal

P(2) _{ 1(0), ifze M

] s, otherwise

P is a prime ideal since its unique proper level cut is M. For any z € M, I(2) < I(0) =
P(z). For any z ¢ M, z ¢ Rad([,) and then z ¢ I, so I(z) < s = P(z). Therefore I < P
and P € C, but P(z) = s < Fy(z) and we get a contradiction. Thus Fy(z) < F3(z).

Let us suppose that Fj(z) < s < F3(z) for some s € [0,1]. Then x € Rad(I;) and,
consequently, zRx C Rad([;). Also, there exists a semiprime fuzzy ideal @) such that
Q(z) = Inf Q(zRx) < s. Hence, there exists some r € R such that Q(zrz) < s so
xrr ¢ Qs. But I < @ and Iy C @y, so xRx C Rad(l;) € Rad(Qs) = Qs and we get a
contradiction. Hence F3(z) < Fi(x). O

For any non-constant fuzzy ideal I, we define de fuzzy prime radical of I, FRad([), as
any of the fuzzy ideals described in Corollaryb.6l Hence, the following result is immediate.

Corollary 5.7. P is a semiprime fuzzy ideal if and only if FRad(P) = P.

Remark 5.8. We may then define the radical of a ring as the fuzzy radical of the zero
tdeal. This coincide with the crisp notion of radical, since the intersection of all prime
fuzzy ideals containing the zero ideal are precisely the intersection of the characteristic
maps of all minimal prime ideals of the ring. Unfortunately, this does not coincide with
the radical of any other zero-type fuzzy ideal. We only may say that these are equivalent.

Lemma 5.9. For any non-constant fuzzy ideal I, FRad(I)(0) = I(0) and FRad(I)(1) =
I(1).

Proof. Since I < FRad([I), then I1(0) < FRad(I)(0) and I(1) < FRad(I)(1). Now, let M
be a maximal ideal of R containing /*, hence we define the prime fuzzy ideal P
| I0), ifxeM
Plz) = { I(1), otherwise
Hence P is prime and I < P, so FRad(/)(0) < P(0) = 1(0).
Finally, FRad(7)(1) = Sup{t|1 € Rad(l;)}. But 1 € Rad([;) if and only if Rad(l;) = R
if and only if I; = R if and only if ¢ = I(1). Hence FRad(/)(1) = I(1). O

Proposition 5.10. Let I be a non-constant fuzzy ideal over a ring R with unity. Then
Rad(I;) C (FRad(I)); for all 1(0) >t > I(1). If I satisfies the sup property, then the
equality holds.
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Proof. 1t is follows from [20, Lemma 3.8]. O

Proposition 5.11. Let P and @) be non-constant fuzzy ideals over R. The following
statements hold:
i) FRad(FRad(P)) = FRad(P).
ii) Rad(R/FRad(R)) = 0.
iii) If P < @ then FRad(P) < FRad(Q).
iv) FRad(P N Q) = FRad(P) N FRad(Q)

Proof. 1t is straightforward from the above statements. O

6. CONCLUSIONS

The study of properties of fuzzy sets, where the base crisp set is a commutative ring,
has attracted the attention of many researchers over many years. Nevertheless, many
sets are naturally endowed with two compatible operations forming a noncommutative
ring. In this setting, it is easy to find examples showing that the properties proposed for
commutative rings are no longer valid. Then it seems necessary to achieve with fuzzy sets
over arbitrary rings.

Following this idealogy, prime ideals, as structural pieces of a ring, should be the first
concept under review in order to establish a well-founded fuzzy ring theory for noncommu-
tative rings. So, in this paper, we propose a new definition of primeness for fuzzy ideals.
This definition satisfies a property that seems necessary for a correct “fuzzification” of
primeness: coherency with the level cuts. In addition, it generalizes the notion defined in
[7] for commutative rings, also coherent with levels cuts, albeit only when working under
commutativity conditions. Hence, fuzzy semiprime ideals are presented as an intersection
of prime fuzzy ideals allowing us to define the fuzzy prime radical.
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