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THE SINGULAR FIBRE OF THE HITCHIN MAP

PETER B. GOTHEN AND ANDRÉ G. OLIVEIRA

Abstract. Given any line bundle L of positive degree, on a compact Riemann surface,
let MΛ

L
be the moduli space of L-twisted Higgs pairs of rank 2 with fixed determinant

isomorphic to Λ and traceless Higgs field. We give a description of the singular fibre of
the Hitchin map H : ML

Λ
→ H

0(L2), when the corresponding spectral curve has any
singularity of type Am−1. In particular, we prove directly that this fibre is connected.

1. Introduction

Let X be a compact Riemann surface of genus g and let L → X be a holomorphic
line bundle. An L-twisted Higgs pair or Hitchin pair is a pair (E,ϕ), where E → X is a
holomorphic vector bundle and ϕ ∈ H0(X,End(E)⊗ L) is an L-twisted endomorphism.
In particular, if K denotes the canonical line bundle of X , then a K-twisted Higgs pair
is a Higgs bundle.

Denote by MΛ
L the moduli space of L-twisted Higgs pairs of rank 2 with fixed determi-

nant bundle Λ → X and tr(ϕ) = 0. The Hitchin map

H : MΛ
L −→ H0(X,L2)

(E,ϕ) 7−→ det(ϕ)

is a proper map. It plays a central role in many important aspects of Higgs bundle theory.
Two examples are integrable systems (see, e.g., Hitchin [12], Bottacin [5], Markman [15]
and Donagi–Markman [8]) and the study of special representations of surface groups (now
known as Hitchin representations) initiated by Hitchin [13]. More recently, the Hitchin
map played a crucial role, for example, in the work of Kapustin and Witten [14], Frenkel
and Witten [9] and Ngô [17, 18].

For a section s ∈ H0(X,L2), let Xs be the spectral curve given by the zero locus of s
inside the total space of L. Then Xs → X is a double cover. Note that if s = det(ϕ) then
the preimage of x ∈ X corresponds to the eigenvalues of ϕx : Ex → Ex ⊗ Lx.

The spectral curve Xs is smooth if and only if the divisor of zeros of s is reduced. It
is an essential feature of the integrable systems picture for the Hitchin map that its fibre
over such a generic s is an abelian variety. In the present case this abelian variety is the
Prym variety of the double cover Xs → X , i.e. the part of the Jacobian of Xs which is
anti-invariant under the natural involution induced by exchanging the sheets of double
the cover.
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At the other extreme, the most special fibre of the Hitchin map is the fibre over zero,
which is known as the nilpotent cone. The nilpotent cone is singular and has a complicated
structure: it contains the fixed point locus of the natural C∗-action on MΛ (given by
multiplication on the Higgs field) and has an irreducible component for each component
of this fixed point locus. In particular, the nilpotent cone contains the moduli space of
bundles as the locus ϕ = 0. Since the nilpotent cone encodes the topology of the moduli
space, it has been studied extensively (see e.g. [4] and references therein).

Our main goal in this paper is to give a description of the remaining special fibres of
the Hitchin map, corresponding to the case of s = det(ϕ) being non-zero and having at
least one multiple zero. Here there are two cases to distinguish, corresponding to whether
the spectral curve is irreducible or not.

When the spectral case is irreducible, we use the correspondence between Higgs pairs
on X and rank one torsion free sheaves on Xs to show that the fibre of the Hitchin map is
essentially the compactification by rank 1 torsion free sheaves of the Prym of the double
cover Xs → X (see Theorem 6.1 below for the detailed statement). In order to prove
this, we make use of the the compactification of the Jacobian of Xs by the parabolic
modules of Cook [6, 7] in order to describe the fibre correctly. One advantage of this
compactification is that it fibers over the Jacobian of the normalization of Xs, as opposed
to the compactification by rank one torsion free sheaves.

In the case of reducible spectral curve, the correspondence between Higgs pairs on X
and rank one torsion free sheaves is not available, and we resort to a direct description of
the fibre as a stratified space (Theorem 7.7 below).

All together, our results allow us to prove the following main result (Theorem 8.1).
Again, the description of the fibre of the Hitchin map via parabolic modules is an essential
ingredient in the proof.

Theorem. For any non-zero s ∈ H0(X,L2), the fibre of the Hitchin map H : MΛ
L →

H0(X,L2) is connected and has dimension deg(L) + g − 1.

We should point out that if the degree of L is greater than or equal to 2g − 2 and
L2 6= K2, then the moduli space is known to be irreducible (cf. [11, 19, 21, 4]) and hence
Zariski’s main theorem immediately implies the connectedness part of the above theorem.
Thus, it is important to notice that our results apply independently of the degree of the
twisting line bundle L (as opposed to most other studies of the moduli space of twisted
Higgs pairs carried out so far).

We also point out that Frenkel and Witten [9, Sec. 5.2.2] proved the connectedness of
the fibre in the particular case of irreducible spectral curve having only simple nodes as
singularities. Their argument makes implicit use of the parabolic line bundles introduced
by Bhosle in [3]. In the case of simple nodes parabolic line bundles are the same as
parabolic modules but, in general, they are different objects.

It seems quite likely that our relatively explicit description of the fibre could be useful
as a tool for further study of geometric and topological properties of the singular fibre
and we hope to come back to this question on another occasion.

To finish this introduction, we give an outline of the organization of the paper. In
Sections 2 and 3 we give some background on Higgs pairs and the spectral curve and in
Section 4 we review the theory of line bundles and the Prym variety in the case of singular
irreducible spectral curve. Then, in Section 5, we introduce the parabolic modules and
give some results, which are used in Section 6 to describe the fibre of the Hitchin map
in the case of irreducible spectral curve. In Section 7 we deal with the case of reducible
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spectral curve. Finally in Section 8.1 we put everything together to prove our main
theorem.

Acknowledgements. We thank U. Bhosle, N. Hitchin and T. Pantev for useful discus-
sions.

2. Higgs pairs

Let X be a compact Riemann surface of genus g > 2 and let K = KX be the canonical
bundle of X . Denote by Jac(X) = Pic0(X) the Jacobian of X , which parametrizes degree
0 holomorphic line bundles on X ; we also write Jacd(X) = Picd(X).

Definition 2.1. Let L be a fixed holomorphic line bundle over X such that deg(L) > 0.
An L-twisted Higgs pair of type (n, d) over X is a pair (V, ϕ), where V is a holomorphic
vector bundle over X , with rk(V ) = n and deg(V ) = d, and ϕ is a global holomorphic
section of End(V )⊗ L, called the Higgs field. A Higgs bundle is a K-twisted Higgs pair.

Definition 2.2. Two L-twisted Higgs pairs (V, ϕ) and (V ′, ϕ′) are isomorphic if there is
a holomorphic isomorphism f : V → V ′ such that ϕ′f = (f ⊗ 1L)ϕ.

Using GIT, Nitsure [19] constructed the moduli space ML(n, d) of S-equivalence classes
of rank n and degree d semistable L-twisted Higgs pairs over X . In this paper we shall
only be concerned with the case n = 2. In this case, the definition of stability of L-twisted
Higgs pairs takes the following form.

Definition 2.3. An L-twisted Higgs pair (V, ϕ) of type (2, d) is:

• stable if deg(N) < d/2 for any line bundle N ⊂ V such that ϕ(N) ⊂ NL.
• semistable if deg(N) 6 d/2 for any line bundle N ⊂ V such that ϕ(N) ⊂ NL.
• polystable if is semistable and for any line bundle N1 ⊂ V such that ϕ(N1) ⊂ N1L
and deg(N1) = d/2, there is another line bundle N2 ⊂ V such that ϕ(N2) ⊂ N2L
and V = N1 ⊕N2.

The notion of S-equivalence for Higgs pairs is defined analogously to the case of vec-
tor bundles and, as in that case, each S-equivalence class contains a unique polystable
representative.

The following is known from [19] and [4]: if deg(L) > 2g − 2, and either L = K or
Ln 6= Kn, the moduli space ML(n, d) is irreducible with

dimML(n, d) = n2 deg(L) + 1 + dimH1(X,L)

and, if moreover (n, d) = 1, it is also smooth. In the case n = 2, the moduli space is
connected for any value of deg(L).

There is a map

p : ML(n, d) −→ Jacd(X)×H0(X,L)

(V, ϕ) 7−→ (ΛnV, tr(ϕ)).

For each fixed Λ ∈ Jacd(X), we define the moduli space of L-twisted Higgs pairs of type
(n, d) with fixed determinant Λ to be the subvariety of ML(n, d) given by the fibre of p
over (Λ, 0):

MΛ
L(n, d) = p−1(Λ, 0).

Accordingly, we say that (V, ϕ) is an L-twisted Higgs pair with fixed determinant Λ, if
Λ2V ∼= Λ and tr(ϕ) = 0.
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Henceforth, we shall assume that n = 2 and also drop n and d from the notation,
writing simply ML and MΛ

L for the rank two moduli spaces.
The Hitchin map is defined by taking the characteristic polynomial of ϕ. Thus, on the

rank two, fixed determinant moduli space, it is given as follows:

Definition 2.4. The Hitchin map on MΛ
L is the map

H : MΛ
L −→ H0(X,L2)

(V, ϕ) 7−→ det(ϕ).

3. The spectral curve

In this section we recall the construction and basic properties of the spectral curve; see
[2, 11, 12] for details. The following notation will be used for the remainder of the paper:
we denote the degree of the line bundle L by

dL = deg(L) > 0

and write
Ds = div(s) ∈ Sym2dL(X)

for the divisor of a section s ∈ H0(X,L2).

3.1. The spectral curve and Higgs pairs. We begin by reviewing the construction of
the spectral curve Xs associated to a section s ∈ H0(X,L2). Consider the complex surface
T given by the total space of the line bundle L, and let π : T → X be the projection.
The pullback π∗L of L to its total space has a tautological section

λ ∈ H0(T, π∗L)

defined by λ(x) = x.

Definition 3.1. Let s ∈ H0(X,L2). The spectral curve Xs associated to s is the zero
scheme in the surface T of the section

λ2 + π∗s ∈ H0(T, π∗L2).

The following simple observations (cf. [2]) will be of relevance later.

Remark 3.2. The spectral curve Xs is always reduced, but it may be singular and re-
ducible. In fact, it is smooth if and only if s only has simple zeros and it is irreducible if

and only if s is not the square of a section of L. Note that if Ds = 2D̃ for some divisor D̃,

then L ∼= O(D̃)⊗N where N is a 2-torsion point of the Jacobian and, in this situation,
Xs is reducible if and only if N = O.

In the present setting, the fundamental result on the relation between the spectral curve
and Higgs pairs can be formulated as follows (cf. [2, 12]):

Theorem 3.3. Let s ∈ H0(X,L2) be such that the spectral curve Xs is irreducible. Then
there is a bijective correspondence between isomorphism classes of torsion-free sheaves of
rank 1 on Xs and isomorphism classes of L-twisted Higgs pairs (V, ϕ) of rank 2, where
ϕ : V → V ⊗L is a homomorphism with det(ϕ) = s and tr(ϕ) = 0. The correspondence is
given by associating to such a sheaf F on Xs, the sheaf π∗F on X and the homomorphism
π∗F → π∗F ⊗ L ∼= π∗(F ⊗ π∗L) given by multiplication by the canonical section λ ∈
H0(Xs, π

∗L).

This theorem will be the main tool to describe the fibre of H over a non-zero section
s ∈ H0(X,L2).
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3.2. The generic fibre of the Hitchin map. The material of this subsection is well-
known but we include it for completeness. Let s ∈ H0(X,L2) be a section with simple
zeros. Then Xs is smooth and we have a double cover

π : Xs −→ X,

of X , ramified over Ds. Since Xs is smooth, the torsion free sheaf F on Xs, which
corresponds to (V, ϕ) under Theorem 3.3, is in fact a line bundle F .

By the Riemann–Hurwitz formula, the genus of Xs is

(3.1) g(Xs) = 2g − 1 + dL.

Moreover, since π has discrete fibres, we have H i(Xs,F) ∼= H i(X, π∗F), i = 0, 1, for
any coherent sheaf F on Xs. Hence, from the Riemann-Roch theorem and from (3.1), it
follows that

deg(π∗F) = deg(F)− dL.

Let Tπ ⊂ Jacd+dL(Xs) be the space of line bundles on Xs such that the determinant of
their pushforward under π is Λ ∈ Jacd(X):

(3.2) Tπ = {F ∈ Jacd+dL(Xs) | det(π∗F ) ∼= Λ}.
Furthermore, we recall that given a divisor E =

∑
nipi in Xs, the norm Nmπ(E) of E is

the divisor in X given by
∑
niπ(pi). In terms of line bundles, this gives rise to the norm

map Nmπ : Jac(Xs) −→ Jac(X) which is a group homomorphism.

Definition 3.4. The Prym variety of Xs

Prymπ(Xs) = {N ∈ Jac(Xs) | Nmπ(N) ∼= OXs
}

is the kernel of the norm map with respect to π.

Remark 3.5. Sometimes the Prym variety is defined as just the connected component of
the kernel of Nmπ which contains the identity. It is important to note that we define the
Prym to be the full kernel of Nmπ.

Now, for any line bundle F in Xs, it is known (see e.g. [2]) that

(3.3) det(π∗F ) ∼= Nmπ(F )⊗ L−1

so we can rewrite Tπ defined in (3.2) as

Tπ = {F ∈ Jacd+dL(Xs) | Nmπ(F ) ∼= ΛL}.
For each choice of a fixed element F0 of Tπ, we therefore obtain a non-canonical isomor-
phism

(3.4)
Tπ

∼= Prymπ(Xs)

F 7→ FF−1
0 .

Proposition 3.6. Let s ∈ H0(X,L2) have simple zeros. Then there is an isomorphism
between H−1(s) and Tπ.

Proof. Theorem 3.3 gives a bijection between Tπ and isomorphism classes of pairs Higgs
pairs (V, ϕ) with fixed determinant Λ. It remains too see that any (V, ϕ) thus obtained
is stable. Suppose that there is a line subbundle N ⊂ V = π∗F such that ϕ(N) ⊂ NL.
Then N is an eigenbundle of ϕ. If the corresponding eigenvalue is λ ∈ H0(X,L), then the
other eigenvalue is −λ and hence det(ϕ) = −λ2. It follows that Xs is not smooth (in fact,
not even irreducible), so there is no such N . The Higgs pair (V, ϕ) is therefore stable. �
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The Prym variety is a principally polarized abelian variety of dimension g(Xs) − g =
dL + g − 1. Hence it follows from Proposition 3.6 and (3.4) that the dimension of the
generic fibre of H over s is

(3.5) dimH−1(s) = dL + g − 1.

4. Line bundles on an irreducible singular spectral curve

We now move on to give a description of the fibre of the Hitchin map H over s ∈
H0(X,L2) when Xs is singular. Thus we consider the situation when the section s has
multiple zeros (cf. Remark 3.2). There are two different cases to be considered:

(1) The singular spectral curve Xs is irreducible. This case will be studied in the
present section, Section 5 and Section 6.

(2) The spectral curve Xs is singular and has two irreducible components. This case
will be studied in Section 7.

Note that case (2) occurs exactly when Ds = 2D̃ and O(D̃) ∼= L. Thus, in the remainder
of this section and in Sections 5 and 6 we shall consider the case when s ∈ H0(X,L2) has

a multiple zero, and moreover assume that if Ds = 2D̃ for some D̃, then the line bundle

L is not isomorphic to O(D̃). The spectral curve Xs is hence singular and irreducible.

4.1. The Jacobian. Suppose then that q ∈ X is a zero of s with multiplicity m. Consider
a local coordinate z on X centered in q such that Xs is defined locally by the equation

x2 − zm = 0.

Let p = π−1(q) ∈ Xs. Ifm > 1, p is a singular double point of Xs; it is a simple singularity
of type Am−1 (see for instance [1]).

The normalization

π̃ : X̃s −→ Xs

is then a smooth curve and π̃ is an isomorphism outside of the singular locus π̃−1(Xsing
s )

of Xs. If m is even, then p is a node (ordinary, if m = 2) and π̃−1(p) = {p1, p2} with
p1 6= p2. If m > 3 is odd, p is a cusp and π̃−1(p) = p1.

The following result is well-known. We include the proof for the convenience of the
reader.

Proposition 4.1. Suppose that Xs has r1 nodes of types Ami−1, i = 1, . . . , r1 (mi even)
and, that it has r2 cusps of types Am′

j−1, j = 1, . . . , r2 (m′
j odd). Then there is a short

exact sequence

0 −→ (C∗)r1 × C

∑r1
i=1

(mi−2)/2+
∑r2

j=1
(m′

j−1)/2 −→ Jac(Xs) −→ Jac(X̃s) −→ 0.

Proof. Assume first that the curve Xs has only one singularity. We consider the cases of
a node and of a cusp separately.

Let p be a singular point of Xs and p ∈ U for an open U ⊂ Xs, with local equation
x2 − zm = 0, where m > 2 is even. Around p, Xs is reducible and we write

U = U1 ∪ U2

for the decomposition of U into the two irreducible components. The component U1 (resp.
U2) has then defining equation x− zm/2 = 0 (resp. x+ zm/2 = 0). The coordinate ring of
U is

C[x, z]/(x2 − zm).
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The desingularization of U is given by two disjoint copies of C which we denote by C1

and C2, and the normalization map is

f = f1 ∪ f2 : C1 ∪ C2 −→ U1 ∪ U2

defined by

f(w1) = f1(w1) = (w
m/2
1 , w1), w1 ∈ C1 and f(w2) = f2(w2) = (−wm/2

2 , w2), w2 ∈ C2.

The corresponding map φ = φ1 ⊕ φ2 between the coordinate rings is

(4.1)
φ : C[x, z]/(x2 − zm) −→ C1[t1]⊕ C2[t2],

g(x, z) 7−→ g(t
m/2
1 , t1)⊕ g(−tm/2

2 , t2).

If we write

(4.2) g(x, z) =
∑

aijx
izj

then

φ1(g(x, z))(t1) =
∑

aijt
m
2
i+j

1 and φ2(g(x, z))(t2) =
∑

(−1)iaijt
m
2
i+j

2 .

As a result, if φi(g(x, z))
(k)(0) denotes the k-th derivative of φi(g(x, z)) at 0, we obtain

φ1(g(x, z))
(k)(0) = φ2(g(x, z))

(k)(0) ∈ C

for every k = 0, . . . , (m− 2)/2, and conclude that

(4.3) U ∼= Spec{(f1, f2) ∈ C1[t1]⊕ C2[t2] | f (k)
1 (0) = f

(k)
2 (0), k = 0, . . . , (m− 2)/2}.

Consider now only functions g(x, z) as in (4.2) which do not vanish at p, i.e., with a00 6= 0.
Then

φ1(g(x, z))(0) = φ2(g(x, z))(0) ∈ C
∗

and also, if m > 4, then

φ1(g(x, z))
(k)(0) = φ2(g(x, z))

(k)(0) ∈ C

for every k = 0, . . . , (m − 2)/2. Let (C∗ × C
(m−2)/2)p be the skyscraper sheaf supported

at p and consider the evaluation map π̃∗O∗
X̃s

→ (C∗×C(m−2)/2)p at p given, for each open

U , by

f 7→ 0

if p /∈ U , and

(f1, f2) 7→ (f1(p1)/f2(p2), f
′
1(p1)− f ′

2(p2), . . . , f
((m−2)/2)
1 (p1)− f

((m−2)/2)
2 (p2))

if p ∈ U . This has kernel the image of the sheaf map φ : O∗
Xs

→ π̃∗O∗
X̃s

given by φ(U) = Id

if p /∈ U and by (4.1) if p ∈ U . Hence we have the exact sequence

0 −→ O∗
Xs

φ−→ π̃∗O∗
X̃s

−→ (C∗ × C
(m−2)/2)p −→ 0.

We now consider cusps in the spectral curve. If p is a singular point of Xs and U the
open set of Xs containing p with local equation x2 − zm = 0, with m > 3 odd, then
U is now irreducible and one sees analogously to the previous case that there is a map
φ : C[x, z]/(x2 − zm) → C[t] between the corresponding coordinate rings of p and of
p1 = π̃−1(p). φ is given by

(4.4) φ(g(x, z)) = g(tm, t2)
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and

U ∼= Spec{f ∈ C[t] | f ′(0) = f ′′′(0) = · · · = f (m−2)(0) = 0}.
Consider the skyscraper sheaf (C(m−1)/2)p supported at p and again the evaluation

π̃∗O∗
X̃s

→ (C(m−1)/2)p at p given, for each open U , by

f 7→ 0

if p /∈ U , and

f 7→ (f ′(p), f ′′′(p), . . . , f (m−2)(p))

if p ∈ U . This has kernel the image of the sheaf map φ : O∗
Xs

→ π̃∗O∗
X̃s
, given by φ(U) = Id

if p /∈ U and by (4.4) if p ∈ U . We have thus the following short exact sequence

0 −→ O∗
Xs

φ−→ π̃∗O∗
X̃s

−→ (C(m−1)/2)p −→ 0.

In general, if Xs has more singularities, each of which of type Am−1, we have the short
exact sequence of sheaves on Xs

0 −→ O∗
Xs

−→ π̃∗O∗
X̃s

−→ T −→ 0

where T is a skyscraper sheaf supported at Xsing
s such that, over each singular point, it

is given as one of the above types. Taking the corresponding cohomology sequence, we
obtain

(4.5) 0 −→
⊕

p∈Xsing
s

Tp
δ−→ H1(Xs,O∗

Xs
)

π̃∗

−→ H1(Xs, π̃∗O∗
X̃s
) −→ 0.

Since π̃ : X̃s → Xs is a finite morphism, we have an isomorphism

H1(Xs, π̃∗O∗
X̃s
) ∼= H1(X̃s,O∗

X̃s
)

hence, restricting sequence (4.5) to degree zero line bundles, we obtain

(4.6) 0 −→
⊕

p∈Xsing
s

Tp
δ−→ Jac(Xs)

π̃∗

−→ Jac(X̃s) −→ 0.

Since we are assuming that Xs has r1 nodes with types Ami−1, i = 1, . . . , r1 and, that it
has r2 cusps of types Am′

j−1, j = 1, . . . , r2, then sequence (4.6) becomes

0 −→ (C∗)r1 × C

∑r1
i=1

(mi−2)/2+
∑r2

j=1
(m′

j−1)/2 δ−→ Jac(Xs)
π̃∗

−→ Jac(X̃s) −→ 0

and this finishes the proof. �

4.2. The Prym. Consider the double cover,

π = π ◦ π̃ : X̃s −→ X

of X :

X̃s

π̃

  
AA

AA
AA

AA

π

��

Xs

π
}}{{

{{
{{

{{

X.
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We have the corresponding Prym variety, Prymπ̄(X̃s) ⊂ Jac(X̃s). The purpose of this
section is to identify the short exact sequence obtained from the one of Proposition 4.1 by
restricting to this Prym. We continue under the hypothesis of that proposition, assuming
that Xs has r1 nodes with types Ami−1, i = 1, . . . , r1, and r2 cusps of types Am′

j−1,
j = 1, . . . , r2.

Let

(4.7) Ds =
r1∑

i=1

miqi +
r2∑

j=1

m′
jqj

be the decomposition of the divisor of s ∈ H0(X,L2) into its even and odd parts. Notice

that π : X̃s → X is ramified exactly over the odd part of the divisor Ds.

Remark 4.2. Since deg(Ds) = 2dL is even, then r2 must be even.

Define the divisor D′
s as

(4.8) D′
s =

r1∑

i=1

mi

2
qi +

r2∑

j=1

m′
j − 1

2
qj .

Then we have the short exact sequence

(4.9) 0 −→ OXs
−→ π̃∗OX̃s

−→ Oπ−1(D′

s) −→ 0

where D′
s is defined in (4.8) and π−1(D′

s) is the obvious divisor in Xs.

Remark 4.3. It follows from Proposition 4.1 that

dim Jac(Xs) = dim Jac(X̃s) + deg(D′
s)

hence, denoting by g(Xs) the arithmetic genus of Xs and g(X̃s) the genus of X̃s,

g(Xs) = g(X̃s) + deg(D′
s).

Lemma 4.4. Let F be a line bundle over Xs. Then det(π̄∗π̃
∗F ) ∼= det(π∗F )⊗OX(D

′
s).

Proof. Tensoring the short exact sequence (4.9) by F , noticing that F ⊗ π̃∗OX̃s

∼= π̃∗π̃
∗F ,

and then applying the pushforward by π (which has discrete fibres), we obtain the short
exact sequence

0 −→ π∗F −→ π̄∗π̃
∗F −→ OD′

s
−→ 0

on X . The result follows by taking determinants. �

In analogy with (3.2), we define

(4.10) Tπ = {F ∈ Jacd+dL(Xs) | det(π∗F ) ∼= Λ} ⊂ Jacd+dL(Xs).

From Lemma 4.4, the restriction to Tπ of the map π̃∗ : Jacd+dL(Xs) → Jacd+dL(X̃s) of
Proposition 4.1 (which holds for any degree) takes values in

T̃π = {F ∈ Jacd+dL(X̃s) | det(π∗F ) ∼= Λ(D′
s)}.

If F and F ′ are two line bundles over Xs such that π̃∗F ∼= π̃∗F ′, then det(π∗π̃
∗F ) =

det(π∗π̃
∗F ′), so, again from Lemma 4.4, det(π∗F ) = det(π∗F

′). This shows that the fibre

of the restriction of π̃∗ to Tπ is the same as the fibre of π̃∗ : Jacd+dL(Xs) → Jacd+dL(X̃s)
in Proposition 4.1. Hence, we have the sequence

0 −→ (C∗)r1 × C

∑r1
i=1

(mi−2)/2+
∑r2

j=1
(m′

j−1)/2 −→ Tπ
π̃∗

−→ T̃π −→ 0.
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Recall that the spectral curve Xs depends on the line bundle L and on the section
s ∈ H0(X,O(Ds)) with L2 ∼= O(Ds). Conversely, if we have Ds and a double cover
π : Xs → X ramified over Ds, we recover L since π∗OXs

∼= OX ⊕ L−1 (cf. [1, 10]).

In the same way, we recover the line bundle L̃ over X , associated to the double cover
π : X̃s → X .

Using the short exact sequence (4.9) and the definitions of L and L̃, we obtain the
following diagram with exact rows and column:

0

��

0 // OX
// π∗OXs

//

��

L−1 // 0

0 // OX
// π∗OX̃s

//

��

L̃−1 // 0

OD′

s

��

0.

From this it follows that

(4.11) L̃ ∼= L(−D′
s).

Now, the space Tπ is clearly isomorphic to Pπ ⊂ Jac(Xs) defined by

(4.12) Pπ = {F ∈ Jac(Xs) | det(π∗F ) ∼= L−1}
and, from (4.11) and Lemma 4.4,

π̃∗(Pπ) = {F ∈ Jac(X̃s) | det(π∗F ) ∼= L̃−1}.
But, since det(π∗N) ∼= Nmπ(N)⊗ L̃−1 (cf. (3.3)), we have

π̃∗(Pπ) ∼= {F ∈ Jac(X̃s) | Nmπ(F ) ∼= OX} = Prymπ(X̃s).

We have thus proved the following result.

Proposition 4.5. Suppose that the spectral curve Xs
π−→ X has r1 nodes with types Ami−1,

i = 1, . . . , r1 and, that it has r2 cusps of types Am′

j−1, j = 1, . . . , r2. Let π̃ : X̃s → Xs be

the normalization map and let π̄ = π ◦ π̃ : X̃s → X. Then there is a short exact sequence

(4.13) 0 −→ (C∗)r1 × C

∑r1
i=1

(mi−2)/2+
∑r2

j=1
(m′

j−1)/2 −→ Pπ
π̃∗

−→ Prymπ(X̃s) −→ 0,

where Pπ was defined in (4.12).

5. Compactified Jacobian and parabolic modules

Theorem 3.3 tells us that when Xs is singular, we must take into account not only
line bundles on Xs, but also rank 1 torsion-free sheaves on Xs. The space of these

objects with degree d+dL provides a natural compactification Jacd+dL(Xs) of Jac
d+dL(Xs).

Furthermore, as Xs lies inside the complex surface given by the total space T of L,

its singularities are planar. From Theorem A of [20], this is equivalent to Jacd+dL(Xs)
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being irreducible and, therefore, Jacd+dL(Xs) is dense in Jacd+dL(Xs). Of course, the
compactification of Jacd+dL(Xs) by rank 1, degree d+dL torsion-free sheaves is determined
by the one of Jac(Xs) since all these spaces are isomorphic.

We shall analyse here the effect of the compactification of Jac(Xs) on the bundle π̃∗ :

Jac(Xs) → Jac(X̃s) of Proposition 4.1, when Xs has singularities of type Am−1.
In order to do this we shall use parabolic modules. These objects were first defined by

Rego [20] and they were intensively studied by Cook [6, 7]. Cook’s work generalizes to
arbitrary rank and for any A,D,E singularity the work of Bhosle [3] for ordinary nodes.

5.1. Parabolic modules for one ordinary node. For simplicity and motivation, let
us start with the case of a unique ordinary node (m = 2), where we have the sequence

(5.1) 0 −→ C
∗ −→ Jac(Xs)

π̃∗

−→ Jac(X̃s) −→ 0

which is a particular case of Proposition 4.1. Let p ∈ Xs be the node and {p1, p2} =
π̃−1(p). The above sequence tells us that a line bundle F over Xs is determined by a

pair (F, λ) consisting by a line bundle F over the normalization X̃s and a non-zero scalar
λ ∈ C∗, such that F|Xr{p}

∼= π̃∗F |Xr{p} and Fp is given by the identification of Fp1 with
Fp2 via λ. In other words, F fits in the sequence

(5.2) 0 −→ F −→ π̃∗F −→ Fp1 ⊕ Fp2/Uλ(F ) −→ 0

where Uλ(F ) is the 1-dimensional subspace of Fp1 ⊕ Fp2 generated by (1, λ). Recall from
(4.3) that

OXs,p
∼= {(f1, f2) ∈ C1[t1]⊕ C2[t2] | f1(0) = f2(0)}.

Since
Fp

∼= {(s1, s2) ∈ C1[t1]⊕ C2[t2] | s2(0) = λs1(0)},
we see that F is indeed an invertible OXs

-module.
This motivates the consideration of all pairs

(F, Uλ(F ))

with F ∈ Jac(X̃s) and Uλ(F ) a 1-dimensional subspace of Fp1 ⊕Fp2. If Uλ(F ) is generated
by (1, λ) with λ ∈ C∗, then these are the pairs (F, λ) mentioned in the previous paragraph.
But now we are allowing all 1-dimensional subspaces and these are parametrized by P1.
The subspaces spanned by (1, 0) and (0, 1) correspond, respectively, to λ = 0 and λ = ∞
in the compactification of C∗ by P1, so we now allow λ ∈ C ∪ {∞}. Such pairs were

considered by Bhosle in [3] who called them generalized parabolic line bundles on X̃s. If

PMod2(X̃s)

denotes the moduli space of such pairs (F, Uλ(F )) (cf. Remark 5.2 below) then the pro-
jection on the first coordinate

pr1 : PMod2(X̃s) −→ Jac(X̃s)

gives PMod2(X̃s) the structure of a P1-bundle over Jac(X̃s):

P
1 −→ PMod2(X̃s)

pr1−→ Jac(X̃s).

Again from (F, Uλ(F )) we construct a rank 1 torsion-free sheaf F on Xs, by taking F
in the exact sequence

0 −→ F −→ π̃∗F −→ Fp1 ⊕ Fp2/Uλ(F ) −→ 0.
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If λ ∈ C∗, this is precisely the construction in (5.2). If λ = 0, then

Fp
∼= {(s1, s2) ∈ C1[t1]⊕ C2[t2] | s2(0) = 0}

and, if λ = ∞, then

Fp
∼= {(s1, s2) ∈ C1[t1]⊕ C2[t2] | s1(0) = 0}.

In any case Fp is a 2-dimensional OXs,p-module and therefore F is not invertible. So,
using this construction, consider the map

τ : PMod2(X̃s) −→ Jac(Xs)

defined by
τ(F, Uλ(F )) = F .

From [3] we know that τ is a surjective morphism and

τ |τ−1(Jac(Xs)) : τ
−1(Jac(Xs)) −→ Jac(Xs)

is an isomorphism. Hence, via τ |τ−1(Jac(Xs)), the morphism pr1|τ−1(Jac(Xs)) is identified with
π̃∗ and the P1-bundle pr1 is a fibrewise compactification of the C∗-bundle π̃∗ in (5.1):

P1 // PMod2(X̃s)
pr1

//

τ

��

Jac(X̃s)

Jac(Xs).

Moreover, the fibre of τ over Jac(Xs) r Jac(Xs) consists of two points which are not

mapped, through pr1, to the same point of Jac(X̃s). This shows that Jac(Xs) does not fibre

over Jac(X̃s) through pr1 and τ . In Example 5.4 below, we will develop this observation
in a more general setting.

5.2. Parabolic modules for Am−1 singularities. Let us now consider the generaliza-
tion of this construction for the other kinds of singularities we are considering.

Definition 5.1. Suppose that Xs has r1 nodes p1, . . . , pr1, with pi of type Ami−1 with mi

even and r2 cusps q1, . . . , qr2 , with qj of type Am′

j−1 with m′
j odd. For each i = 1, . . . , r1

let π̃−1(pi) = {pi1, pi2} and for each j = 1, . . . , r2, let π̃
−1(qj) = {q̃j}. A parabolic module

on X̃s on Xs is a pair (F, U(F )) where:

(1) F ∈ Jac(X̃s);
(2) U(F ) = (U1(F ), . . . , Ur1(F ), U

′
1(F ), . . . , U

′
r2(F )) where:

• for each i = 1, . . . , r1, Ui(F ) is an mi/2-dimensional subspace of the vector
space (Fpi1

⊕ Fpi2
)mi/2 which is also a OXs,pi-module via π̃∗;

• for each j = 1, . . . , r2, U
′
j(F ) is an (m′

j − 1)/2-dimensional subspace of the

vector space F
m′

j−1

q̃j
which is also a OXs,qj -module via π̃∗.

Remark 5.2. Definition 5.1 is the special case of singularities of type Am−1 of the general
definition of Cook [6, 7]. For ordinary nodes only, a parabolic module is a generalized
parabolic line bundle in the sense of Bhosle in [3]. Notice that, in the above definition,
the condition for a subspace to be a OXs,p-module via π̃∗, is always satisfied for ordinary
nodes. If we let

m = (m1, . . . , mr1 , m
′
1, . . . , m

′
r2
),
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then Cook constructed the moduli space

PModm(X̃s)

of parabolic modules on X̃s, associated to r1 + r2 singularities of Xs of type indexed by
m.

From Proposition 4.1 we have the bundle

(5.3) (C∗)r1 × C

∑r1
i=1

(mi−2)/2+
∑r2

j=1
(m′

j−1)/2 δ−→ Jac(Xs)
π̃∗

−→ Jac(X̃s).

As in the case of a ordinary node, consider the projection on the first factor

pr1 : PModm(X̃s) −→ Jac(X̃s), (F, U(F )) 7→ F.

Cook showed that the fibre of this projection is a product

r1∏

i=1

P (Ami−1)×
r2∏

j=1

P (Am′

j−1)

of r1+r2 closed subschemes, P (Ami−1) or P (Am′

j−1), of a certain Grassmanian (depending

on the type of the corresponding singularity). These subschemes are, in general, quite
complicated, but it is proved in [7] that P (Am−1) is connected for every m.

Also, there is a finite morphism

τ : PModm(X̃s) −→ Jac(Xs)

such that τ(F, U(F )) is the kernel of the restriction

π̃∗F −→
r1⊕

i=1

(Fpi
1
⊕ Fpi

2
)mi/2/Ui(F )⊕

r2⊕

j=1

F
m′

j−1

q̃j
/U ′

j(F ).

The following is proved in [6], Theorem 4.4.1.

Proposition 5.3. The restriction τ |τ−1(Jac(Xs)) gives an isomorphism τ−1(Jac(Xs)) ∼=
Jac(Xs).

We conclude that, under the identification of the previous proposition, pr1|τ−1(Jac(Xs))

is a fibrewise compactification of the bundle π̃∗ in (5.3),

(5.4)

r1∏

i=1

P (Ami−1)×
r2∏

j=1

P (Am′

j−1) // PModm(X̃s)
pr1

//

τ

��

Jac(X̃s)

Jac(Xs).

In conclusion, one can say that PModm(X̃s) is a compactification of Jac(Xs) which

fibres over Jac(X̃s). This should be contrasted with the fact that the fibre of τ over

Jac(Xs)r Jac(Xs) consists of a finite number of points which may not be mapped to the

same point of Jac(X̃s) by pr1. The following is an example of this phenomenon. It will
be important in the proof of Theorem 6.3 below.
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Example 5.4. Let m > 2 be even, p ∈ Xs be the only singularity of type Am−1 and

π̃−1(p) = {p1, p2}. Consider the trivial bundle OX̃s
over X̃s and let Cpi be its fibre over

pi. Let

(OX̃s
, U0(OX̃s

)) ∈ PModm(X̃s)

where U0(OX̃s
) is defined by

U0(OX̃s
) = {(v11, v12, . . . , vm/2

m−1, v
m/2
m ) ∈ (Cp1 ⊕ Cp2)

m/2 | vi/2i = 0 if i is even}.
U0(OX̃s

) is then a subspace of (Cp1 ⊕ Cp2)
m/2 which is also a OXs,p-module and

(Cp1 ⊕ Cp2)
m/2/U0(OX̃s

) = C
m/2
p2

.

By definition, τ(OX̃s
, U0(OX̃s

)) = F fits in

(5.5) 0 −→ F −→ π̃∗OX̃s
−→ OX̃s,p2

⊕ · · · ⊕ OX̃s,p2︸ ︷︷ ︸
m/2 summands

−→ 0

thus, over an open set U ⊂ Xs which contains p,

(5.6) F(U) ∼= {(s1, s2) ∈ C1[t1]⊕ C2[t2] | s2(0) = s′2(0) = · · · = s
((m−2)/2)
2 (0) = 0}.

Now, consider the divisor

E =
m

2
p1 −

m

2
p2

over X̃s, the line bundle OX̃s
(E) and let

(OX̃s
(E), U∞(OX̃s

(E)) ∈ PModm(X̃s),

where U∞(OX̃s
(E)) is given by

U∞(OX̃s
(E)) = {(v11, v12, . . . , vm/2

m−1, v
m/2
m ) ∈ (Cp1 ⊕ Cp2)

m/2 | vi/2i−1 = 0 if i is even}.
Then U∞(OX̃s

(E)) is a subspace of (Cp1 ⊕ Cp2)
m/2 which is also a OXs,p-module and

(Cp1 ⊕ Cp2)
m/2/U∞(OX̃s

(E)) = C
m/2
p1

.

So, if we consider F ′ such that it fits in

(5.7) 0 −→ F ′ −→ π̃∗OX̃s
−→ OX̃s,p1

⊕ · · · ⊕ OX̃s,p1︸ ︷︷ ︸
m/2 summands

−→ 0,

then, over U ,

(5.8) F ′(U) ∼= {(s1, s2) ∈ C1[t1]⊕ C2[t2] | s1(0) = s′1(0) = · · · = s
((m−2)/2)
1 (0) = 0}.

Tensoring the sequence (5.7) by π̃∗OX̃s
(E) we conclude that

τ(OX̃s
(E), U∞(OX̃s

(E))) = F ′ ⊗ π̃∗OX̃s
(E).

Now, from (5.6) and (5.8) one has

F ′ ⊗ π̃∗OX̃s
(E) ∼= F

and thus

(5.9) τ(OX̃s
, U0(OX̃s

)) = τ(OX̃s
(E), U∞(OX̃s

(E))) = F .
But

pr1(OX̃s
, U0(OX̃s

)) = OX̃s
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while
pr1(OX̃s

(E), U∞(OX̃s
(E))) = OX̃s

(E).

Hence Jac(Xs) does not fibre over Jac(X̃s) via pr1 and τ .

6. The fibre of the Hitchin map for irreducible singular spectral curve

In the two preceding sections we have been analysing the structure of the Jacobian of
Xs and its compactification by rank 1 torsion-free sheaves. Now we come back to our
goal: the description of the fibre H−1(s).

For the remainder of this section, let s ∈ H0(X,L2) be such that the spectral curve Xs

is singular and irreducible. Thus Ds = div(s) has at least one multiple point, but s is not
a square of a section of L (cf. Remark 3.2).

6.1. Description of the fibre. As already mentioned, in order to have a description of
the fibre of H over s, and taking into account Theorem 3.3 and Proposition 3.6, we now
have to consider also rank 1 torsion-free sheaves over Xs. Let Pπ ⊂ Jac(Xs) denote the

compactification of Pπ obtained by taking its closure inside Jac(Xs). Then Pπ is dense in
Pπ.

Consider also the closure Tπ ⊂ Jacd+dL(Xs) of Tπ, defined in (4.10), induced by the
compactification of Jacd+dL(Xs). Again, Tπ is a torsor for Pπ, the isomorphism Tπ → Pπ

being given by F 7→ F ⊗ L−1
0 where L0 is a fixed element of Tπ.

Theorem 6.1. Let s ∈ H0(X,L2) such that Xs is singular and irreducible. Then H−1(s)
is isomorphic to Tπ.

Proof. From the definition of Tπ, it is clear that Tπ ⊂ H−1(s). So elements in Tπ are in one
to one correspondence with L-twisted Higgs pairs (V, ϕ) such that Λ2V ∼= Λ, det(ϕ) = s
and tr(ϕ) = 0. All these are closed conditions, therefore if F ∈ Tπ, the L-twisted Higgs
pair (V, ϕ) obtained from F will also satisfy the same conditions. Finally, notice that,
as in the smooth case, there cannot exist a ϕ-invariant line subbundle N ⊂ V = π∗F ,
because that would contradict the irreducibility of Xs. This ensures that (V, ϕ) stable,
hence Tπ ⊂ H−1(s).

Conversely, let (V, ϕ) ∈ H−1(s). It is then identified with a rank 1 torsion-free sheaf

F ∈ Jacd+dL(Xs) such that det(π∗F) ∼= Λ. Now, let F ′ ∈ Jac(Xs) represent the point

corresponding to F under the isomorphism Jac(Xs) ≃ Jacd+dL(Xs). Then pr1(τ
−1(F ′)) ⊂

Prymπ(X̃s) where pr1 and τ are the morphisms in (5.4). But pr1 is a bundle which
is a fibrewise compactification of the bundle π̃∗, so, when suitably restricted, it also
compactifies the bundle (4.13). Hence F ′ ∈ Pπ i.e. F ∈ Tπ. �

The dimension of the fibre of H in the case treated here can be easily computed.

Proposition 6.2. Let s ∈ H0(X,L2) be such that Xs is irreducible. Then dim(H−1(s)) =
dL + g − 1.

Proof. If Xs is smooth, this is just (3.5). Thus it suffices to consider the case when Xs

is singular and irreducible. The ramification divisor of π : X̃s → X is D̃s =
∑r2

j=1 qj.

Therefore, by the Riemann-Hurwitz’ formula, the genus of X̃ is

(6.1) g(X̃s) = 2g − 1 + r2/2,

where we recall that r2 is even (see Remark 4.2).
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From (4.13),

dimPπ = dimPπ = dimPrymπ(X̃s) +

r1∑

i=1

mi/2 +

r2∑

j=1

(m′
j − 1)/2

and dimPrymπ(X̃s) = g(X̃s)− g. Hence from (6.1),

dimPrymπ(X̃s) = g − 1 + r2/2.

Therefore, from Theorem 6.1, the dimension of the fibre of H over s is

dim Tπ = dimPπ = g − 1 +
1

2

(
r1∑

i=1

mi +

r2∑

i=1

m′
j

)
= dL + g − 1.

�

6.2. Connectedness of the fibre. Now we can prove that the fibre of H is connected.

Theorem 6.3. Let s ∈ H0(X,L2) be such that Xs is irreducible. Then the fibre of
H : MΛ

L → H0(X,L2) over s is connected.

Proof. If Ds = div(s) has no multiple points, H−1(s) = Tπ
∼= Prymπ(Xs) hence connected.

Suppose now that Ds has multiple points. From (5.4) we have the morphisms τ and
pr1

(6.2) τ−1(Pπ)
pr1

//

τ

��

Prymπ(X̃s)

Pπ

.

Assume that Prymπ(X̃s) is connected. This occurs if and only if the cover π : X̃s → X
is ramified, which is equivalent to saying that Ds has some point with odd multiplicity.
From sequence (4.13), Pπ is connected hence Pπ is connected, because Pπ is dense in Pπ

(recall that Jac(Xs) is dense in Jac(Xs)).

Suppose now that Prymπ(X̃s) is not connected, i.e., that Ds is twice another divisor. In

[16] Mumford shows that Prymπ(X̃s) has two components, which we denote by Prym0
π(X̃s)

and Prym1
π(X̃s), and that the difference between them lies in the parity of the dimension

of the space of sections:

Prym0
π(X̃s) = {F ∈ Prymπ(X̃s) | dimH0(X̃s, F ⊗ π∗F0) even}

and
Prym1

π(X̃s) = {F ∈ Prymπ(X̃s) | dimH0(X̃s, F ⊗ π∗F0) odd}
where F0 is a fixed square root of the canonical line bundle K of X . Moreover, given

q ∈ X̃s and

(6.3) F ∈ Prymi
π(X̃s)

then

(6.4) F (q − σ̃(q)) ∈ Prym1−i
π (X̃s),

where σ̃ : X̃s → X̃s is the involution exchanging the sheets of the double cover π : X̃s → X .
Returning to Pπ, we see from (4.13) that Pπ has two components, because it is a bundle

over a space with two connected components with connected fibre. Moreover, since pr1
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in (6.2) is a bundle which compactifies fibrewise π̃∗ in (4.13), the space τ−1(Pπ) also has
two connected components. We shall use the construction of Example 5.4 to show that
the images under τ of these two components intersect in Pπ. We begin by considering two
special cases.

Case 1. Suppose that Ds = mp with m = 2 mod 4. Let

F0 = pr−1
1 (OX̃s

) and F1 = pr−1
1 (OX̃s

((m/2)p1 − (m/2)p2)).

It follows from Example 5.4 that τ(F0) intersects τ(F1) because, by (5.9), we have that
F defined in (5.5) belongs to τ(F0) ∩ τ(F1). Now, since π̃−1(p) = {p1, p2}, we have

σ̃(p1) = p2. Furthermore OX̃s
∈ Prym0

π(X̃s). Thus it follows from (6.3), (6.4) and (6.2)
that

OX̃s
((m/2)p1 − (m/2)p2) ∈ Prym1

π(X̃s).

The conclusion is that the images under τ of the two components of τ−1(Pπ) intersect.
Therefore Pπ is connected and hence the same holds for Tπ.

Case 2. Suppose that Ds = mp with m = 0 mod 4. Take again F0 = pr−1
1 (OX̃s

), but

now consider (OX̃s
(p1 − p2), U(OX̃s

(p1 − p2))) ∈ F1 = pr−1
1 (OX̃s

(p1 − p2)), where

U(OX̃s
(p1 − p2)) = {(v11, v12, . . . , vm/2

m−1, v
m/2
m ) ∈ (Cp1 ⊕ Cp2)

m/2 |
v11 = 0 and v

i/2
i = 0, for 2 6 i 6 m− 2 even}.

Then U(OX̃s
(p1 − p2)) is an m/2-dimensional subspace of (Cp1 ⊕ Cp2)

m/2 and it is an
OXs,p-module. Using very similar arguments to those of Example 5.4, one sees again that
τ(F0) intersects τ(F1). Moreover, by (6.4), F0 and F1 are fibres over different components

of Prymπ(X̃s). Hence the images under τ of the two components of τ−1(Pπ) intersect and
we conclude that Pπ and Tπ are connected.

The general case is proved by using the appropriate local construction at each of the
singularities to construct F0 and F1 contained in different components of τ−1(P π) whose
images under τ intersect in P π. �

7. The fibre of the Hitchin map for reducible spectral curve

In this section we shall analyse the fibre of H : MΛ
L → H0(X,L2) over the sections

s such that the spectral curve Xs is reducible. Since Theorem 3.3 does not apply in
this situation, we shall resort to a direct method for describing the fibre H−1(s). We
start by constructing certain fibre bundles over the Jacobian, which will be used in the
analysis of the fibre of the Hitchin map. This is carried out in Section 7.1, where we
also state a structure theorem about the fibre. The proof of this theorem takes up the
next two sections. In Section 7.2 we construct families of Higgs pairs over these fibre
bundles, thus obtaining morphisms from their total spaces to the fibre. Having established
that, in Section 7.3 we show that these families give rise to a stratification of the fibre.
Finally, in Section 7.4, we put the results of the preceding sections together to obtain the
connectedness and dimension results for the fibre in the case of reducible spectral curve.

Recall from Remark 3.2 that Xs is reducible if and only if the section s ∈ H0(X,L2)
admits a square root s′ ∈ H0(X,L). Throughout this section we fix such a square root.
Thus we have

(7.1) Ds = 2D′,
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and L ∼= O(D′), where where Ds and D
′ are the (effective) divisors of s and s′ respectively.

7.1. Stratification of the fibre of the Hitchin map. First we introduce some nota-
tion. For any effective divisor D on X and any line bundle M ∈ Jacm(X) of degree m,
define subspaces of H0(D′,M2LΛ−1) as follows:

E(D,M) =
{
q ∈ H0(D′,M2LΛ−1) | q|D′−D = 0},

(7.2)

F (D,M) =
{
q ∈ H0(D′,M2LΛ−1) |

{
ordp(q) = D′(p)−D(p) if 0 < D(p) 6 D′

q(p) = 0 otherwise

}
.

(7.3)

Remark 7.1. Recall that if ∆ =
∑
nipi is any effective divisor in X , then, choosing a

local coordinate zi centred at pi, a global section of O∆ can be written as
∑
fi(z) where

fi(z) =
∑ni−1

k=0 akz
k
i . Thus, if we choose a local coordinate z around each p ∈ Supp(D′),

the space E(D,M) consists of sections of the form

∑

p∈Supp(D′)

D′(p)−1∑

k=D′(p)−D(p)

akz
k

and the space F (D,M) consists of such sections with aD′(p)−D(p) 6= 0 (we interpret an
empty sum as being equal to zero).

Note that the space E(D,M) is a linear subspace of H0(D′,M2LΛ−1), while F (D,M)
does not contain zero unless D = 0, in which case F (D,M) = 0. We gather some obvious
observations about these spaces in the following Proposition.

Proposition 7.2. (1) The spaces E(D,M) give a filtration of H0(D′,M2LΛ−1) indexed
by divisors D satisfying 0 6 D 6 D′. Thus

D1 6 D2 =⇒ E(D1) ⊆ E(D2).

Moreover, E(D,M) = 0 if and only if D = 0, and E(D,M) = H0(D′,M2LΛ−1) if and
only if D > D′.

(2) The space E(D,M) is the disjoint union

E(D,M) =
⋃

06D6D

F (D,M).

(3) For any two effective divisors D1 and D2 on X, we have

E(D1,M) ∩ E(D2,M) = E(min{D1, D2},M),

E(D1,M) ∪ E(D2,M) = E(max{D1, D2},M).

Remark 7.3. If D 6= 0 then F (D,M) is a linear subspace of H0(D′,M2LΛ−1) with a
hyperplane removed. Thus C∗ acts by multiplication on F (D,M) and

(7.4) dimF (D,M)/C∗ = deg(D)− 1.

Definition 7.4. Let D be a divisor satisfying 0 6 D 6 D′ and let m be an integer. We
denote by

(7.5) E(D,m) −→ Jacm(X)
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the vector bundle (constructed using the degree m Poincaré line bundle) whose fibre over
M ∈ Jacm(X) is E(D,M) and by

(7.6) F(D,m) −→ Jacm(X)

the subbundle1, whose fibre over M is F (D,M). In particular, F(0, m) = E(0, m) =
Jacm(X).

Remark 7.5. Clearly the properties stated in Proposition 7.2 and Remark 7.3 give rise to
analogous properties for E(D,m) and F(D,m).

Remark 7.6. Notice that, if d is even, the only compact E(D,m) is E(0, d/2), whereas if
d is odd, the compact E(D,m) are those of the form E(D, (d− 1)/2), i.e. those such that
deg(D) = 1.

Now we state the relation between the spaces E(D,m) and F(D,m) just introduced
and the fibre of the Hitchin map.

Theorem 7.7. Let s ∈ H0(X,L2)r {0} be such that Ds = 2D′ and L = O(D′). For any
integer m and any effective divisor D 6 D′ such that

(7.7) d/2− deg(D) 6 m 6 d/2,

there is a morphism p : E(D,m) → H−1(s) with the following properties:

(1) The union of the images p(E(D,m)) over all (D,m) satisfying the above conditions
covers the fibre H−1(s).

(2) If m1 satisfies (7.7) for a fixed divisor D, then so does m2 = d−deg(D)−m1 and

p(F(D,m1)) = p(F(D,m2)).

(3) If D 6= 0, then there is a fibrewise C∗-action on F(D,m) and the restriction of p
factors through the quotient to a induce a morphism

p : F(D,m)/C∗ −→ H−1(s).

This morphism is an isomorphism onto its image, unless m = (d− deg(D))/2. In
the latter case it is generically two to one, ramified at the preimage in F(D,m) of
the locus of line bundles M ∈ Jacm(X) satisfying M2 ∼= Λ(−D).

(4) If D = 0, then m = d/2 and the restriction of p to F(0, d/2)

p : F(0, d/2) −→ H−1(s)

is generically two to one, ramified at the locus of line bundles M ∈ Jacd/2(X) =
F(0, d/2) satisfying M2 ∼= Λ(−D).

Proof. The proof takes up the next two sections. In Section 7.2 we construct the morphism
p and show that it descends to the quotient by C∗ when D 6= 0 (cf. Remarks 7.3 and 7.5).
In Section 7.3 we prove the remaining properties stated. �

Remark 7.8. As will be seen from the construction, the morphism p depends on the choice
of the square root s′ of s.

There is a certain redundancy in the description of the fibre of Theorem 7.7. Indeed,
note that in (2) of the Theorem, we have m1 = m2 if and only if m1 = (d − deg(D))/2.
Thus we may, by using the larger of the mi, write

H−1(s) =
⋃

p(E(D,m)) =
⋃

p(F(D,m)),

1Note that this bundle is not a vector bundle.
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where the union is over (D,m), with D an effective divisor D 6 D′ such that

(7.8) (d− deg(D))/2 6 m 6 d/2.

7.2. Construction of the morphism p. Any element of E(D,m) is given by a pair
(q,M), where M ∈ Jacm(X) and

(7.9) q ∈ E(D,M).

In order to construct a pair (V, ϕ) ∈ H−1(s) from this data, we shall make use of the short
exact sequence of complexes of sheaves 0 → C•

1 → C•
2 → C•

3 → 0 given by the diagram

(7.10) 0

��

0

��

C•
1 : M2Λ−1 Id

//

=

��

M2Λ−1

c

��

C•
2 : M2Λ−1 c

//

��

M2LΛ−1

r(D′)
��

C•
3 : 0

0
//

��

M2LΛ−1|D′

��

0 0,

where the map c is defined by ψ 7→
√
−1 s′ψ and r(D′) denotes the restriction to the

divisor D′. The associated long exact sequence in hypercohomology shows that r(D′)
yields an isomorphism

r(D′) : H1(X,C•
2)

∼=−→ H
1(X,C•

3) = H0(D′,M2LΛ−1).

With respect to some open covering U = {Ua} of X , choose a representative (xab, ya) of
the class r(D′)−1(q) ∈ H

1(X,C•
2) corresponding to q of (7.9). Then

(7.11)
√
−1 s′xab = yb − ya

and ya|D′ = q|D′∩Ua
. We shall construct a pair (V, ϕ) from (xab, ya) as follows. We let V

be the vector bundle defined by taking on each open Ua the direct sum

(7.12) M |Ua
⊕M−1Λ|Ua

and gluing over Uab via the map

(7.13) fab =

(
1M xab/2
0 1M−1Λ

)
.

Also over each open Ua, consider the section of H0(Ua,End0(M⊕M−1Λ)⊗L) given, with
respect to the decomposition (7.12), by

(7.14) ϕa =

(√
−1 s′ ya
0 −

√
−1 s′

)
.

From (7.11), one has fabϕb = ϕafab, so {ϕa} gives a global traceless endomorphism ϕ :
V → V ⊗ L.
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Remark 7.9. The long exact cohomology sequence associated to the vertical short exact
sequence on the right of (7.10) gives an isomorphism H1(X,C•

2 )
∼= H1(X,M2Λ−1). The

vector bundle V is just the extension

0 −→M −→ V −→M−1Λ −→ 0

given by the image of r(D′)−1(q) under this isomorphism. The point of the preceding
construction using hypercohomology is that it provides a convenient way of encoding the
construction of ϕ.

Note also that when D = 0, we have q = 0 which gives rise to V = M ⊕M−1Λ and

ϕ =

(√
−1 s′ 0
0 −

√
−1 s′

)
.

We have thus constructed a Higgs pair (V, ϕ) with det(ϕ) = s. Moreover, by construc-
tion

M = ker(ϕ− s′) ⊂ V.

It remains to prove that (V, ϕ) is semistable. For that we need the following obvious
observation.

Proposition 7.10. Let (V, ϕ) be an L-twisted, rank 2 Higgs pair with Λ2V = Λ. Assume
that det(ϕ) ∈ H0(X,L2) has a square root s′ ∈ H0(X,L). Let M± = ker(ϕ± s′) and let
D = div(ǫ), where ǫ : M+M− → Λ is induced by the injective sheaf map M+ ⊕M− →֒ V .
Then

M+M− = Λ(−D).

Moreover, M+ and M− are the only ϕ-invariant subbundles of V .

In view of this proposition, we only need to check that the semistability condition
holds for the ϕ-invariant subbundles M and M−1Λ(−D). But this is equivalent to the
assumption (7.7).

We note that our construction can clearly be carried out in families, and thus the set
theoretic map p : E(s) −→ H−1(s) given by

p([q],M) = isomorphism class of (V, ϕ) defined above

is in fact a morphism.
Finally, in order to see that when D 6= 0, the morphism p : F(D,m) → H−1(s) descends

to the quotient F(D,m)/C∗ proceed as follows: if we carry out the above construction with
βq for some β ∈ C∗ we obtain a pair (Ṽ , ϕ̃) and we get an isomorphism g : (V, ϕ) → (Ṽ , ϕ̃)
by defining locally, with respect to the decomposition M |Ua

⊕M−1Λ|Ua
,

ga =

(√
β−1 0
0

√
β

)

for a choice a square root
√
β.

7.3. Conclusion of the proof of Theorem 7.7. We start by some preliminary ob-
servations and results. Let (V, ϕ) ∈ H−1(s), with s ∈ H0(X,L2) r {0} such that Xs is
reducible. Then (V, ϕ) is a rank 2 semistable L-twisted Higgs pair, such that Λ2V ∼= Λ,
tr(ϕ) = 0 and det(ϕ) = s. Thus ϕ has eigenvalues

±s′ ∈ H0(X,L)

which are generically non-zero. Consider the divisor

(7.15) D′ = div(±s′).
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Then we have Ds = 2D′ and

(7.16) deg(D′) = dL.

Let M1,M2 ⊂ V be defined by

M1 = ker(ϕ− s′) and M2 = ker(ϕ+ s′).

Since, for i = 1, 2, Mi is locally-free and V/Mi is torsion-free, it follows that Mi is in
fact a line subbundle of V . Moreover, on the complement of the divisor D′, we have a
decomposition V = M1 ⊕M2 with respect to which ϕ =

(
s′ 0
0 −s′

)
. Even though this does

not extend over D′, we shall still refer to the Mi as eigenbundles of ϕ.
Let

(7.17) D = div(ǫ),

where

(7.18)
ǫ : M1M2 −→ Λ2V

x⊗ y 7−→ x ∧ y
is induced by the inclusion M1 ⊕M2 →֒ V . Then by Proposition 7.10 we have M1M2

∼=
Λ(−D) and hence for i = 1, 2

(7.19) d/2− deg(D) 6 deg(Mi) 6 d/2,

where the second inequality follows from semistability of (V, ϕ).
Next we carry out a more careful analysis of ϕ over D′. Recalling that Λ = Λ2V , we

have the canonical extension

(7.20) 0 −→ M1 −→ V
v 7→v∧−−−−−→M−1

1 Λ −→ 0.

Over a small open set U in X , we can choose a splitting V|U ∼= M1|U ⊕ (M−1
1 Λ)|U . Using

the definition ofM1 and the fact tr(ϕ) = 0 we see that, with respect to this decomposition,
ϕ|U is of the form

(7.21) ϕ|U =

(
s′ q
0 −s′

)

for some q. We shall show that the restriction of q to D′ (in the scheme theoretic sense)
is independent of the choice of splitting.

Proposition 7.11. There is a well defined section

(7.22) qϕ ∈ H0(D′,M2
1LΛ

−1)

given by restriction of ϕ+ s′ Id to D′.

Proof. Restrict the sequence (7.20) to D′. Since ϕ(t) = s′t for any local section t of M1

and s′ vanishes over D′, the restriction ϕ|D′ factors through (M−1
1 Λ)|D′. The restriction of

s′ Id : V → V L similarly factors and hence so does (ϕ + s′ Id)|D′ : V|D′ → (V L)|D′ , giving
a map

ϕ1 : (M
−1
1 Λ)|D′ → (V L)|D′ .

Now the local form (7.21) of ϕ shows that the composition ϕ1 with the projection
(V L)|D′ → (M−1

1 Λ)|D′ vanishes. Hence we have a lift of ϕ1 to a map

qϕ : (M
−1
1 Λ)|D′ → (M1L)|D′

as claimed. �
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We have that qϕ is a holomorphic section of M2
1LΛ

−1, over the subscheme D′ so, if
qϕ 6= 0 and div(qϕ) is the corresponding divisor, then

(7.23) div(qϕ) > 0.

Lemma 7.12. Let qϕ be the section given in Proposition 7.11, let D′ be the effective
divisor defined in (7.15) and let D be the effective divisor defined in (7.17). Then the
following statements hold.

(1) If qϕ 6= 0, then div(qϕ) = D′ −D.
(2) 0 6 D 6 D′.
(3) qϕ = 0 if and only if D = 0.

Proof. First note that (2) follows immediately from (1) and (7.23). In order to prove (1)
and (3), we consider the local form (7.21) of ϕ in a neighbourhood U of a point p ∈ X .
Let k1(p) = ordp(s

′) > 0 and k2(p) = ordp(q) > 0 so that, if z is a local coordinate on U
centred at p, then

s′(z) = zk1(p)f ′
s(z) and q(z) = zk2(p)fq(z)

with ord0(f
′
s) = ord0(fq) = 0.

Let (z1, z2) denote the coordinates on C⊕C. We have chosen a trivialization of V over
U such that M |U is defined by the equation z2 = 0, i.e., M |U is the subspace of C ⊕ C

generated by the vector (1, 0). Also, the other eigenbundle M−1Λ(−D)|U is defined by
the equation

2s′z1 + qz2 = 0.

We have the following observations:

• if k1(p) < k2(p), then M−1Λ(−D)|U is the subspace of C ⊕ C generated by the
vector (0, 1), thus ǫ :M1M2 → Λ2V does not vanish in p;

• if k1(p) = k2(p), then M−1Λ(−D)|U is the subspace of C ⊕ C generated by the
vector (1,−2f ′

s(0)fq(0)
−1), so again ǫ is not zero in p;

• if k1(p) > k2(p), then M−1Λ(−D)|U is the subspace of C ⊕ C generated by the
vector (1, 0), and now ǫ vanishes in p with ordp(ǫ) = k1(p)− k2(p) > 0.

By definition, D = div(ǫ), so we have just seen that

D(p) =

{
k1(p)− k2(p) if k1(p) > k2(p)

0 otherwise.

Furthermore, D′ = div(s′), i.e., D′(p) = ordp(s
′) = k1(p). Hence,

(7.24) D(p) =

{
D′(p)− k2(p) if D′(p) > k2(p)

0 otherwise.

Now notice that at each point p ∈ Supp(D′) the section qϕ is given exactly by the value
of q at p (cf. (7.21)), i.e.,

div(qϕ)(p) = ordp(q) = k2(p).

Hence, (7.24) proves (1).
Finally (3) also follows from (7.24). �

Remark 7.13. In the situation of irreducible spectral curve Xs, the eigenbundles are only
globally well defined for the pull back of (V, ϕ) to Xs. However, one may still define a
divisor D on X by using the locally defined eigenbundles, and it turns out that D = D′,
in contrast to the present situation. The basic reason for this is that on the spectral curve
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the eigenbundles are interchanged by the involution on Xs, thus tying them more tightly
to each other.

Finally we can finish the proof of Theorem 7.7. We start by proving (1). Let (V, ϕ) ∈
H−1(s). In the preceding we have constructed a divisor D satisfying 0 6 D 6 D′ (by
Lemma 7.12) and a ϕ-invariant line subbundle M1 ⊂ V such that m = deg(M1) satis-
fies the bound (7.7) (by (7.19)). We also constructed qϕ ∈ H0(D′,M2

1LΛ
−1), which by

Lemma 7.12 satisfies qϕ ∈ E(D,M). Thus we have associated to (V, ϕ) ∈ H−1(s) an
element

ζ(V, ϕ) = (qϕ,M1) ∈ E(D,m).

Analysing the construction of the morphism p given in Section 7.2, it is easy to see that

p(ζ(V, ϕ)) = (V, ϕ).

This proves the surjectivity of p.
In order to prove the remaining claims of Theorem 7.7, let Mi be the eigenbundles of

a pair (V, ϕ) for i = 1, 2. We carried out the preceding construction of ζ(V, ϕ) using
the eigenbundle M1, but we could equally well have carried it out using the eigenbundle
M2, which has degree deg(M2) = d− deg(D)− deg(M1). This proves (2) of Theorem 7.7.
Finally the remaining claims of the theorem follow because it is easy to see that the choice
of the eigenbundle M1 is the only ambiguity in the construction. Thus p : E(D,m) →
H−1(s) can only fail to be injective if m = d − deg(D) − m ⇐⇒ m = (d − deg(D))/2
and the eigenbundles are non isomorphic, in which case p is two to one.

7.4. Connectedness and dimension of the fibre. For a givenm, let dm be the smallest
integer greater than or equal to d/2−m, i.e.,

(7.25) dm = ⌈d/2−m⌉
and define

E(m) =
⋃

deg(D)>dm

E(D,m).

Then Theorem 7.7 shows that

(7.26) H−1(s) =
⋃

d/2−dL6m6d/2

p(E(m))

Lemma 7.14. The subspace p(E(m)) ⊂ H−1(s) is connected for any m satisfying d/2−
dL 6 m 6 d/2.

Proof. It suffices to see that E(m) is connected. But from (1) of Proposition 7.2 we have
⋃

deg(D)>dm

E(D,M) = H0(D′,M2LΛ−1).

Hence E(m) is simply the natural vector bundle over Jacm(X) with fibresH0(D′,M2LΛ−1).
�

We now prove that the fibre of H over a point such that the spectral curve is reducible,
is connected.

Theorem 7.15. Let s ∈ H0(X,L2) r {0} such that Xs is reducible. Then the fibre of
H : MΛ

L → H0(X,L2) over s is connected.
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Proof. For any m, take a divisor D of degree dm (defined in (7.25)). Then

d− deg(D)−m = [d/2]

and (2) of Theorem 7.7 shows that

p(E(m)) ∩ p(E([d/2])) 6= ∅.
The conclusion is now immediate from (7.26) and Lemma 7.14. �

Now we compute the dimension of every stratum of the fibre and, since it is connected,
of the fibre itself.

Proposition 7.16. If s ∈ H0(X,L2) is such that Ds = 2D′ and L = O(D′), then:

(1) dimF(0, d/2) = g;
(2) for any effective divisor D 6 D′ and m satisfying (7.7), dimF(D,m) = deg(D)+

g − 1;
(3) dimH−1(s) = dL + g − 1.

Proof. Immediate from the definition of F(D,m) and Theorem 7.7. �

Hence, every stratum of H−1(s) has dimension less or equal than deg(D′)+g−1 = dL+
g−1 and this upper bound is reached only by F(D′, m) for anym, and by F(D′, (d−dL)/2)
if d and dL have the same parity.

8. Main Theorem

We finish by putting everything together to obtain the following main result.

Theorem 8.1. Let H : MΛ
L → H0(X,L2) be the Hitchin map. For any section s ∈

H0(X,L2) r {0}, the fibre H−1(s) is connected and has dimension dim(H−1(s)) = dL +
g − 1.

Proof. The connectedness statement is immediate from Theorems 6.3, and 7.15. The
dimension formula follows from (3.5), and Propositions 6.2 and 7.16. �
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[21] C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety II,

Publ. Math., Inst. Hautes Étud. Sci. 80 (1995), 5–79.
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