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Transitive Sets and Cyclic Quadrilaterals
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Abstract

Motivated by some questions in Euclidean Ramsey theory, our aim
in this note is to show that there exists a cyclic quadrilateral that does
not embed into any transitive set (in any dimension). We show that
in fact this holds for almost all cyclic quadrilaterals, and we also give
explicit examples of such cyclic quadrilaterals. These are the first
explicit examples of spherical sets that do not embed into transitive
sets.

1 Introduction

A finite set X in some Euclidean space Rn is called Ramsey if for every pos-
itive integer k there exists d such that whenever Rd is k-coloured it contains
a monochromatic set congruent to X . A famous question of Erdős, Graham,
Montgomery, Rothschild, Spencer and Straus [1] (made into a conjecture by
Graham in [3]) asks if the Ramsey sets are precisely the spherical sets (where
a set is spherical if it lies on the surface of a sphere).

In [4], a ‘rival’ conjecture is made: that a set is Ramsey if and only if it
is a subset of a finite transitive set (in some dimension) – here we say that a
set is transitive if its isometry group acts transitively on it (or equivalently,
loosely speaking, if all points of the set look the same). It is not obvious
that these conjectures are different: certainly every finite transitive set X is
spherical (for example, because all of its points must lie on the surface of the
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minimal sphere containing X), but does every finite spherical set embed into
a transitive set (in some dimension)? This is answered in the negative in [4],
where it is shown that, for k ≥ 16, almost every cyclic k-gon does not embed
into a (finite) transitive set.

However, in [4] we conjectured that it was unnecessary to go as far as
16-gons to see this phenomenon: that in fact there exists a cyclic quadrilat-
eral that does not embed into a transitive set. (This would be the smallest
possible case, as all triangles do embed into transitive sets – see e.g. [2] or [4]).

Our aim in this note is to prove this. In fact, we show that almost every
cyclic quadrilateral does not embed into a transitive set. Our proof allows
us to give an explicit example of such a cyclic quadrilateral. This is the first
explicit example of a spherical set that does not embed into a transitive set.

Curiously, it seems that the right approach is to focus on the linear prop-
erties of the quadrilateral, rather than its metric properties. Our main result
is as follows.

Theorem 1. Let x, y, z and w be four distinct points lying on a circle such

that

w = z + α(x− z) + β(y − z),

where α 6= 1 and β is transcendental over Q(α). Then xyzw does not embed

into a transitive set.

We remark that the condition α 6= 1 is necessary. Indeed, for any β there is a
trapezium with parameters 1 and β (in other words, with this value of β and
with α = 1) which embeds in a transitive set with symmetry group D8. We
note also that the ‘cyclic’ condition is trivially redundant as all quadrilaterals
that embed in a transitive set are cyclic.

Since ‘many’ pairs (α, β) can occur as parameters of cyclic quadrilaterals
– for example there exists such a cyclic quadrilateral for every α and β
sufficiently close to 1 – it is routine to verify from this that almost every
cyclic quadrilateral does not embed into a transitive set. It is also possible
to give an explicit example – even one with some symmetry, such as a kite.

Corollary 2. The cyclic quadrilateral with vertices

(−1, 0), (1, 0), (a,
√
1− a2), (a,−

√
1− a2),

where a is transcendental, does not embed into any transitive set.

Corollary 2 follows from Theorem 1 upon taking z = (−1, 0), y = (1, 0),
x = (a,

√
1− a2) and w = (a,−

√
1− a2).

As explained above, this gives us an explicit spherical set that we conjec-
ture is not Ramsey.
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Conjecture 3. Let −1 < α < 1 be transcendental. Then the cyclic quadri-

lateral with vertices

(−1, 0), (1, 0), (a,
√
1− a2), (a,−

√
1− a2)

is not Ramsey.

2 Proof of Theorem 1

It will be convenient to use the term quadrilateral to denote any set of four
coplanar points, whether or not they are distinct. We say that it is trivial if
all four points are coincident. Note that a non-trivial quadrilateral may still
have some points coincident.

Suppose that xyzw is any quadrilateral. It may be the case (for example
whenever x, y, z are not collinear) that there exist (not necessarily unique)
α, β such that w = z + α(x − z) + β(y − z). In this case we say that the
quadrilateral has parameters α, β.

One reason why this parameterisation in terms of linear rather than met-
ric properties is useful is as follows. Suppose we have a non-trivial quadri-
lateral in a vector space V ⊕W . Then the projections onto V and W have
the same parameters. Moreover at least one of these projections is non-
trivial. (Note that both projections may have coincident points even if the
original quadrilateral does not, for example if the original quadrilateral is a
rectangle.) This will allow us to focus on irreducible representations.

The following is our key result.

Lemma 4. Let G be a finite group generated by elements g, h and k, and let

A, B and C be the maps corresponding to g, h and k respectively in a non-

trivial irreducible real orthogonal representation of G. Then the collection of

pairs (α, β) that can occur in quadrilaterals of the form A(w), B(w), C(w), w
for some w 6= 0 is exactly the zero set of a polynomial P (α, β) with algebraic

coefficients. Moreover, for any fixed α 6= 0, 1 the polynomial P viewed as a

polynomial in β is not identically zero.

Proof. Let d be the dimension of the representation. Suppose that that there
exists non-zero w ∈ Rd with

w = C(w) + α(A(w)− C(w)) + β(B(w)− C(w)). (1)

Then
(αA+ βB + (1− α− β)C − I) (w) = 0

and so, in particular, the linear map

L(α, β) = αA+ βB + (1− α− β)C − I
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is singular. Conversely, if L(α, β) is singular then there exists non-zero w
with L(α, β)(w) = 0; that is, with w satisfying (1).

Obviously P (α, β) = det(L(α, β)) is a polynomial in α and β. It is well
known that any representation of G over R is equivalent to a representation
with all matrix entries algebraic. Since the polynomial det(L(α, β)) is the
same for equivalent representations, this implies that P (α, β) has algebraic
coefficients.

Suppose α 6= 0, 1. Since P is a polynomial, to complete the proof we just
need to give one value of β for which P is non-zero or, equivalently, for which
there exists non-zero w such that L(α, β)(w) = 0. This is the same as saying
that there is no non-zero w for which the quadrilateral w, A(w), B(w), C(w)
has parameters α and β.

We note first that a quadrilateral w,A(w), B(w), C(w) cannot be trivial;
that is

w = A(w) = B(w) = C(w) (2)

cannot occur for any (non-zero) w. Indeed, this would imply that the rep-
resentation is either reducible or one-dimensional. The former cannot occur
by hypothesis; the latter cannot occur since then A = B = C = I, which is
ruled out as the representation is non-trivial.

Rather surprisingly, we will be able to choose β in such a way that the
only possible (non-trivial) quadrilaterals with parameters α and β that occur
in this way are not even convex (so manifestly are not cyclic and so do not
embed in a transitive set). We split into the following three cases: α < 0,
0 < α < 1, and α > 1.

First, if 0 < α < 1 then let β = (1− α)/2. Then (1) becomes

w = αA(w) +
1− α

2
B(w) +

1− α

2
C(w).

Since α > 0 and (1− α)/2 > 0, this implies (2), a contradiction.
Secondly, if α < 0 then let β = α. Then (1) becomes

(−α)A(w) + (−α)B(w) + w = (1− 2α)C(w).

Since −α and 1− 2α are both positive, once again this implies (2).
Finally, if α > 1 then let β = (1 − α)/2. By a similar argument to the

previous case, this again implies (2). This completes the proof.

Proof of Theorem 1. Suppose that we have a transitive set T with symmetry
group G and a non-trivial quadrilateral xyzw in T with

w = z + α(x− z) + β(y − z). (3)

4



We aim to show that β is algebraic over Q(α). Let A,B,C be elements of
G that map w to x, y, z respectively, and let G′ be the group generated by
A,B and C.

We shall use Lemma 4, but first observe that if α = 0 then w, z and y
are collinear and so at least two must coincide, contradicting the hypothesis
of the theorem.

Suppose that the representation of G′ is reducible as V ⊕ W . Then (3)
holds for the projections onto V and W , and in at least one of these cases
the projected quadrilateral is non-trivial.

It follows that the parameters (α, β) occur for some some (non-trivial)
irreducible representation of G′. This implies that P (α, β) = 0 for some
polynomial P as in the conclusion of Lemma 4. Writing R(Y ) for P (α, Y )
and A for the field of algebraic numbers, we have that the polynomial R has
coefficients in A(α) and is not identically zero. Moreover, R(β) = 0. Hence
β is algebraic over A(α) and so is algebraic over Q(α).
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