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Abstract: In this paper, we discuss the relationship between Li-Yorke chaos and distributional
chaos in a sequence. We point out the set of all distributional δ-scramble pairs in the sequence Q

is a Gδ set, and prove that Li-Yorke δ-chaos is equivalent to distributional δ-chaos in a sequence,
a uniformly chaotic set is a distributional scramble set in some sequence and a class of transitive
system implies distributional chaos in a sequence.
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1 Introduction

Throughout this paper a topological dynamical system (TDS for short) is a pair (X, f), where X
is a non-vacuous compact metric space with metric d and f is a continuous map for X to itself. If
Y ⊂ X is a closed invariant set (i.e. f(Y ) ⊂ Y ), then we call (Y, f |Y ) is a subsystem of (X, f).

Let A be a subset of X , denote the closure of A by A. For a given positive number δ, put
[A]δ = {x ∈ X | infy∈A d(x, y) < δ}. Denote the diagonal of the product space X × X by ∆ =
{(x, x) ∈ X ×X | x ∈ X}.

In [1], Li and Yorke first introduced the word “chaos” to describe the complexity of the orbits.

Definition 1. Let (X, f) be a TDS. A pair (x, y) ∈ X ×X is called a Li-Yorke scrambled pair, if

lim inf
n→∞

d(fn(x), fn(y)) = 0, lim sup
n→∞

d(fn(x), fn(y)) > 0.

A subset C of X is called a Li-Yorke chaotic set, if every (x, y) ∈ C×C \∆ is a Li-Yorke scrambled
pair. The system (X, f) is called Li-Yorke chaotic, if there exists some uncountable Li-Yorke chaotic
set.

For a give positive number δ, a pair (x, y) ∈ X ×X is called a Li-Yorke δ-scrambled pair, if

lim inf
n→∞

d(fn(x), fn(y)) = 0, lim sup
n→∞

d(fn(x), fn(y)) > δ.

A subset C of X is called a Li-Yorke δ-chaotic set, if every (x, y) ∈ C × C \ ∆ is a Li-Yorke δ-
scrambled pair. The system (X, f) is called Li-Yorke δ-chaotic, if there exists some uncountable
Li-Yorke δ-chaotic set.

In [2], Schweizer and Smital introduced a new kind of chaos, which is usually called distribution
chaos. Later, the authors in [3] introduced the conception of distribution chaos in a sequence. See
[4] and [5] for recent results.

Let (X, f) be a TDS and Q = {mi}
∞

i=1 be a strictly increasing sequence of positive integers. For
x, y ∈ X , t > 0 and n ≥ 1, put

Φn
(xy,Q)(t) =

1

n
#{1 ≤ i ≤ n | d(fmi(x), fmi(y)) ≤ t},
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where #{·} denote the cardinal number of a set. Let

Φ(xy,Q)(t) = lim inf
n→∞

Φn
(xy,Q)(t), Φ⋆

(xy,Q)(t) = lim sup
n→∞

Φn
(xy,Q)(t).

then Φ(xy,Q) and Φ⋆
(xy,Q) are called the lower and upper distribution function of (x, y) with respect

to the sequence Q. Clearly, for every t > 0, Φ(xy,Q)(t) ≤ Φ⋆
(xy,Q)(t).

Definition 2. Let (X, f) be a TDS and Q be a strictly increasing sequence of positive integers. A
pair (x, y) ∈ X ×X is called a distributional scrambled pair in the sequence Q, if

(1) for every t > 0, Φ⋆
(xy,Q)(t) = 1;

(2) there exists some s > 0 such that Φ(xy,Q)(s) = 0.
A subset D of X is called a distributional chaotic set in the sequence Q, if every (x, y) ∈ D×D\∆ is
a distributional scrambled pair in the sequence Q. The system (X, f) is called distributional chaotic

in a sequence, if there exists some strictly increasing sequence of positive integers P such that there
is an uncountable distributional chaotic set in the sequence P .

For a give positive number δ, a pair (x, y) ∈ X ×X is called a distributional δ-scrambled pair in

the sequence Q, if
(1) for every t > 0, Φ⋆

(xy,Q)(t) = 1;

(2) Φ(xy,Q)(δ) = 0.
A subset D of X is called a distributional δ-chaotic set in the sequence Q, if every (x, y) ∈ D×D\∆
is a distributional δ-scrambled pair in the sequence Q. The system (X, f) is called distributional

δ-chaotic in a sequence, if there exists some strictly increasing sequence of positive integers P such
that there is an uncountable distributional δ-chaotic set in the sequence P .

Recently, the Li-Yorke and distributional chaos have aroused great interest. For a continuous
map f from the unit closed interval [0, 1] to itself, if f has a period point with periodic 3, then the
system ([0, 1], f) is Li-Yorke chaotic [1]. The system ([0, 1], f) is Li-Yorke chaotic if and only if it is
distributional chaotic in a sequence [3]. If a system (X, f) has positive entropy then it is Li-Yorke
chaotic [7]. A weakly mixing system is distributional chaotic in a sequence [4].

In this paper, we discuss the relationship between Li-Yorke chaos and distributional chaos in a
sequence and chaos properties in transitive systems. The organization of the paper is as follows.
In section 2, we give a equivalent definition of distributional scrambled pair and point out the set
of all distributional δ-scramble pairs in the sequence Q is a Gδ set. In section 3, we first show
that a countable Li-Yorke chaotic set (resp. Li-Yorke δ-chaotic set) is also a distributional chaotic
set in some sequence (resp. distributional δ-chaotic set in some sequence). Then using the well-
known Mycielski theorem we show that Li-Yorke δ-chaos is equivalent to distributional δ-chaos in a
sequence. In section 4, we focus on the transitive systems. We prove that a uniformly chaotic set is
a distributional scramble set in some sequence and a class of transitive system implies distributional
chaos in a sequence.

2 The structure of the set of all distributional δ-scrambled

pairs in the sequence Q

Let Q = {mi}
∞

i=1 be a strictly increasing sequence of positive integers and P be a subsequence
of Q. The upper limit

lim sup
k→∞

#{P ∩ {m1, · · · ,mk}}

k

is called the upper density of P with respect to Q, denoted by d(P | Q)
For every a ∈ [0, 1], put MQ(a) = {P ⊂ Q | P is infinite and d(P | Q) ≥ a}
Let (X, f) be a TDS and U ⊂ X be a nonempty open set. For every a ∈ [0, 1], define

F(U,Q,MQ(a)) = {x ∈ X | N(x, U,Q) ∈ MQ(a)},

where N(x, U,Q) = {m ∈ Q | fm(x) ∈ U}.
Following the proof of Theorem 3.2 in [8], we have
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Proposition 1. Let (X, f) be a TDS and Q be a strictly increasing sequence of positive integers.
Then for every a ∈ [0, 1] and nonempty open set U ⊂ X , F(U,Q,MQ(a)) is a Gδ set.

Note that the metric in the product space X × X is denoted by d2, i.e. for every (x1, x2), (y1,
y2) ∈ X ×X , d2((x1, x2), (y1, y2)) = max{d(x1, y1), d(x2, y2)}. Now we can easily get a equivalent
definition of distributional scrambled pair in the sequence Q.

Proposition 2. Let (X, f) be a TDS and Q be a strictly increasing sequence of positive integers.
Then (x, y) ∈ X ×X is a distributional scrambled pair in the sequence Q if and only if

(1) for every ǫ > 0, (x, y) ∈ F([∆]ǫ, Q,MQ(1));

(2) there exists some t > 0, such that (x, y) ∈ F(X ×X \ [∆]t, Q,MQ(1)).
For a given δ > 0, (x, y) ∈ X ×X is a distributional δ-scrambled pair in the sequence Q if and only
if

(1) for every ǫ > 0, (x, y) ∈ F([∆]ǫ, Q,MQ(1));

(2) (x, y) ∈ F(X ×X \ [∆]δ, Q,MQ(1)).

Combining Proposition 1 and 2, we have

Proposition 3. Let (X, f) be a TDS, Q be a strictly increasing sequence of positive integers and
δ > 0. Then the set of all distributional δ-scrambled pairs in the sequence Q is a Gδ subset of
X ×X .

3 Li-Yorke δ-chaos is equivalent to distributional δ-chaos in

a sequence

Let (X, f) be a TDS. A subset C of X is called a Cantor set, if it is homeomorphic to the
standard Cantor ternary set. A subset A of X is called a Mycielski set, if it is a union of countable
Cantor sets.

Theorem 1 (Mycielski[9]). Let a X be a complete second countable metric space without isolated
points. If R is a dense Gδ subset of X ×X , then there exists some dense Mycielski subset K ⊂ X

such that K ×K \∆ ⊂ R.

Lemma 1. [5] Let {Si}∞i=1 be a sequence of strictly increasing sequences of positive integers. Then
there exists a strictly increasing sequence Q of positive integers such that d(Si ∩ Q | Q) = 1 for
every i ≥ 1.

Theorem 2. Let (X, f) be a TDS and δ > 0. If C ⊂ X is a countable Li-Yorke chaotic set (resp.
Li-Yorke δ-chaotic set), then there exists a strictly increasing sequence Q of positive integers such
that C is a distributional chaotic set in the sequence Q (resp. distributional δ-chaotic set in the
sequence Q).

Proof. Let C = {xi ∈ X : i = 1, 2, . . .}. By the definition of Li-Yorke scrambled pair, for every
i 6= j, there exists δij > 0 such that

lim inf
n→∞

d(fn(xi), f
n(xj)) = 0, lim sup

n→∞

d(fn(xi), f
n(xj)) > δij .

i.e., there are two strictly increasing sequences Pi,j = {ni,j
k }∞k=1 and Si,j = {mi,j

k }∞k=1 such that

lim
k→∞

d(fn
i,j

k (xi), f
n
i,j

k (xj)) = 0, lim
k→∞

d(fm
i,j

k (xi), f
m

i,j

k (xj)) > δij .

By Lemma 1, there exists a strictly increasing sequence Q such that

d(Pi,j ∩Q|Q) = d(Si,j ∩Q|Q) = 1, ∀i 6= j.

Then it is easy to see that for every t > 0

(xi, xj) ∈ F([∆]t, Q,MQ(1)), (xi, xj) ∈ F(X ×X \ [∆]δij , Q,MQ(1)), ∀i 6= j.

By Proposition 2, C is a distributional chaotic set in the sequence Q.
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For a given δ > 0, if C is a Li-Yorke δ-chaotic set, then we can choose all the above δij being δ,
therefore, C is a distributional δ-chaotic set in the sequence Q.

Remark 1. In [10], the authors constructed a countable compact space X and a homeomorphism
on X with the whole space being a Li-Yorke chaotic set, then there exists a strictly increasing
sequence Q of positive integers such that X is a distributional chaotic set in the sequence Q. As
the method of Theorem 4.3 in [10], we can construct a homeomorphism of the Cantor set with the
whole space being a distributional chaotic set in some sequence.

Theorem 3. Let (X, f) be a TDS and δ > 0. Then (X, f) is Li-Yorke δ-chaos if and only if it is
distributional chaos in a sequence.

Proof. Let D be an uncountable Li-Yorke δ-chaotic set. Since X is a complete separable metric
space, without lose of generality, assume that D has no isolated points. Put X0 = D, then D is a
complete separable metric subspace without isolated points. Choose a countable dense subset C of
D. By Theorem 2, there exists a strictly increasing sequence Q of positive integers such that C is
a distributional δ-chaotic set in the sequence Q.

Denote E be the collection of all distributional δ-scrambled pairs in the sequence Q. By Propo-
sition 3, E is a Gδ subset of X × X . Since C × C \ ∆ ⊂ E and C is dense in X0, By Mycielski
Theorem, There exists an uncountable Mycielski set D0 ⊂ X0 such that D0 ×D0 \∆ ⊂ E. Thus,
(X, f) is distributional chaos in a sequence.

Remark 2. (1) For the system (I, f) on the unit closed I = [0, 1], [11] proved that if (I, f) has a
Li-Yorke pair, then there exists some δ > 0 such that it is Li-Yorke δ-chaotic. Therefore, it is also
distributional δ-chaotic in a sequence.

(2) [7] proved that positive entropy implies Li-Yorke chaos. By the proof of Theorem 2.3 in
[7], if (X, f) has positive entropy, then there exists some δ > 0 such that it is Li-Yorke δ-chaotic.
Therefore, it is also distributional δ-chaotic in a sequence.

(3) Let (X, f) be a TDS. The system (X, f) is called topologically transitive, if for every two
nonempty open subsets U, V ⊂ X , there exists n ∈ N such that fn(U) ∩ V 6= ∅. The system (X, f)
is called Devaney chaotic, if it is transitive and has dense periodic points. [12] proved that if (X, f)
is Devaney chaotic, then there exists some δ > 0 such that it is Li-Yorke δ-chaotic. Therefore, it is
also distributional δ-chaotic in a sequence.

(4) Let (X, f) be a TDS. The system (X, f) is called topologically weakly mixing, if the product
system (X×X, f×f) is transitive. By the main result of [13], if (X, f) is weakly mixing, then there
exists some δ > 0 such that it is Li-Yorke δ-chaotic. Therefore, it is also distributional δ-chaotic in
a sequence.

4 Transitive systems

Definition 3. [14] Let (X, f) be a TDS.

1. A subset A of X is called uniformly proximal, if for every ǫ > 0, there exists k ∈ N such that
d(fk(x), fk(y)) < ǫ for every x, y ∈ A.

2. A subset A of X is called uniformly rigid, if for every ǫ > 0 there exists k ∈ N such that
d(fk(x), x) < ǫ for every x ∈ A.

3. A subset A of X is called uniformly chaotic, if there exists a sequence of Cantor sets C1 ⊂
C2 ⊂ · · · such that A =

⋃
∞

i=1 Ci and Ci is both uniformly proximal and uniformly rigid for
every i ≥ 1.

Theorem 4. Let (X, f) be a TDS and A ⊂ X . If A is a uniformly chaotic set, then there exists a
strictly increasing sequence Q of positive integers such that A is a distributional chaotic set in the
sequence Q.
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Proof. By the definition of uniformly chaos, there exists a sequence of Cantor sets C1 ⊂ C2 ⊂ · · ·
such that A =

⋃
∞

i=1 Ci and Ci is both uniformly proximal and uniformly rigid for every i ≥ 1. Then
there are two strictly increasing sequences PN = {nk}∞k=1 and SN = {mk}∞k=1 such that

lim
k→∞

d(fn
i,j

k (x), fn
i,j

k (y)) = 0, lim
k→∞

d(fm
i,j

k (x), fm
i,j

k (y)) = d(x, y) > 0, ∀x 6= y ∈ AN .

By Lemma 1, there exists a strictly increasing sequence Q such that

d(PN ∩Q|Q) = d(SN ∩Q|Q) = 1, ∀N ∈ N.

Similarly to the proof of Theorem 2, we have A is a distributional chaotic set in the sequence Q.

Theorem 5. [14] Let (X, f) be a transitive system, where X is a compact metric space without
isolated points. If there exists a subsystem (Y, f) such that (X × Y, f × f) is transitive, then (X, f)
has a dense Mycielski uniformly chaotic set.

Corollary 1. [14] Let (X, f) be a transitive system, where X is a compact metric space without
isolated points. If the system (X, f) satisfies one of the following conditions:

(1) (X, f) is transitive and has a fixed point;
(2) (X, f) is totally transitive with a periodic point;
(3) (X, f) is scattering;
(4) (X, f) is weakly scattering with an equicontinuous minimal subsystem;
(4) (X, f) is weakly mixing.

Then (X, f) has a dense Mycielski uniformly chaotic set. Moreover, if (X, f) is transitive and has a
periodic point of order d, then there is a closed fd-invariant subset X0 ⊂ X such that (X0, f

d) has

a dense uniformly chaotic set and X =
⋃d−1

j=0 f
jX0; in particular, (X, f) has a uniformly chaotic set.

Corollary 2. Let (X, f) be a TDS. If the system (X, f) satisfies the condition of Theorem 5 or
Corollary 1, then (X, f) is distributional chaotic in a sequence.

Question: is Li-Yorke chaos equivalent to distributional chaos?
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