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STAR PRODUCTS WITH SEPARATION OF

VARIABLES ADMITTING A SMOOTH EXTENSION

ALEXANDER KARABEGOV

Abstract. Given a complex manifold M with an open dense sub-
set Ω endowed with a pseudo-Kähler form ω which cannot be
smoothly extended to a larger open subset, we consider various
examples where the corresponding Kähler-Poisson structure and a
star product with separation of variables on (Ω, ω) admit smooth
extensions toM . We suggest a simple criterion of the existence of a
smooth extension of a star product and apply it to these examples.

1. Introduction

A formal differential star product on a Poisson manifold (M, {·, ·})
is an associative product on the space C∞(M)[[ν]] of smooth complex-
valued formal functions on M given by the formula

(1) f ∗ g =
∑

r≥0

νrCr(f, g),

where Cr are bidifferential operators onM , C0(f, g) = fg and C1(f, g)−
C1(g, f) = i{f, g} (see [1]). It was proved by Kontsevich in [9] that
deformation quantizations exist on any Poisson manifold.
We will assume that the unit constant is the unity with respect to

the star product: f ∗ 1 = 1 ∗ f = f for all f ∈ C∞(M)[[ν]]. Given
functions f, g ∈ C∞(M)[[ν]], we will denote by Lf and Rg the left star
multiplication operator by f and the right star multiplication operator
by g, respectively, so that f ∗ g = Lfg = Rgf . The associativity of
the star product ∗ is equivalent to the fact that [Lf , Rg] = 0 for all
f, g ∈ C∞(M)[[ν]]. A star-product on a Poisson manifold M can be
restricted to any open subset of M .
We call a Poisson tensor on a complex manifioldM a Kähler-Poisson

tensor if it is of type (1,1) with respect to the complex structure. If
a Kähler-Poisson tensor written in local coordinates {zk, z̄l} as glk is
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nondegenerate, its inverse is a pseudo-Kähler metric tensor gkl. We
call a complex manifiold M endowed with a Kähler-Poisson tensor a
Kähler-Poisson manifold. Any pseudo-Kähler manifold is a Kähler-
Poisson manifold. In this paper we will give several examples of Kähler-
Poisson manifolds with the Kähler-Poisson tensor degenerate on the
complement of an open dense subset.
A star product (1) on a Kähler-Poisson manifold defines a defor-

mation quantization with separation of variables if the operators Cr
differentiate their first argument in antiholomorphic directions and the
second argument in holomorphic ones. If the unit constant is the unity
with respect to the star product, the condition of separation of variables
can be equivalently stated as follows: for any local holomorphic func-
tion a and a local antiholomorphic function b the identities a ∗ f = af
and f ∗ b = bf hold. Otherwise speaking, La = a and Rb = b are
pointwise multiplication operators.
It is not known whether there exists a star product with separa-

tion of variables on an arbitrary Kähler-Poisson manifold. However,
star products with separation of variables exist on any pseudo-Kähler
manifold M (see [2], [5]).
Given a star product with separation of variables ∗ on a Kähler-

Poisson manifold M , the formal Berezin transform of the star product
∗ is a formal differential operator B = 1 + νB1 + ν2B2 + . . . globally
defined on M by the condition that

B(ab) = b ∗ a

for any local holomorphic function a and a local antiholomorphic func-
tion b. A star product with separation of variables can be recovered
from its Berezin transform.
A deformation quantization with separation of variables on a pseudo-

Kähler manifold M equipped with a pseudo-Kähler form ω is called
standard if its restriction to any contractible coordinate chart (U, {zk})
has the property that

L ∂Φ

∂zk
=
∂Φ

∂zk
+ ν

∂

∂zk
and R ∂Φ

∂z̄l
=
∂Φ

∂z̄l
+ ν

∂

∂z̄l
,

where Φ is a potential of the pseudo-Kähler form ω on U , i.e., ω = i∂∂̄Φ.
This property defines the standard deformation quantization with sep-
aration of variables uniquely and globally on any pseudo-Kähler man-
ifold M (see [5]).
LetM be a Kähler-Poisson manifoldM such that the Kähler-Poisson

structure on M given by a tensor glk is nondegenerate on a dense open
subset Ω of M and its inverse on Ω is a metric tensor gkl with the
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corresponding pseudo-Kähler form ω. It was shown in [6] that the
coefficients of the operators C1 and C2 of the standard star product
with separation of variables are polynomials in partial derivatives of
glk, while the operator C3 is the sum of an operator with the same
property and the operator

S(u, v) = gmn
∂gls

∂z̄q
∂gnp

∂zs
∂gqm

∂z̄t
∂gtk

∂zp
∂u

∂z̄l
∂v

∂zk
,

which depends on the metric tensor gkl. It follows from this obser-
vation that a star-product with separation of variables on (Ω, ω) does
not necessarily have a smooth extension to M . In this paper we give
examples of Kähler-Poisson manifolds with open dense pseudo-Kähler
submanifolds such that the standard deformation quantization with
separation of variables on these pseudo-Kähler submanifolds admits a
smooth extension to the whole manifold.

Acknowledgments. The author is very grateful to the participants
of the conference “Quantization of Singular Spaces” held at Aarhus
University in December 2010 for inspiring discussions.

2. Examples of deformation quantizations with

separation of variables on Kähler-Poisson manifolds

In this section we will give two examples of a Kähler-Poisson manifold
M with the Kähler-Poisson structure which is nondegenerate on a dense
open subset Ω and such that the standard deformation quantization
with separation of variables on Ω admits a smooth extension to M .

Example 1.

Let ψ be a defining function of a Levi-nondegenerate hypersurface Σ
in an open set U ⊂ Cn. This means that ψ is a smooth real function
on U with the zero set Σ and such that the Monge-Ampère matrix

(2) Γ =

(

∂2ψ

∂zk∂z̄l
∂ψ

∂zk
∂ψ

∂z̄l
ψ

)

is nondegenerate at the points of Σ. Shrinking, if necessary, the neigh-
borhood U around Σ, we may assume that the matrix Γ is nondegener-
ate on U . On the complement U\Σ of Σ the potential log |ψ| defines a
pseudo-Kähler form ω whose inverse is a Kähler-Poisson bivector field
which has a smooth extension to U by zero (i.e., vanishing on Σ). The
following theorem was proved in [8]:

Theorem 1. The standard star product with separation of variables on
(U\Σ, ω) admits a smooth extension to a star-product on U .
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Similar statements were proved earlier by different methods in [3]
and [10].

Example 2.

The following example of a Kähler-Poisson manifold comes from the
theory of complex symmetric domains. Denote by E the set of non-
degenerate complex (p + r) × r matrices with the right action of the
group GL(r,C). Then Gr(r, p+ r) = E/GL(r,C) is the Grassmannian
of r-dimensional subspaces in Cp+r. Consider the indefinite metric

(3)

p
∑

k=1

zkw̄k −

p+r
∑

k=p+1

zkw̄k

on Cp+r. The left action of the group U(p, r) on E induces an action on
the Grassmannian Gr(r, p+r). Let Ω be the set of points of the Grass-
mannian Gr(r, p+ r) corresponding to the subspaces of Cp+r such that
the restriction of the indefinite metric (3) to them is nondegenerate. It
is a dense open U(p, r)-invariant subset of Gr(r, p+ r). Given a matrix
A ∈ E , denote by UA and VA its blocks of size p× r (top p rows) and
r × r (bottom r rows), respectively. Denote by E ′ the set of matrices
A ∈ E such that the block VA is nondegenerate. Then Z = E ′/GL(r,C)
is an affine subset of Gr(r, p + r) parametrized by the p × r-matrices
Z so that the coset of A ∈ E ′ corresponds to the matrix Z = UA/VA.
The elements {zkα}, 1 ≤ k ≤ p, 1 ≤ α ≤ r, of a p× r-matrix Z are thus
holomorphic coordinates on Z. The set Z ∩ Ω is parametrized by the
matrices Z such that E − Z†Z is nondegenerate. The pseudo-Kähler
metric on Z ∩ Ω defined by the potential

Φ(Z,Z†) = log | det(E − Z†Z)|

extends to a U(p, r)-invariant pseudo-Kähler metric on Ω. In partic-
ular, the set Ω+ ⊂ Z ⊂ Gr(r, p + r) parametrized by the matrices Z
such that E−Z†Z is positive definite is an open U(p, r)-invariant sub-
set of Gr(r, p + r). It is a bounded symmetric domain and the metric
corresponding to the potential Φ is Kähler. The standard deformation
quantization with separation of variables on Ω is U(p, r)-invariant. The
corresponding formal Berezin transform B = 1+νB1+ . . . is a U(p, r)-
invariant formal differential operator on Ω. It is known (see [4]) that
all U(p, r)-invariant differential operators on Ω+ are induced by the
elements of the center of the universal enveloping algebra of the Lie al-
gebra u(p, r). These elements induce global U(p, r)-invariant operators
on the Grassmannian Gr(r, p + r). Since the coefficients of U(p, r)-
invariant differential operators are algebraic functions on Gr(r, p+ r),
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it implies that the formal Berezin transform B and the correspond-
ing star product smoothly extend to Gr(r, p + r). The corresponding
U(p, r)-invariant Kähler-Poisson bivector is also globally defined on
Gr(r, p+ r). In the coordinates (Z,Z†) it is given by the formula

i

(

δst −
r
∑

γ=1

zsγ z̄tγ

)(

δαβ −

p
∑

k=1

z̄kαzkβ

)

∂

∂zsβ
∧

∂

∂z̄tα
.

On Ω it is the inverse of the pseudo-Kähler form corresponding to the
potential Φ.

3. Smooth extensions of star products

Given an open subset U of a smooth real n-dimensional manifoldM ,
an n-tuple of smooth complex-valued functions {f 1, . . . , fn} on U is
called a frame if for each point x ∈ U the differentials df 1(x), . . . dfn(x)
form a basis of the complexified cotangent space T ∗

xM ⊗C. An n-tuple
of smooth formal complex-valued functions fk = fk0 + νfk1 + ν2fk2 +
. . . , 1 ≤ k ≤ n, on U is called a formal frame if {f 1

0 , . . . , f
n
0 } is a frame

on U .

Lemma 1. Let U ⊂ R
n be an open set with a dense open subset

V ⊂ U and {f 1, . . . , fn} be a frame on U . If A is a differential oper-
ator of finite order on V such that the function A1 and the operators
[. . . [[A, fk1], fk2], . . . , fkN ] have smooth extensions to U for any N and
any indices ki, 1 ≤ ki ≤ n, then the operator A has a smooth extension
to U .

Proof. The lemma will be proved by induction on the order of the op-
erator A. If A is of order zero, it is the operator of pointwise multipli-
cation by the function A1, which has a smooth extension to U . Assume
that the statement of the lemma is true for any operator of order less
than r and that A is of order r. Then for any indices ki, 1 ≤ i ≤ r, the
following identity holds:

[. . . [[A, fk1], fk2], . . . , fkr ] = r!p
(

dfk1 ⊗ . . .⊗ dfkr
)

,

where p : (T ∗V )⊗r → C is the (polarized) principal symbol of the
operator A. Since the functions {f i} form a frame on U , the principal
symbol of the operator A has a smooth extension to U . One can
construct an operator B of order r on U whose principal symbol is the
extension of p to U . Now the operator A−B is of order less than r and
satisfies the conditions of the lemma. Therefore A − B has a smooth
extension to U , whence the lemma follows. �
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Let M be a smooth real n-dimensional manifold with a dense open
subset Ω. Assume that π is a Poisson bivector field on Ω and ∗ is a
star product on the Poisson manifold (Ω, π).

Theorem 2. Given a point a ∈ M\Ω in a coordinate chart U ⊂ M ,
let {f 1, . . . , fn} be a formal frame on U . If the operators of right star-
multiplication Rfk , k = 1, . . . , n (or the operators of left star multipli-
cation Lfk , k = 1, . . . , n) on Ω ∩ U can be extended to smooth formal
differential operators on U , then the star-product ∗ has a smooth exten-
sion to a star-product on U . In particular, then π extends to a smooth
Poisson bivector field on U .

Proof. Let u = u0 + νu1 + . . . be a smooth formal function on U .
The left star-multiplication operator Lu on U ∩ Ω commutes with the
operators Rfk , k = 1, . . . , n. Writing Lu = A0 + νA1 + . . . and Rfk =
Bk

0 + νBk
1 + . . ., we have that the operators A0 = u0 and Bk

r , r ≥ 0,
have smooth extensions to U . We will prove by induction on r that
the operator Ar has a smooth extension to U . This is true for r = 0.
Assume that this is true for all r < s. We have

(4) [. . . [[Lu, Rfk1 ], Rfk2 ], . . . , RfkN ] = 0

for any N and indices ki. Consider the coefficient at νs of the left-hand
side of (4). Since Bk

0 = fk0 , this coefficient can be written as

(5) [. . . [[As, f
k1
0 ], fk20 ], . . . , fkN0 ]

plus a sum of commutators of the operators Ai and B
k
j with i < s and

j ≤ s which all have smooth extensions to U . Thus the operator (5)
also has a smooth extension to U . Taking into account that As1 = us,
we get from Lemma 1 that the operator As has a smooth extension
to U . Therefore the operator Lu has a smooth extension to U for any
formal function u on U . This implies that the star product ∗ extends
to a smooth formal star-product on U . In particular, π extends to a
Poisson bivector field on U . �

4. A Kähler-Poisson tensor vanishing on a

Levi-nondegenerate hypersurface

In this section we want to give yet another proof of Theorem 1 from
Example 1 based upon Theorem 2.
Recall that ψ is a defining function of a Levi-nondegenerate hyper-

surface Σ in an open set U ⊂ Cn and Γ is the Monge-Ampère matrix (2)
which we assume to be nondegenerate on U . Fix a point x0 ∈ Σ. Then
ψ(x0) = 0 and (∂ψ)(x0) 6= 0, since the matrix Γ(x0) is nondegenerate.
Therefore, there exists an index s such that ∂ψ

∂zs
(x0) 6= 0. Denote by V
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the neighborhood of x0 within U where ∂ψ

∂zs
does not vanish. We will

construct formal functions {f 1, . . . , fn} on V such that the functions
{z1, . . . , zn, f 1, . . . , fn} form a formal frame on a neighborhoodW ⊂ V
of x0 and the operators Lfk , k = 1, . . . , n, of the star product ∗ on V \Σ
have a smooth extension to W (this is trivially true for the operators
Lzk = zk). Theorem 2 will then imply that the standard star product
with separation of variables ∗ on (U\Σ, ω) smoothly extends from U\Σ
to U . Introduce the following invertible operator on V ,

Q = 1 + νψ

(

∂ψ

∂zs

)−1
∂

∂zs
.

On V \Σ the operator

L∂ log |ψ|
∂zs

=
∂ log |ψ|

∂zs
+ ν

∂

∂zs
= ψ−1 ∂ψ

∂zs
+ ν

∂

∂zs
= ψ−1 ∂ψ

∂zs
Q

is invertible. The inverse operator

(

L∂ log |ψ|
∂zs

)−1

= Q−1 ◦

(

(

∂ψ

∂zs

)−1

ψ

)

is also a left multiplication operator of the star product ∗ on V \Σ.
It admits a smooth extension to V which we will denote Xs. Then
f s = Xs1 is a smooth formal function on V , f s = f s0 + νf s1 + . . ., such

that f s ∗ ∂ log |ψ|
∂zs

= 1 on V \Σ and

f s0 =

(

∂ψ

∂zs

)−1

ψ

on V . For k 6= s the operator

(

L∂ log |ψ|
∂zs

)−1

L∂ log |ψ|

∂zk

= Q−1 ◦

(

(

∂ψ

∂zs

)−1(
∂ψ

∂zk
+ νψ

∂

∂zk

)

)

is a left multiplication operator of the star product ∗ on V \Σ. It admits
a smooth extension to V which we will denote Xk. Then fk = Xk1 is
a smooth formal function on V , fk = fk0 + νfk1 + . . ., and

fk0 =

(

∂ψ

∂zs

)−1(
∂ψ

∂zk

)

.

We want to prove that {z1, . . . , zn, f 1, . . . , fn} is a formal frame on a
neighborhood of x0. It suffices to prove that the covectors

(6)

(

∂fk0
∂z̄1

(x0), . . . ,
∂fk0
∂z̄n

(x0)

)
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for k = 1, . . . , n, are linearly independent. Taking into account that
ψ(x0) = 0, we see that for k = s the covector (6) is nonzero and
proportional to the nonzero covector

(7)

(

∂ψ

∂z̄1
(x0), . . . ,

∂ψ

∂z̄n
(x0)

)

.

For k 6= s the covector (6) is proportional to the covector

(8)

(

∂2ψ

∂zk∂z̄1
∂ψ

∂zs
−

∂2ψ

∂zs∂z̄1
∂ψ

∂zk
, . . . ,

∂2ψ

∂zk∂z̄n
∂ψ

∂zs
−

∂2ψ

∂zs∂z̄n
∂ψ

∂zk

)

at x0. It is a simple consequence of formulas (7) and (8) that the linear
independence of the covectors (6) for k = 1, . . . , n, is equivalent to the
nondegeneracy of the matrix Γ(x0).
Thus we have proved Theorem 1 from [8] using a different approach.

5. Roots of formal differential operators

In the next section we will construct a family of star products with
separation of variables on the complement of a Levi-nondegenerate hy-
persurface in an open subset of Cn which admit a smooth extension to
the whole open subset. In order to use Theorem 2 we will have to find
a root of a specific formal differential operator. To this end we will now
prove several technical statements.
Let X denote the ring of polynomials in an infinite number of vari-

ables,
X = C[t0, t1, . . .],

and A denote the algebra of differential operators on X generated by
the multiplication operators by the elements of X and a single differ-
entiation operator

δ =

∞
∑

k=0

tk+1
∂

∂tk
.

For this operator, δtk = tk+1. Clearly, A is generated by t0 and δ.
Given a manifold X , a function f , and a vector field v on X , denote
by D the algebra of differential operators on X generated by f and v.
Then there exists a well defined surjective homomorphism τ : A → D
such that τ(t0) = f and τ(δ) = v.

Lemma 2. Let Br be a differential operator in A of order not greater
than r. Then for any natural number N there exists a unique differen-
tial operator Ar ∈ A satisfying the equation

(9)

N
∑

i=0

tN−i
0 Ar ◦ t

i
0 = t

N(r+1)
0 Br.



STAR PRODUCTS ADMITTING A SMOOTH EXTENSION 9

The order of Ar is not greater than r.

Proof. We will prove that equation (9) has a unique solution by induc-
tion on r. Comparing the principal symbols of the operators on both
sides of equation (9) we see that the order of the operator Ar must be
equal to the order of Br. First consider equation (9) with r = 0. Both
A0 and B0 must be multiplication operators by elements of X and

A0 =
1

N + 1
B0.

Denote the principal symbol of order p of a differential operator X
of order not greater than p by σp(X). If Ar is a solution of equation
(9), then

(N + 1)tN0 σr(Ar) = t
N(r+1)
0 σr(Br),

which implies that

σr(Ar) =
1

N + 1
tNr0 σr(Br).

Therefore the order of the operator

Ar−1 := Ar −
1

N + 1
tNr0 Br

must be not greater than r − 1 and Ar−1 should satisfy equation (9)
with r replaced with r − 1 and with

Br−1 := tN0 Br −
1

N + 1

N
∑

i=0

tN−i
0 Br ◦ t

i
0.

It is clear that σr(Br−1) = 0, whence the order of Br−1 is not greater
than r−1. By the induction principle, it implies that equation (9) has
a unique solution for any r. �

We introduce a bidegree on the algebra A such that the operator t0
has the bidegree (1, 0) and the operator δ has the bidegree (0, 1). Then
the operator tr has the bidegree (1, r). Observe that if the operator
Br from Lemma 2 is a homogeneous element of algebra A of bidegree
(q, r), then the solution Ar of eqn. (9) is homogeneous of bidegree
(Nr + q, r).

Lemma 3. Given the operator

(10) S :=
∞
∑

k=0

νk
(

tN+1
0 δ

)k
◦ tN+1

0 = tN+1
0 + νtN+1

0 δ ◦ tN+1
0 + . . .
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in the algebra A[[ν]], there exists a unique operator A = A0+ νA1+ . . .
in A[[ν]] such that A0 = t0 and

(11) AN+1 = S.

Proof. Equating the coefficients at νr of the operators on the both sides
of equation (11), we obtain the equation

∑

i0+...iN=r

Ai0 . . . AiN =
(

tN+1
0 δ

)r
◦ tN+1

0

which can be rewritten as follows:

(12)

N
∑

i=0

tN−i
0 Ar ◦ t

i
0 =

(

tN+1
0 δ

)r
◦ tN+1

0 −
∑

i0+...iN=r,is<r

Ai0 . . . AiN .

Notice that the right-hand side of eqn. (12) depends only on the opera-
tors Ai with i < r. We can find the components Ar from equation (12)
by induction on r using Lemma 2. Applying induction to eqn. (12), we
have to show simultaneously that the bidegree of Ar is ((N +1)r+1, r)
and that the right-hand side of eqn. (12) can be represented in the form

t
N(r+1)
0 Br for some operator Br ∈ A. To justify the latter statement
observe that the right-hand side of eqn. (12) being a homogeneous
element of the algebra A of bidegree ((N +1)(r+1), r), can be written
as a linear combination of operators of the form

(

∏

s≥0

(ts)
is

)

δj,

where
∑

s≥0

is = (N + 1)(r + 1) and
∑

s≥1

sis + j = r.

It implies that

i0 =

(

∑

s≥2

(s− 1)is

)

+ j +Nr +N + 1 > N(r + 1),

which means that any homogeneous element of the algebra A of bide-

gree ((N+1)(r+1), r) is divisible on the left by t
N(r+1)
0 , which concludes

the proof. �

We will also need the two following lemmas.

Lemma 4. Given a nonvanishing smooth function f and two formal
differential operators A = A0 + νA1 + . . . and B = B0 + νB1 + . . . on
a manifold M such that A0 = B0 = f is the pointwise multiplication
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operator by f and AN+1 = BN+1 for a nonnegative integer N , then
A = B.

Proof. Let D be a differential operator on M such that

(13) fND + fN−1D ◦ f + . . .+D ◦ fN = 0.

Assume that D is a nonzero operator of order r with the nonzero prin-
cipal symbol σr(D). Now, the principal symbol of the left-hand side of
(13) is (N + 1)fNσr(D) = 0, whence σr(D) = 0. This contradiction
implies that D = 0. Using this observation, we will prove by induction
on r that Ar = Br for all r ≥ 0. We have that A0 = B0. Given r > 0,
assume that Ak = Bk for all k < r. Denote

X := A0 + νA1 + . . .+ νr−1Ar−1 = B0 + νB1 + . . .+ νr−1Br−1.

It follows from the condition AN+1 = BN+1 that

νr
(

XNAr +XN−1ArX + . . . ArX
N
)

=

νr
(

XNBr +XN−1BrX + . . . BrX
N
)

(mod νr+1),

whence fND+fN−1D◦f+. . .+D◦fN = 0 forD = Ar−Br. Therefore,
Ar = Br, which concludes the proof. �

Lemma 5. Given a star product ∗ on a Poison manifold M , a non-
vanishing complex-valued function u0 on M , and a formal function
v = v0 + νv1 + . . . such that v0 = uq0 for some q ∈ Z, there exists a
unique formal function u = u0 + νu1 + . . . on M such that v = u∗q.

Here u∗q is the qth power of u with respect to the star product ∗.

Proof. Assume that q > 0. We will show by induction on l the existence
and uniqueness of each coefficient ul, l > 1. For f1, . . . fq ∈ C∞(M) set

f1 ∗ . . . ∗ fq =

∞
∑

r=0

νrCr(f1, . . . , fq).

Then, in particular, C0(f1, . . . , fq) = f1 . . . fq. Equating the coefficients
at νl of u∗q and v we get

(14)
∑

i0+...+iq=l

Ci0(ui1, . . . , uiq) = vl.

The terms containing ul on the left hand side of (14) are

C0(ul, u0, . . . u0) + C0(u0, ul, . . . u0) + . . .+ C0(u0, . . . , ul) = quq−1
0 ul,

which shows that ul is uniquely expressed through the coefficients uj for
j < l. The statement of the lemma is well known for q = −1. Assume
that q < 0. The equation v = u∗q is equivalent to v∗(−1) = u∗(−q) which
reduces the case of q < 0 to the case of q > 0. �
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6. A family of Kähler-Poisson tensors vanishing on a

Levi-nondegenerate hypersurface

Given an open subset U ⊂ Cn and a Levi-nondegenerate hypersur-
face Σ ⊂ U with a defining function ψ, for each positive integer N we
will introduce a Kähler-Poisson tensor on a neighborhood UN of Σ in U
vanishing on Σ and nondegenerate on its complement UN\Σ such that
the corresponding standard deformation quantization on UN\Σ admits
a smooth extension to UN .
For each nonnegative integer N define a matrix

ΓN =

(

∂2ψ

∂zk∂z̄l
∂ψ

∂zk
∂ψ

∂z̄l
(N + 1)−1ψ

)

on U . In particular, Γ0 = Γ. Set Ω = U\Σ. For N > 0, let ωN be the

closed (1, 1)-form on Ω whose potential is Φ = 1−ψ−N

N
. Set

gkl =
∂2Φ

∂zk∂z̄l
.

Lemma 6. The form ωN is nondegenerate if and only if the matrix ΓN
is nondegenerate.

Proof. For each k ≤ n multiply the last row in the matrix ΓN by
(N +1)ψ−1 ∂ψ

∂zk
and subtract it from the kth row. The resulting matrix

is
(

Xkl 0
∂ψ

∂z̄l
(N + 1)−1ψ

)

,

where Xkl =
∂2ψ

∂zk∂z̄l
− (N + 1)ψ−1 ∂ψ

∂zk
∂ψ

∂z̄l
. The lemma follows from the

observation that

(15) gkl = ψ−N−1Xkl.

�

Remark. If N = 0, the tensor (15) defines the (1, 1)-form ω with the
potential log |ψ| as in Example 1.
Since ψ is a defining function of the Levi-nondegenerate hypersurface

Σ ⊂ U , the matrix ΓN is nondegenerate at every point of Σ. Thus, the
matrix ΓN is nondegenerate on some neighborhood UN of Σ in U and
therefore ωN is a pseudo-Kähler form on UN\Σ.
Consider the inverse matrix

Γ−1
N =

(

Alm Bl

Cm D

)
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on UN . A simple calculation shows that the matrix Alm is inverse to
Xkl, which implies that the inverse glm of the matrix gkl is

glm = ψN+1Alm.

Taking into account that the matrix Alm is smooth on UN , we see that
the Kähler-Poisson tensor glm admits a smooth extension to UN which
vanishes on UN ∩Σ. We will prove that the standard star-product with
separation of variables ∗ on (UN\Σ, ωN) also admits a smooth extension
to UN .
As in Section 4, assume that x0 is an arbitrary point in Σ and s is

an index such that ∂ψ

∂zs
6= 0 on some neighborhood V ⊂ UN of x0. On

UN\Σ we have

L ∂Φ

∂zk
=
∂Φ

∂zk
+ ν

∂

∂zk
= ψ−N−1 ∂ψ

∂zk
+ ν

∂

∂zk
=

ψ−N−1

(

∂ψ

∂zk
+ νψN+1 ∂

∂zk

)

and the operator L ∂Φ
∂zs

is invertible on V \Σ. Moreover, its inverse

(16)
(

L ∂Φ
∂zs

)−1

=

(

1 + νψN+1

(

∂ψ

∂zs

)−1
∂

∂zs

)−1

◦

(

(

∂ψ

∂zs

)−1

ψN+1

)

and the operators
(

L ∂Φ
∂zs

)−1

L ∂Φ

∂zk
=

(

1 + νψN+1

(

∂ψ

∂zs

)−1
∂

∂zs

)−1

◦

(

(

∂ψ

∂zs

)−1(
∂ψ

∂zk
+ νψN+1 ∂

∂zk

)

)

(17)

for k 6= s admit smooth extensions to V .
As in Section 4, we want to construct a formal frame

{z1, . . . , zn, f 1, . . . , fn}

on some neighborhood W ⊂ V of x0 such that the operators Lfk , k =
1, . . . , n, of the standard star product with separation of variables on
W\Σ have smooth extensions to W . For k 6= s denote by Xk the
smooth extension of the operator (17) to V and set fk = Xk1. Then
the coefficient fk0 at the zero degree of the formal parameter ν in fk is
given by the formula

fk0 =

(

∂ψ

∂zs

)−1(
∂ψ

∂zk

)

.
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as in Section 4. To define the function f s in the formal frame we will
show that the smooth extension of the operator (16) to V has a smooth
root of degree N + 1 on a neighborhood of x0. Shrinking, if necessary,
the neighborhood V of x0, denote by χ any root of degree N +1 of the

function
(

∂ψ

∂zs

)−1
on V . According to Lemma 5, there exists a unique

formal function u = u0 + νu1 + . . . on V \Σ such that u0 = χψ and
u∗(−N−1) = ψ−N−1 ∂ψ

∂zs
= ∂Φ

∂zs
. Therefore,

(Lu)
N+1 =

(

L ∂Φ
∂zs

)−1

on V \Σ. On the other hand, the operator L ∂Φ
∂zs

can be written in the

form

L ∂Φ
∂zs

= ψ−N−1 ∂ψ

∂zs
+ ν

∂

∂zs
= (ψχ)−N−1 + ν

∂

∂zs

on V \Σ, and its inverse,

(

L ∂Φ
∂zs

)−1

=
∞
∑

k=0

νk
(

(ψχ)N+1

(

−
∂

∂zs

))k

◦ (ψχ)N+1,

has a smooth extension to V . Consider a homomorphism τ from the
algebraA introduced in Section 5 to the algebra of differential operators
on V such that τ(t0) = ψχ and τ(δ) = − ∂

∂zs
. Extend it to the mapping

from A[[ν]] to the algebra of formal differential operators on V by ν-
linearity. Then

τ(S) =
(

L ∂Φ
∂zs

)−1

= (Lu)
N+1

for S ∈ A[[ν]] given by formula (10). According to Lemma 3, there
exists an element A ∈ A[[ν]] such that AN+1 = S and A = t0 (mod ν).
Therefore, τ(A) = ψχ (mod ν) and

(τ(A))N+1 =
(

L ∂Φ
∂zs

)−1

= (Lu)
N+1

on V \Σ. It follows from Lemma 4 that τ(A) = Lu on V \Σ. Therefore
the operator τ(A) is a smooth extension of the operator Lu to V . Set
f s = τ(A)1. The coefficient of f s at the zero degree of ν is f s0 = ψχ.
Now, taking into account that ψ(x0) = 0, we get

∂f s0
∂z̄l

(x0) =

(

∂ψ

∂z̄l
χ

)

(x0).

Since χ(x0) 6= 0, we obtain that the covector ∂̄f s0 (x0) is proportional
to the nonzero covector ∂̄ψ(x0) and is nonzero itself. Thus it can be
proved as in Section 4 that the formal functions

(18) {z1, . . . , zn, f 1, . . . , fn}
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form a formal frame on a neighborhood of the point x0. This formal
frame satisfies the conditions of Theorem 2, which concludes the proof
of the following theorem:

Theorem 3. Let ψ be a defining function of a Levi-nondegenerate hy-
persurface Σ in an open set U ⊂ Cn and N be a natural number. Then
there exists a neighborhood UN ⊂ U of Σ such that the potential

1− ψ−N

N

defines a pseudo-Kähler form ωN on UN\Σ, and both the corresponding
Kähler-Poisson structure and the standard deformation quantization
with separation of variables on (UN\Σ, ωN) admit smooth extensions
to the neighborhood UN .

7. A smooth extension of a star product on an open

subset of a Grassmannian

In this section we will use Theorem 2 to prove that the star product
with separation of variables from Example 2 in Section 2 admits a
smooth extension. Namely, let M be the set of complex p× r-matrices
Z = (zkα) and O be the subset of matrices Z ∈ M such that the
matrix Ψ = E − Z†Z is nondegenerate. The potential Φ = log | detΨ|
determines a pseudo-Kähler form ω on O.

Theorem 4. The Kähler-Poisson structure corresponding to the pseudo-
Kähler structure on O given by the form ω and the standard star prod-
uct with separation of variables ∗ on (O, ω) admit smooth extensions
to M .

Proof. The matrix Ψ = E − Z†Z has the entries

ψαβ = δαβ −

p
∑

k=1

z̄kαzkβ

and is invertible on O. Denote the inverse matrix by X = (χβγ). Then

∂Φ

∂zkκ
=

∂

∂zkκ
log | detΨ| =

∑

α,β

χβα
∂ψαβ
∂zkκ

= −
∑

α

χκαz̄kα.

Therefore, the left multiplication operator by uκk :=
∑

α χκαz̄kα with
respect to the star product ∗ is

Lu
κk

= uκk − ν
∂

∂zkκ
=
∑

α

χκα

(

z̄kα − ν
∑

γ

ψαγ
∂

∂zkγ

)

.
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Taking into account that
∑

k

uκkzkβ =
∑

k,α

χκαz̄kαzkβ =
∑

α

χκα(δαβ − ψαβ) = χκβ − δκβ ,

we obtain that
∑

k

LzkβLuκk =
∑

k

(

uκkzkβ − νzkβ
∂

∂zkκ

)

=

χκβ − δκβ − ν
∑

k

zkβ
∂

∂zkκ

is the left multiplication operator by χκβ − δκβ. It follows that

Lχ
κβ

= χκβ − ν
∑

k

zkβ
∂

∂zkκ
=

∑

α

χκα

(

δαβ − ν
∑

k,λ

ψαλzkβ
∂

∂zkλ

)

.

Interpreting the operators Lχ
κβ
, χκα and

(19) δαβ − ν
∑

k,λ

ψαλzkβ
∂

∂zkλ

as matrices whose entries are formal differential operators on O, we see
that the matrix (19) has a smooth extension to M and is invertible on
M . Denote its inverse on M by Qβα. The inverse matrix of Lχ

κβ
on O

is

Jβκ :=
∑

α

Qβα ◦ ψακ.

Its entries Jβκ are left multiplication operators with respect to the
product ∗. The matrix Jβκ has a smooth extension to M . Observe
that the entries of the matrix

Kβk :=
∑

κ

JβκLu
κk

=
∑

α

Qβα ◦

(

z̄kα − ν
∑

γ

ψαγ
∂

∂zkγ

)

are also left multiplication operators with respect to the product ∗
and the matrix Kβk also has a smooth extension to M . Denote by

fβk = fβk0 + νfβk1 + . . . the formal function on M given by the formula

fβk = Kβk1. Since fβk0 = z̄kβ, the functions {zjα, f
βk} form a formal

frame on M . Also, Lfβk = Kβk on O. Now, it follows from Theorem 2
that the star product ∗ admits a smooth extension to M . �
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