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CONVOLUTIONAL GOPPA CODES DEFINED ON FIBRATIONS

J. I. IGLESIAS CURTO, J. M. MŨNOZ PORRAS, F. J. PLAZA MART́IN
AND G. SERRANO SOTELO

ABSTRACT. We define a new class of Convolutional Codes in terms of
fibrations of algebraic varieties generalizaing our previous constructions
of Convolutional Goppa Codes ([1, 14]). Using this general construction
we can give several examples of Maximum Distance Separable (MDS)
Convolutional Codes.

1. INTRODUCTION

This paper offers a generalization of our algebro-geometric construction
of Convolutional Goppa Codes (CGC) ([1, 2, 9, 10, 14]). Recall, that Alge-
braic Geometry has been successfully applied in Coding Theory during the
last decades, first for block codes (e.g. [4, 5, 16, 20, 8]) andmore recently
for convolutional codes ([12, 17]), as a natural continuation of the algebraic
constructions of convolutional codes already known for long (as for exam-
ple [11, 15]). Our aim is to consider algebro-geometric properties of higher
dimensional varieties in order to obtain Convolutional Goppa Codes with
good properties, as it has been successfully done for block codes ([6, 21]).

CGC are constructed in terms of families of algebraic varieties,X →A
1,

parametrized by an affine lineA1. In the case of block codes, the generaliza-
tion of Goppa Codes to higher-dimensional varieties has been successfully
used.

The contents of this work are arranged in the following way. In §2
we summarize some notions and results on convolutional codes based on
[3, 13]. In §3 we expose the construction of CGC defined by a family of
algebraic varieties,X →A

1, parametrized by the affine line. This construc-
tion consists of evaluating sections of an invertible sheafon sections of the
fibrationX →A

1. In §4 details are given for the construction when consider
in the particular case of the trivial fibrationP2

Fq
×A

1 → A
1. §5 provides

some examples in order to illustrate the possibilities of our approach.
We use the standard notations of Algebraic Geometry as can befound in

[7].
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2. PRELIMINARIES ON CONVOLUTIONAL CODES

Let Fq be a finite field of sizeq= ps, with p a prime.
Recall that, opposed to the definition of block codes as vector subspaces,

convolutional codes are (roughly) defined as submodules ofF[z]n. Con-
volutional codewords are then polynomial vectors; indeed,the encoded
sequence(c0,c1,c2, . . .) (with ci ∈ F

n) is equivalently represented as the
polynomial c(z) = ∑i=0cizi . Each codeword (encoded sequence) results
of applying a polynomial generator matrix to an informationword (or in-
formation sequence)(u0,u1,u2, . . .), which will be analogously written as a
polynomialu(z)=∑i=0uizi. The fact that the entries of the generator matrix
are polynomials implies that each encoded blockci depends not only onui
but also on the previous information blocksui−1, . . .. This is the distinctive
aspect between block and convolutional codes. The term “convolutional” is
used since the output sequences can be regarded as the convolution of the
input sequences with the sequences in the encoder, [3]. The control ma-
trix (a.k.a. parity check matrix) and dual code for convolutional codes are
defined exactly in the same way as for block codes.

More rigourously, an(n,k) convolutional codeC overFq is defined as a
rankk submodule ofFq[z]n. The integers(n,k) are called, respectively, the
lengthanddimensionof the convolutional code. The quotientk

n is called
therateof the code.

Everyk×n matrix of maximal rank,G, with entries inFq[z] defines an
injective map

G: F[z]k →֒ F[z]n

Its image defines a(n,k) convolutional codeC and, in this case,G will be
called apolynomial encoderor generator matrixof C , although not every
generator matrix is equally suitable. We will prefer matrices which are
basic; we say thatG is basic if the g.c.d. of the minors of orderk of G is
equal to 1.

Any polynomial encoderG for C induces a injectiveFq(z)-linear map

G: Fq(z)
k →֒ Fq(z)

n .

Although this may allow us to generalize the notion of convolutional code
as subspaces ofFq(z)n, one has to bear in mind that different associated en-
codersG generate submodules ofFq[z]n which may be different. However,
basic encoders always generate the same submodule ([2]). Therefore, in
this sense we may consider that the notions of convolutionalcodes as sub-
modules ofFq[z]n or as vector subspaces ofFq(z)n are equivalent.

Indeed, for a given convolutional codeC , the unimodular groupGL(k,Fq[z])
acts transitively on the set of basic encoders forC ([2]). Then, one can
consider an invariant associated with the code, thedegreeof the code,δ ,
defined as (e.g. [13])

δ := maximum degree of the minors of orderk of a basic encoder forC
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Thedegreeof a polynomial encoderG, degG, is the sum of the degrees
of its rows. Forney ([3]) proved that for each(n,k)-convolutional code of
degreeδ there exists at least one basic encoderG such that

δ = degG≤ degG′ ,

for all polynomial encodersG′ of the convolutional code. These basic en-
codersG are calledminimal basic encodersby Forney [3] orcanonical
encodersby McEliece [13].

As for block codes, there is a notion of distance that will characterize the
error detection/correction capacity of convolutional codes thefree distance,
df ree. Let us define the overall Hamming weight of a polynomial vector
v(z) = ∑i=0vizi as w(v(z)) = ∑i=0w(vi). Then the free distance of the code
C is defined as

(1) df ree(C ) := min
c∈C

w(c) .

The free distance is directly related to the other parameters of the code.
However, the exact relationship is not known and different bounds are con-
sidered instead. One of the most usually considered is the generalized Sin-
gleton bound [19]

(2) df ree≤ S(n,k,δ ) = (n−k)

(⌊
δ
k

⌋
+1

)
+δ +1

Convolutional codes attaining the generalized Singleton bound are called
Maximum Distance Separable (MDS).

Convolutional codes do have one more parameter which do not have a
counterpart in block codes, thememory. It is well known, e.g. [13], that the
row degrees of a canonical generator matrix are, up to ordering, uniquely
determined by the code. They are known as theForney indicesof the code.
The largest of them is called the memory of the code and denoted m. The
sum of the Forney indices, which is equal the maximal degree of the mi-
nors of any basic matrix, coincides the degree (also known ascomplexity)
of the code. Roughly, the degree of the code measures the dependance of
an encoded block with respect to the information blocks, while the memory
counts on how many information blocks does every encoded block depend.
Convolutional codes of degree 0 are precisely linear block codes.

3. GENERAL CONSTRUCTION

Let X be a variety of dimensionm+1≥ 2, letA1 = SpecFq[z] denote the
affine line and let us consider a flat and projective morphismπ : X → A

1

whose fibers are smooth and geometrically irreducible algebraic varieties of
dimensionm. Recall that for dimX = 2 the fibers are curves; this case has
been studied in [1, 14]. For the basic facts on algebraic geometry that will
be used here, we address the reader to [7].
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Let us choosen different sections ofπ

pi : A1 → X with pi ◦π = Id ∀i = 1, . . . ,n

and, thus,pi(A
1) ⊂ X is a curve isomorphic toA1. Consider the closed

subscheme

D = p1(A
1)∪ . . .∪ pn(A

1)

as well as the morphismp given by the composition

D � � //

p

  A
A

A

A

A

A

A

X

π
��

A
1

which is flat and finite of degreen.
Let us callOD andID respectively the sheaves of rings and ideals of

D →֒ X. We have an exact sequence

0→ ID → OX → OD → 0

Let L be an invertible sheaf overX. The tensor product of the sequence
with L yields

0→ L ⊗ID → L → ÕD → 0,

whereÕD = OD ⊗
OX

L . Taking global sections we obtain the long exact

sequence ofFq[z]-modules
(3)

0 // H0(X,L ⊗ID) // H0(X,L ) // H0(X,ÕD)
// H1(X,L ⊗ID) // H1(X,L ) // 0

Remark3.1. Note that the flatness ofp : D → A
1 implies the existence of

isomorphismsφ : p∗OD
∼
→ Fq[z]n, whereFq[z] also denotes its correspond-

ing sheaf onA1. In general these isomorphisms are not canonical but, if the
chosen sectionspi are disjoint, then there exists a canonical isomorphism
p∗OD ≃ Fq[z]n induced byp.

SinceL restricted to the sections is trivial, theñOD ≃ OD, but such
identification is not canonical. Thus, if we fix an isomorphism

φ : H0(X,OD)
∼

−→ Fq[z]
n ,

as well as trivializations for each sectionpi , we obtain induced isomor-
phismsÕD ≃ OD andψ : H0(X, ÕD)

∼
→ Fq[z]n.

Remark3.2. If we takeL ≃ OX(H), beingH an effective divisor onX
which is flat overA1, the trivializationsL |pi and the isomorphismψ are
fixed.
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Definition 3.3. The convolutional Goppa codeC (Γ,D,ψ) determined by
the sheafL , the subschemeD, the isomorphismψ, and a submoduleΓ ⊆
H0(X,L ) is the submodule given by the image of the homomorphismf
defined by

0 // H0(X,L ⊗ID) // H0(X,L ) // H0(X, ÕD)

≀ψ
��

Γ
?�

OO

f
//______ Fq[z]n

By the very construction, thelength of the codeis given by the rank of
OD as anOA1-module, which is the numbern of sections taken to define
the code. The issue of constructing such sections is clearlyrelated with the
question of finding rational points in algebraic varieties over finite fileds.

Thedimension of the codeis equal to the rank of the submodule Im( f )
which coincides with the rank ofΓ if and only if Γ∩H0(X,L ⊗ID) =
(0). Note that in the case of the complete linear series,Γ = H0(X,L ), the
additive property of the dimension applied to the exact sequence 3 yields

rkC (Γ,D,ψ) = h0(L )−h0(L ⊗ID) = h0(ÕD)−h1(L ⊗ID)+h1(L )

Nevertheless, the explicit calculus of these numbers for the general case is
a very hard problem in classical algebraic geometry based onthe theory of
syzygies.

For the approach in terms of subspaces ofFq(z), one considers the the
generic point ofA1, η, whose residue field isFq(η) = Fq(z). The fiberXη
is anm-dimensional variety overFq(z), andp1(η), . . . , pn(η) aren differ-
entFq(z)-rational points. Then we haveDη = p1(η)∪ . . .∪ pn(η), and an
isomorphism

ψη : H0(Xη , ÕDη )
∼
→ Fq(z)

n .

Moreover, ifL = OX(H) thenψη is canonical.

Definition 3.4. Theconvolutional Goppa codeC (Γ,Dη ,ψη) is the image
of the homomorphismfη defined by

0 // H0(Xη ,Lη ⊗IDη )
// H0(Xη ,Lη) // H0(Xη , ÕDη )

≀ψη
��

Γ
?�

OO

fη //_______ Fq(z)n

whereΓ is a given subspace ofH0(Xη ,Lη)

The length and dimension of the codeC (Γ,Dη ,ψη) are computed as
above.

In the rest of the paper we will continue with the submodule approach,
but as we have just seen the shift to the subspace setting would be straight-
forward.



6 J. I. IGLESIAS CURTO ET AL.

As it was already mentioned in the Introduction, the case when dimX = 2
has been already studied in [1, 14], in particular forX =P

1×A
1. In the next

Section we will illustrate in detail how the construction works for higher
dimensional varieties by consideringX = P

2
Fq
×A

1.

4. CODES DEFINED ON THE PROJECTIVE PLANE OVERFq

Let P2
Fq

= ProjFq[x0,x1,x2] be the projective plane overFq, and let

X = P
2
Fq
×A

1 π
→ A

1 .

be the trivial fibration.
Let H∞ ⊂ P

2
Fq

be the line defined by the equationx0 = 0. Then, its com-

plement is an affine plane,P2
Fq
\H∞ = A

2.

We will choose the sectionspi (1≤ i ≤ n) of π taking values inA2×A
1.

They are given by

A
1 pi
−→ A

2×A
1

z 7→ pi(z) = (αi,1z+βi,1,αi,2z+βi,2,z)

where allαi,r ,βi,s ∈ Fq. Observe that the length of the code is bounded
by the number of different sections; that is,n ≤ q4. However, this count
includes also linear codes (e.g.αi,r ≡ 0 for all i, r) as well as codes defined

with the fibrationP1
Fq
×A

1 π
→A

1 (e.g. when then sections are collinear).

Let us considerer the divisorπ∗
1H∞, whereπ1 : X → P

2
Fq

is the projection
onto the first factor, and the invertible sheaf given by

L := O
P2
Fq[z]

(π∗
1H∞)

⊗r ≃ π∗
1O(1)⊗r = O(r)⊗

Fq

Fq[z]

where we writeO(r) := O
P2
Fq
(H∞)

⊗r for simplicity.

Notice that, as it was pointed out in Remark 3.2, the trivializations ofL
on the sectionspi and the isomorphismψ : H0(X, ÕD)

∼
→ Fq[z]n are fixed.

If we denotet = x1
x0

, s= x2
x0

the affine coordinates in the affine planeA2,
the space of global sections is explicitly described as

H0(P2
Fq
,O(r)) = 〈t isj | 0≤ i + j ≤ r〉

Hence, the evaluation oft isj at the pointsp1, . . . , pn is given by

f (t isj)= ((α1,1z+β1,1)
i ·(α1,2z+β1,2)

j , . . . ,(αn,1z+βn,1)
i ·(αn,2z+βn,2)

j).

SinceH1(X,L ) = 0 andH0(X,L ) = H0(P2
Fq
,O(r))⊗Fq Fq[z], the long

exact sequence (3) reads now as follows

0 // H0(X,L ⊗ID) // H0(P2
Fq
,O(r))⊗Fq Fq[z] // Fq[z]n // H1(X,L ⊗ID) // 0

Furthermore, letΓ ⊂ H0(X,L ) be a submodule such that

Γ∩H0(X,L ⊗ID) = (0)
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then, f will be injective and a generator matrix of the codeC (Γ,D) (Defi-
nition 3.3) can be obtained from the evaluation map

Γ →֒ Fq[z]
n

The lengthn, dimensionk, memorym and the degreeδ of the convolu-
tional Goppa codes defined in this section are bounded by

n≤ q4, k≤ h0(P2
Fq
,O(r))=

(r +1)(r +2)
2

, m≤ r, δ ≤
r

∑
i=0

(i+1)i =
1
3

r(r+1)(r+2)

For illustrating this setup and exploring its possibilities, some examples
will be provided in the following section.

5. EXPLICIT EXAMPLES

We will write down explicit examples of the above given construction of
convolutional codes. We will varyΓ andD so that codes of different lengths
and dimensions will be obtained.

For the sake of clarity, all the examples will deal with a particular case
of the situation exposed in§4. More precisely, let us takeq= 8,F8 as base
field anda a primitive element such thata3+a2+1= 0.

Recall thatX := P
2
F8[z]

= P
2
F8
×A

1 and thatx0,x1,x2 denote the homoge-

neous coordinates inP2.
SetL = O

P2
F8[z]

(π∗
1H∞)

⊗2, then

H0(X,L ) = H0(P2
F8[z]

,O
P2
F8[z]

(π∗
1H∞)

⊗2) =< 1, t,s, t2, ts,s2 >

wheret = x1
x0

, s= x2
x0

are affine coordinates.
In the following examples will study the codes corresponding to certain

choices ofD andΓ ⊆ H0(X,L ).

5.1. Rate1/3 codes. In this case we consider the restriction of the evalua-
tion map to a submoduleΓ ⊂ H0(X,L ) generated by one section. Here we
do not need to care about the properties ofD andL in order to determine
the kernel of the evaluation map; whenever the restriction of the evaluation
map toΓ is non-zero,f is injective.

Let us consider the 1-dimensional convolutional Goppa codeC (D,Γ,ψ),
whereΓ ⊂ H0(X,L ) is the submodule generated by the sectiont +s2, and
D is consists of the points

(4) pi(z) := (a2i
+a2i−1

z,a2i+1
+a2i

z,z) i = 1,2,3

Then, the mapf have the following expression

G =
(
a6+az+a4z2 a5+a2z+az2 a3+a4z+a2z2

)

which is a generator matrix of the code. A straightforward check shows that
this generator matrix is canonical.
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A control matrix is
(

a5+a2z+az2 a6+az+a4z2 0
a3+a4z+a2z2 0 a6+az+a4z2

)

This code has length 3, dimension 1, memory 2, degree 2 and free dis-
tance 9. Further, it attains the generalized Singleton bound (2) and is, thus,
a MDS code.

5.2. Rate2/3 codes. Continuing with the idea of the previous example, let
us consider the submoduleΓ ⊂ H0(X,L ) generated by the sections{t,s2}
and the closed subschemeD given by the three section of equation (4). It
will be seen that the restriction of the evaluation map toΓ is injective.

Then, the matrix associated to the restriction of the evaluation map is

G =

(
a2+az a4+a2z a+a4z
a+a4z2 a2+az2 a4+a2z2

)

and, since it is injective, it gives us a generator matrix of the code, which is
canonical too.

A control matrix is given by the matrix
(
a4+az2+a2z3 a+a2z2+a4z3 a2+a4z2+az3

)

This code has length 3, dimension 2, memory 2, degree 3 and free dis-
tance 6 and it is, thus, a MDS code.

5.3. Rate1/4codes. In order to increase the length of the code, four points
will be considered. Indeed,D will be now the union of the following four
points

(5) pi(z) := (ai +a3iz,a2i +z,z) i = 1, . . . ,4

andΓ the submodule generated byt +s2.
Then, the restriction of the evaluation map toΓ yields a generator matrix

of the codeC (D,Γ,ψ)

G =
(
a3+a3z+z2 a6+a6z+z2 a6+a2z+z2 a5+a5z+z2

)

and a control matrix is



a6+a6z+z2 a3+a3z+z2 0 0
a6+a2z+z2 0 a3+a3z+z2 0
a5+a5z+z2 0 0 a3+a3z+z2




This code has length 4, dimension 1, memory 2, degree 2 and free dis-
tance 12 and it is, thus, a MDS code.
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5.4. Rate 2/4 codes. Finally, let us choose another submoduleΓ and pre-
serve the sameD as above (equation (5)) in order to get a code of length 4
and dimension 2. LetΓ the submodule generated by{t,s2}.

Then, the restriction of the evaluation map toΓ yields the following gen-
erator matrix of the codeC (D,Γ,ψ)

G =

(
a+a3z a2+a6z a3+a2z a4+a5z
a4+z2 a+z2 a5+z2 a2+z2

)

and a control matrix is(
a6+az+z2+az3 a4+a2z+a4z2+z3 a+az+a6z2+a5z3 0

a2+a2z+a5z2+a3z3 a4+a4z+a3z2+a6z3 0 a+az+a6z2+a5z3

)

This code has length 4, dimension 2, memory 2, degree 3 and free dis-
tance 8 and it is, thus, a MDS code.

6. CONCLUSIONS AND FUTURE WORK

The present work is embedded in the study of convolutional codes from
an algebraic geometric point of view. It is in particular a further step in
the construction of convolutional codes by means of algebraic geometric
tools. The main contribution with respect to previous worksis the gener-
alization of the setting where codes are defined. We present in this paper
the construction of convolutional codes on higher dimensional varieties us-
ing a rather small alphabet. In particular, the construction is detailed for
the varietyP2

Fq
×A

1. Although it is in general a hard task to compute the
parameters of the codes obtained we are able to find differentMDS convo-
lutional codes, and to illustrate this fact examples of codes with different
rates are also presented for the case of the projective planeoverF8.

The results obtained confirm our belief that this is a promising research
line. Future steps could be to determine conditions on the geometric el-
ements to obtain good codes or to adapt decoding algorithms to decode
them.

REFERENCES
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