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CONVOLUTIONAL GOPPA CODES DEFINED ON FIBRATIONS

J. 1. IGLESIAS CURTO, J. M. MBIOZ PORRAS, F. J. PLAZA MARIN
AND G. SERRANO SOTELO

ABSTRACT. We define a new class of Convolutional Codes in terms of
fibrations of algebraic varieties generalizaing our prasioonstructions

of Convolutional Goppa Codes ([1,114]). Using this geneoaistruction

we can give several examples of Maximum Distance SeparbilS]
Convolutional Codes.

1. INTRODUCTION

This paper offers a generalization of our algebro-geometnstruction
of Convolutional Goppa Codes (CGC)|([1, 2/ 9] 10, 14]). Retaat Alge-
braic Geometry has been successfully applied in Coding rifsharing the
last decades, first for block codes (elg.[[4, 5,[16] 20, 8])rantk recently
for convolutional codes|([12, 17]), as a natural continwatf the algebraic
constructions of convolutional codes already known fogl@as for exam-
ple [11,15]). Our aim is to consider algebro-geometric prtips of higher
dimensional varieties in order to obtain Convolutional GafCodes with
good properties, as it has been successfully done for blod&sc([6] 21]).

CGC are constructed in terms of families of algebraic vaageX — Al
parametrized by an affine lirfe!. In the case of block codes, the generaliza-
tion of Goppa Codes to higher-dimensional varieties haa kaecessfully
used.

The contents of this work are arranged in the following wayn §2
we summarize some notions and results on convolutionalscbdsed on
[3,[13]. In §3 we expose the construction of CGC defined by a family of
algebraic varietiesX — A, parametrized by the affine line. This construc-
tion consists of evaluating sections of an invertible sloea$ections of the
fibrationX — A, In §4 details are given for the construction when consider
in the particular case of the trivial fibratid]i’,l%q x Al — Al. g5 provides
some examples in order to illustrate the possibilities afapproach.

We use the standard notations of Algebraic Geometry as céoubed in

[7].
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2. PRELIMINARIES ON CONVOLUTIONAL CODES

LetFq be a finite field of size = p°, with p a prime.

Recall that, opposed to the definition of block codes as vettiospaces,
convolutional codes are (roughly) defined as submodulggz)f. Con-
volutional codewords are then polynomial vectors; indebeé, encoded
sequencecy, Cy,Co, ...) (with ¢ € F") is equivalently represented as the
polynomialc(z) = ¥i_oCiZ. Each codeword (encoded sequence) results
of applying a polynomial generator matrix to an informatisard (or in-
formation sequence)o, uy, Uz, . ..), which will be analogously written as a
polynomialu(z) = 5i_guiZ. The fact that the entries of the generator matrix
are polynomials implies that each encoded blgotepends not only o,
but also on the previous information bloaks 1, . ... This is the distinctive
aspect between block and convolutional codes. The termvtdotional” is
used since the output sequences can be regarded as theutmmvof the
input sequences with the sequences in the encader, [3]. dieot ma-
trix (a.k.a. parity check matrix) and dual code for convimoal codes are
defined exactly in the same way as for block codes.

More rigourously, ar{n, k) convolutional cod&” overFg is defined as a
rankk submodule off4[Z". The integergn, k) are called, respectively, the
lengthand dimensionof the convolutional code. The quotieﬁtis called
therate of the code.

Everyk x n matrix of maximal rankG, with entries inFq[Z] defines an
injective map

G: FlZX— F[Z"

Its image defines &, k) convolutional code&” and, in this caseG will be
called apolynomial encodeor generator matrixof ¢, although not every
generator matrix is equally suitable. We will prefer magowvhich are
basic; we say thab is basicif the g.c.d. of the minors of ordédecof G is
equal to 1.

Any polynomial encode6 for ¢ induces a injectivéy(z)-linear map

G: Fq(2)X = Fq(2)".

Although this may allow us to generalize the notion of contioinal code
as subspaces @%(2)", one has to bear in mind that different associated en-
codersG generate submodules B§[Z]" which may be different. However,
basic encoders always generate the same submodule ([2grefdhe, in
this sense we may consider that the notions of convoluticodés as sub-
modules off4[Z]" or as vector subspaceslgf(z)" are equivalent.

Indeed, for a given convolutional co@g the unimodular grou@L(k, Fq[Z])
acts transitively on the set of basic encoders4o([2]). Then, one can
consider an invariant associated with the code, degreeof the code,
defined as (e.gl [13])

0 := maximum degree of the minors of ordeof a basic encoder fo#
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Thedegreeof a polynomial encode®, degG, is the sum of the degrees
of its rows. Forney ([3]) proved that for ea¢h, k)-convolutional code of
degreed there exists at least one basic encadesuch that

0 = degG < degG/,

for all polynomial encoder§&’ of the convolutional code. These basic en-
codersG are calledminimal basic encoderby Forney [3] orcanonical
encodersy McEliece [13].

As for block codes, there is a notion of distance that willrelcterize the
error detection/correction capacity of convolutional esthefree distance
dfree. Let us define the overall Hamming weight of a polynomial vect
V(2) = Ti_oViZ as WV(2)) = Ti_oW(Vi). Then the free distance of the code
% is defined as
1) dfree(€) := minw(c).

ce¥
The free distance is directly related to the other parammeatéithe code.
However, the exact relationship is not known and differentrizls are con-
sidered instead. One of the most usually considered is thergkzed Sin-
gleton bound([19]

2 dfree§S(n,k,6):(n—k)qu+1>+6—|—1

Convolutional codes attaining the generalized Singletonnl are called
Maximum Distance Separable (MDS).

Convolutional codes do have one more parameter which doaws &
counterpart in block codes, tineemory It is well known, e.g.[[13], that the
row degrees of a canonical generator matrix are, up to argeuniquely
determined by the code. They are known asRbmney indicesf the code.
The largest of them is called the memory of the code and ddmotelhe
sum of the Forney indices, which is equal the maximal degfebeomi-
nors of any basic matrix, coincides the degree (also knowsoaglexity)
of the code. Roughly, the degree of the code measures thedpse of
an encoded block with respect to the information blocks]evie memory
counts on how many information blocks does every encodezkllepend.
Convolutional codes of degree 0 are precisely linear blades.

3. GENERAL CONSTRUCTION

Let X be a variety of dimensiom-+1 > 2, letA! = Sped?,[Z denote the
affine line and let us consider a flat and projective morphisnX — Al
whose fibers are smooth and geometrically irreducible aégebarieties of
dimensionm. Recall that for dinX = 2 the fibers are curves; this case has
been studied i |1, 14]. For the basic facts on algebraic gdgnthat will
be used here, we address the readerlto [7].
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Let us choose different sections oft
pi: Al =X  withpomr=Id Vi=1,...,n

and, thus,pi(A?) C X is a curve isomorphic té\!. Consider the closed
subscheme

D= pi(AhU...Upn(Ad)
as well as the morphisipgiven by the composition

D——X
N
T
Al
which is flat and finite of degree

Let us calldp and .#p respectively the sheaves of rings and ideals of
D — X. We have an exact sequence

O— I —Ox— OCp—0
Let .« be an invertible sheaf ovet. The tensor product of the sequence
with . yields
02495 % — 5})—>0,
where% = 0b 29 % . Taking global sections we obtain the long exact

X
sequence df 4[z]-modules
3
0—HO(X, £ ® Sp) — HY(X,.Z) — HO(X, 6p) — H(X, £ ® Sp) —~ HY(X,£) —~0

Remark3.1 Note that the flatness qf: D — A! implies the existence of
isomorphismsp : p.&p = Fq[Z", whereF[Z] also denotes its correspond-
ing sheaf om\1. In general these isomorphisms are not canonical but, if the
chosen sectionp; are disjoint, then there exists a canonical isomorphism
P« Op ~ Fq[Z]" induced byp.

Since .Z restricted to the sections is trivial, theﬁb ~ Op, but such
identification is not canonical. Thus, if we fix an isomorphis
Q- HO(X7 ﬁD) — FQ[Z]na
as well as trivializations for each sectigm, we obtain induced isomor-
phismsop ~ Op andy : HO(X, 0p) = Fq[Z".

Remark3.2 If we take.Z ~ Ox(H), beingH an effective divisor orX
which is flat overAl, the trivializations.Z |, and the isomorphisny are
fixed.
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Definition 3.3. The convolutional Goppa cod& (I",D, /) determined by
the sheat?, the subschemB, the isomorphismy, and a submodulE C
HO(X,.%) is the submodule given by the image of the homomorphism
defined by

00— HOX, .2 ® ) —= HO(X,.Z) —= HO(X, 6p)

By the very construction, thiength of the codés given by the rank of
Op as and i-module, which is the number of sections taken to define
the code. The issue of constructing such sections is cleadyed with the
guestion of finding rational points in algebraic varieti@efinite fileds.

The dimension of the codis equal to the rank of the submodule(If)
which coincides with the rank df if and only if T NHO(X, 2 ® #p) =
(0). Note that in the case of the complete linear sefies,H(X, ), the
additive property of the dimension applied to the exact eaqd_ 3 yields

k%' (F,D, ) = (L) — h2(L ® 9p) = lO(6p) — (L @ Ip) + h (L)

Nevertheless, the explicit calculus of these numbers figgmeral case is
a very hard problem in classical algebraic geometry baseatietheory of
syzygies.

For the approach in terms of subspace&gfz), one considers the the
generic point ofAl, n, whose residue field B4(n) = Fq(2). The fiberX,
is anm-dimensional variety oveFq(z), andpi(n),...,pn(n) aren differ-
entFq(z)-rational points. Then we hau@, = p1(n)U...Upn(n), and an
isomorphism

Wy 1 H(Xy, Op,) = Fq(2)".

Moreover, if.Z = Ox(H) theny, is canonical.

Definition 3.4. The convolutional Goppa cod® (I",Dj, ) is the image
of the homomorphisni,, defined by

0— H%(Xy, 4y ® Ip,) —= HO(Xy, ) — HO(Xn,é’E])

J ) Wn lz

r------ = Fg(2)"

whererl is a given subspace f°(X,, %)

The length and dimension of the co@4T,D,, ),) are computed as
above.

In the rest of the paper we will continue with the submodulprapch,
but as we have just seen the shift to the subspace settinglweidtraight-
forward.
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As it was already mentioned in the Introduction, the casenvdimX = 2
has been already studiedin[1] 14], in particulanfee P x AL. In the next
Section we will illustrate in detail how the construction nke for higher
dimensional varieties by consideriXg= IP]%Q x AL,

4. CODES DEFINED ON THE PROJECTIVE PLANE OVEﬂ?q

Let IPIZFq = Proj[F4[Xo, X1, X2] be the projective plane ové, and let
X=P2 x At 5 AL
q

be the trivial fibration.

LetHs, C IP’IZFq be the line defined by the equatiggn= 0. Then, its com-
plement is an affine plan@2 \ Heo = A2,

We will choose the sectlorm (1<i < n)of rmtaking values im\? x AL,
They are given by

AL P AZx Al
Z— pi(2) = (0i12+ Bi 1, Qi 22+ B 2,2)

where allai,,Bis € Fq. Observe that the length of the code is bounded
by the number of different sections; that is< g*. However, this count
includes also linear codes (eg., = 0 for alli,r) as well as codes defined

with the fibrationIP’}Fq x A1 5 Al (e.g. when the sections are collinear).

Let us considerer the divisog H.,, whererg : X — IP’IZFq is the projection
onto the first factor, and the invertible sheaf given by

2= 0y (MHe)" = O = 0(r) T2

where we writed (1) := ﬁpz (He)®" for simplicity.

Notice that, as it was pomted outin Remﬁ]{]fﬂ 2, the trizetions of.¥
on the sectiong; and the isomorphism : HO(X, ﬁD) = Fq[Z" are fixed.

If we denotet = X, s= X2 the affine coordinates in the affine plaAé,
the space of global sections is explicitly described as

HOPE, 0(r) = (s [o<i+j<r)
Hence, the evaluation ¢fs! at the pointsy, ..., pn is given by
f(t'sh) = ((apiz+Br1)  (a12z+B12)),. .., (Anaz+Bar) - (An2z+Bn2)d).

SinceHY(X,.#) =0 andH?(X,.¥) = HO(IP’]%q, 0(r)) ®r,Fq[2, the long
exact sequencel(3) reads now as follows

0— HOX,.Z ® J5) — HO(PF,. O(r)) @5, Folz — FqlZ" — HY(X, .2 7p)
Furthermore, lef ¢ HO(X,.%) be a submodule such that
FrNHOX, 2 ® .%5) = (0)

—0
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then, f will be injective and a generator matrix of the codélr, D) (Defi-
nition[3.3) can be obtained from the evaluation map

[ — Fqy(2"

The lengthn, dimensiork, memorym and the degreé of the convolu-
tional Goppa codes defined in this section are bounded by

(r+1)(r+2)

n<q', k<h’(PZ,0(r)= >

m<r, 6§_r2)(i+1)i _ %r(r+1)(r+2)

For illustrating this setup and exploring its possibiktisome examples
will be provided in the following section.

5. EXPLICIT EXAMPLES

We will write down explicit examples of the above given couastion of
convolutional codes. We will varly andD so that codes of different lengths
and dimensions will be obtained.

For the sake of clarity, all the examples will deal with a warar case
of the situation exposed . More precisely, let us takg= 8, Fg as base
field anda a primitive element such thaf +a®+ 1= 0.

Recall thatX := P]%‘g[z] = ]P’]%8 x Al and thatxg, X1, x> denote the homoge-

neous coordinates iP?.
Set.Z = O H(zf;Hw)®2, then
8Z

HO(X, %) = Ho(pgsm, Opa H(n’me)@Z) =< 1,t,5t2t5,S >
SZ
wheret = 21, s= %2 are affine coordinates.
In the following examples will study the codes correspogdim certain
choices oD andl" C HO(X,.?).

5.1. Rate 1/3 codes. In this case we consider the restriction of the evalua-
tion map to a submodule c HO(X,.#) generated by one section. Here we
do not need to care about the propertie®aind_Z in order to determine
the kernel of the evaluation map; whenever the restrictidheevaluation
map tol" is non-zerof is injective.

Let us consider the 1-dimensional convolutional Goppa &@e, I, ),
wherel” ¢ HO(X,.#) is the submodule generated by the sectigrs?, and
D is consists of the points

(4) n(@) =@ +a2 'za® " +afz2 =123
Then, the magd have the following expression
G = (&®+az+a'Z? a®+a’z+aZ ad+a'z+a’?)

which is a generator matrix of the code. A straightforwardahshows that
this generator matrix is canonical.
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A control matrix is

a+atz+aZ ab+raztat? 0
a’+a*z+a?z 0 ab +az+ at7

This code has length 3, dimension 1, memory 2, degree 2 aadiise
tance 9. Further, it attains the generalized Singleton 8¢8pand is, thus,
a MDS code.

5.2. Rate 2/3 codes. Continuing with the idea of the previous example, let
us consider the submodulec HO(X,.#) generated by the sectiofis s?}
and the closed subscherbegiven by the three section of equatian (4). It
will be seen that the restriction of the evaluation map s injective.

Then, the matrix associated to the restriction of the evalnanap is

G — a®+az d+a’z ata'z
~ \a+a'Z a?+aZ at+a?Z

and, since it is injective, it gives us a generator matrixhef tode, which is
canonical too.
A control matrix is given by the matrix

(a*+aZ+a? a+a?Z+a'l a2+a'?+ad)

This code has length 3, dimension 2, memory 2, degree 3 aadlise
tance 6 and it is, thus, a MDS code.

5.3. Rate1/4codes. In order to increase the length of the code, four points
will be considered. Indeed will be now the union of the following four
points

) pi(2) = (@ +adza¥+z2 i=1,..,4

andrl” the submodule generated by s%.
Then, the restriction of the evaluation magdtgields a generator matrix
of the codes’ (D,T, ¢)

G=(a®+a’z+27 a®+a%2+22 a+a%z+72 a+az+7)

and a control matrix is

ab+abz+72 ad+adz+7 0 0
ab+a%z+ 72 0 as+asz+ 72 0
a°+a’z+ 2 0 0 as+asz+ 2

This code has length 4, dimension 1, memory 2, degree 2 aadiise
tance 12 and it is, thus, a MDS code.
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5.4. Rate 2/4 codes. Finally, let us choose another submodiiland pre-
serve the samP as above (equatiofl(5)) in order to get a code of length 4
and dimension 2. Left the submodule generated bty s} .

Then, the restriction of the evaluation magdtgields the following gen-
erator matrix of the cod®’ (D, I, ¢)

G — ata’z &+a% a&+a’z d+az
T \a+Z at+Z?Z &+72 a2+ 7

and a control matrix is

ab+az+Z2+aF at+alz+a*Z2+2 atazt+alR+ad 0
a?+alz+ a2 +atd at+atz+atA+ad 0 a+az+ a®Z2 + a°7

This code has length 4, dimension 2, memory 2, degree 3 aadifse
tance 8 and it is, thus, a MDS code.

6. CONCLUSIONS AND FUTURE WORK

The present work is embedded in the study of convolutiondésdrom
an algebraic geometric point of view. It is in particular atlfer step in
the construction of convolutional codes by means of algelaometric
tools. The main contribution with respect to previous wasghe gener-
alization of the setting where codes are defined. We presadhis paper
the construction of convolutional codes on higher dimemslioarieties us-
ing a rather small alphabet. In particular, the construcigodetailed for
the variety]P’]%q x A. Although it is in general a hard task to compute the

parameters of the codes obtained we are able to find diffét&8 convo-
lutional codes, and to illustrate this fact examples of sodéh different
rates are also presented for the case of the projective plare,.

The results obtained confirm our belief that this is a prongsiesearch
line. Future steps could be to determine conditions on tloengéric el-
ements to obtain good codes or to adapt decoding algoritbnaedode
them.
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