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Gauss Sums of the Cubic Character over GF (2m):

an elementary derivation
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Abstract

An elementary approach is shown which derives the value of the Gauss sum of a cubic char-
acter over a finite field F2s without using Davenport-Hasse’s theorem (namely, if s is odd the
Gauss sum is −1, and if s is even its value is −(−2)s/2).
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1 Introduction

Let F2s be a Galois field over F2, and χ be the cubic character, namely χ is a mapping from F
∗
2s into

the complex numbers defined as

χ(αhθj) = e
2iπ
3

h=̇ ωh h = 0, 1, 2 ,

where θ is a cube, furthermore we set χ(0) = 0 by definition.

Let Trs(x) =
∑s−1

j=0 x
2j be the trace function over F2s , and Trs/r(x) =

∑s/r−1
j=0 x2

rj
be the

relative trace function over F2s relatively to F2r , with r|s [3].
A Gauss sum of a character χ over F2s is defined as [1]

Gs(β, χ) =
∑

y∈F2s

χ(y)eπiTrs(βy) = χ̄(β)Gs(1, χ) .

The values of the Gauss sums of a cubic character over F2s can be found by computing the
Gauss sum over GF (4) and applying Davenport-Hasse’s theorem on the lifting of characters ([1,
2, 3]) for s even (and by computing the Gauss sum over GF (2) and then trivially lifting for s odd).
However it is possible to use a more elementary approach, and this is the topic of the present
work.
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If s is odd then the cubic character is trivial because every element β in F2s is a cube as the
following chain of equalities shows

β · 1 = β · (β2s−1)2 = ββ2s+1−2 = β2s+1−1 = (β
2
s+1−1

3 )3 ,

since β2s−1 = 1, and s+ 1 is even, so that 2s+1 − 1 is divisible by 3. In this case we have

Gs(1, χ) =
∑

y∈F2s

χ(y)eπiTrs(y) =
∑

y∈F∗
2s

eπiTrs(y) = −1 ,

since the number of elements with trace 1 is equal to the number of elements with trace 0 (Trs(x) ∈
F2; moreover Trs(x) = 1 and Trs(x) = 0 are two equations of degree 2s−1), and eπi·0 = 1 while
eπi·1 = −1.

If s = 2m is even, the cubic character is nontrivial, and the computation of the Gauss sums
requires some more effort; before we show how they can be computed with an elementary ap-
proach, we need some preparatory lemmas.

2 Preliminary facts

First of all we recall that, for any nontrivial character χ over Fq,
∑

x∈Fq
χ(x) = 0. This is used to

prove a property of a sum of characters, already known to Kummer [4], which can be formulated
in the following form:

Lemma 1 Let χ be a nontrivial character and β any element of Fq; then

∑

x∈Fq

χ(x)χ̄(x+ β) =

{

q − 1 if β = 0
−1 if β 6= 0

.

PROOF. If β = 0, the summand is χ(x)χ̄(x) = 1, unless x = 0 in which case it is 0, then the
conclusion is immediate.
When β 6= 0, we can exclude again the term with x = 0, as χ(x) = 0, so that x is invertible, and
the summand can be written as

χ(x)χ̄(x+ β) = χ(x)χ̄(x)χ̄(1 + βx−1) = χ̄(1 + βx−1) .

With the substitution y = 1 + βx−1, the summation becomes

∑

y∈F
22m

y 6=1

χ(y) = −1 +
∑

y∈F
22m

χ(y) = −1 ,

as χ(y) = 1 for y = 1.

�
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We are now interested in the sum
∑

x∈Fq
χ(x)χ(x+1). Note that for the Gauss sums over F2s

we have

Gs(1, χ) =
∑

y∈F2s

Trs(y)=0

χ(y)−
∑

y∈F2s

Trs(y)=1

χ(y) . (1)

It follows that, if χ is a nontrivial character, then the Gauss sum over F2s satisfies the follow-
ing:

Gs(1, χ) = 2
∑

y∈F2s

Trs(y)=0

χ(y).

In fact half of the field elements have trace 0 and the other half 1, so that
∑

y∈F
22m

Tr(y)=0

χ(y) = −
∑

y∈F
22m

Tr(y)=1

χ(y)

as the sum over all field elements is zero, since χ is nontrivial.

Lemma 2 If χ is a nontrivial character over F22m , then

∑

x∈F
22m

χ(x)χ(x+ 1) = G2m(1, χ) .

PROOF. The sum
∑

x∈F
22m

χ(x)χ(x+1) can be written as
∑

x∈F
22m

χ(x(x+1)), since the character

is a multiplicative function, now the function f(x) = x(x + 1) is a mapping from F22m onto the
subset of elements with trace 0, as Trs(x) = Trs(x

2) for any s, and each image comes exactly from
two elements, x and x+1, that have the same trace, since Trs(1) = 0 for s even, which is our case.
Therefore, half of the elements with trace 0 are images of elements with trace 0, and the remaining
half are images of elements with trace 1. It follows that

∑

x∈F
22m

χ(x)χ(x+ 1) = 2
∑

y∈F
22m

Tr2m(y)=0

χ(y) = G2m(1, χ) . (2)

�

Lemma 3 Let χ be a nontrivial character of order 2r +1. Then the Gauss sum G2m(1, χ) is a real number,
i.e. G2m(1, χ) = ±2m.

PROOF. Using (2) we have

Ḡ2m(1, χ) =
∑

x∈F
22m

χ̄(x)χ̄(x+ 1) =
∑

x∈F
22m

χ(x2
r
)χ(x2

r
+ 1) =

∑

x∈F
22m

χ(x)χ(x+ 1) = G2m(1, χ) ,

as χ̄(x) = χ(x)2
r
= χ(x2

r
) and x → x2

r
is a field automorphism, so it just permutes the elements

of the field. �
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3 Main results

The absolute value of Gs(1, χ) can be evaluated using elementary standard techniques going back
to Gauss (see e.g. [1]), while its argument requires a more subtle analysis. Our main theorems in
the following section derive in an elementary way the exact value of the Gauss sum for the cubic
character χ over F22m (the case of s odd is trivial, as shown above). Before we proceed, we show
in a standard way what is its absolute value.

Since G2m(β, χ) = χ̄(β)G2m(1, χ) , on one hand, we have

∑

β∈F
22m

G2m(β, χ)Ḡ2m(β, χ) =
∑

β∈F
22m

χ̄(β)χ(β)G2m(1, χ)Ḡ2m(1, χ)

=
∑

β∈F∗

22m

G2m(1, χ)Ḡ2m(1, χ) = (22m − 1)G2m(1, χ)Ḡ2m(1, χ) .

(3)
On the other hand, by the definition of Gauss sum, we have

∑

β∈F
22m

G2m(β, χ)Ḡ2m(β, χ) =
∑

β∈F
22m

∑

α∈F
22m

∑

γ∈F
22m

χ̄(α)eπiTr2m(βα)χ(γ)e−πiTr2m(γβ)

,

and substituting α = γ + θ in the last sum, we have

∑

β∈F
22m

G2m(β, χ)Ḡ2m(β, χ) =
∑

γ∈F
22m

∑

θ∈F
22m

χ̄(γ + θ)χ(γ)
∑

β∈F
22m

eπiTr2m(βθ) = 22m(22m − 1) , (4)

as the sum on β is 22m if θ = 0 and is 0 otherwise, since the values of the trace are equally dis-
tributed, as said above; consequently the sum over γ is 22m − 1 times 22m, as χ(0) = 0. From the
comparison of (3) with (4) we get G2m(1, χ)Ḡ2m(1, χ) = 22m, then |G2m(1, χ)| = 2m.

Few initial values are G2(1, χ) = 2, G4(1, χ) = −4, G6(1, χ) = 8, G8(1, χ) = −16, and
G10(1, χ) = 32, so a reasonable guess is G2m(1, χ) = −(−2)m. This guess is correct as proved
by the following theorems.

Theorem 1 If m is odd, the value of the Gauss sum G2m(1, χ) is 2m.

PROOF. Let α a primitive cubic root of unity in F22m , then it is a root of x2 + x+1. In other words,
a root α of x2+x+1, which does not belong to F2m , as m is odd, can be used to define a quadratic
extension of this field, i.e. F22m , and the elements of this extension can be represented in the form
x + αy, with x, y ∈ F2m . Furthermore, the two roots α and 1 + α of x2 + x + 1 are either fixed
or exchanged by any Frobenius automorphism; in particular the automorphism σm(x) = x2

m

necessarily exchange the two roots as it fixes precisely all the elements of F2m , while α does not
belong to this field, so that σm(α) 6= α. Now, a Gauss sum G2m(1, χ) can be written as

G2m(1, χ) = 2
∑

z∈F
22m

Tr2m(z)=0

χ(z) = 2
∑

x,y∈F2m

Tr2m(x+αy)=0

χ(x+ αy) = 2
∑

x,y∈F2m

Trm(y)=0

χ(x+ αy) , (5)

where we used the trace property

Tr2m(x+ αy) = Tr2m(x) + Tr2m(αy) = Trm(x) + Trm(x2
m
) + Tr2m(αy) = Tr2m(αy),
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and the fact that

Tr2m(αy) = Trm(αy) + Trm(αy)2
m
= Trm(αy) + Trm((αy)2

m
)

= Trm(αy) + Trm(α2my) = Trm(αy) + Trm((α+ 1)y) = Trm(y) ,

since α2m = α+ 1 as previously shown. The last summation in (5) can be split into three sums by
separating the cases x = 0 and y = 0

2
∑

x,y∈F2m

Trm(y)=0

χ(x+ αy) = 2
∑

y∈F2m

Trm(y)=0

χ(αy) + 2
∑

x∈F2m

χ(x) + 2
∑

x,y∈F∗
2m

Trm(y)=0

χ(x+ αy) .

Considering the three sums separately, we have:
∑

x∈F2m

χ(x) = 2m − 1 ,

as χ(x) = 1 unless x = 0 since m is odd;
∑

y∈F2m

Trm(y)=0

χ(αy) = χ(α)(2m−1 − 1) ,

as the character is multiplicative, χ(y) = 1 unless y = 0, and only the 0-trace elements (which are
2m−1 − 1) should be counted;

∑

x,y∈F∗
2m

Trm(y)=0

χ(x+ αy) =
∑

x,y∈F∗
2m

Trm(y)=0

χ(y)χ(xy−1 + α) =
∑

z,y∈F∗
2m

Trm(y)=0

χ(z + α) = (2m−1 − 1)
∑

z∈F∗
2m

χ(z + α) .

as y is invertible, χ(y) = 1 since m is odd, z has been substituted for xy−1, and the sum we get
in the end, being independent of y, is simply multiplied by the number of values assumed by y.
Altogether we have

G2m(1, χ) = 2m+1−2+χ(α)(2m−2)+(2m−2)
∑

z∈F∗
2m

χ(z+α) = 2m+1−2+(2m−2)
∑

z∈F2m

χ(z+α) ,

and, for later use, we define A(α) =
∑

z∈F2m
χ(z + α). In order to evaluate A(α), we consider the

sum of A(β), for every β ∈ F22m , and observe that A(β) = 2m − 1 if β ∈ F2m , while, if β 6∈ F2m all
sums assume the same value A(α), which is shown as follows: set β = u+ αv with v 6= 0, then

∑

z∈F2m

χ(z + u+ αv) =
∑

z∈F2m

χ(v)χ((z + u)v−1 + α) =
∑

z′∈F2m

χ(z′ + α) .

Therefore, the sum
∑

β∈F
22m

A(β) =
∑

β

∑

z χ(z + β) =
∑

z

∑

β χ(z + β) = 0 yields

2m(2m − 1) + (22m − 2m)A(α) = 0

which implies A(α) = −1, and finally

G2m(1, χ) = 2m+1 − 2− (2m − 2) = 2m .

�
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Remark 1. The above theorem can also be proved using a theorem by Stickelberger ([3, Theorem
5.16])

Theorem 2 If m is even, the Gauss sum G2m(1, χ) is equal to (−2)m/2Gm(1, χ) .

PROOF. The relative trace of the elements of F22m over F2m , which is

Tr(2m/m)(x) = x+ x2
m

,

introduces the polynomial x + x2
m

which defines a mapping from F22m onto F2m with kernel the
subfield F2m ([3]). The equation x2

m
+ x = y has in fact exactly 2m roots in F22m for every y ∈ F2m .

By definition we have

G2m(1, χ) = 2
∑

z∈F
22m

Tr2m(z)=0

χ(z) = 2
∑

x,y∈F2m

Tr2m(x+αy)=0

χ(x+ αy) ,

where α is a root of an irreducible quadratic polynomial x2 + x + b over F2m , i.e. Trm(b) = 1 ([3,
Corollary 3.79]) and Tr(2m/m)(α) = 1, which can be seen from the coefficient of x of the polynomial.
Now

Tr2m(x+ αy) = Tr2m(x) + Tr2m(αy) = Tr2m(αy) = Trm(αy) + Trm(α2my) ,

but α2m = 1 + α, so that Tr2m(x+ αy) = Trm(y), and we have

G2m(1, χ) = 2
∑

x,y∈F2m

Trm(y)=0

χ(x+ αy) = 2
∑

x∈F2m

χ(x) + 2
∑

y∈F∗
2m

Trm(y)=0

χ(αy) + 2
∑

x,y∈F∗
2m

Trm(y)=0

χ(x+ αy) ,

where the first summation has been split into the sum of three summations, by separating the
cases y = 0 and x = 0. We observe that, since the character over F2m is not trivial, the first sum is
0 and the second is χ(α)Gm(1, χ), while the third sum can be written as follows

2
∑

x,y∈F∗
2m

Trm(y)=0

χ(x+ αy) = 2
∑

x,y∈F∗
2m

Trm(y)=0

χ(y)χ(xy−1 + α) = 2
∑

y∈F∗
2m

Trm(y)=0

χ(y)
∑

z∈F∗
2m

χ(z + α) .

Putting all together, we obtain

G2m(1, χ) = Gm(1, χ)
∑

z∈F2m

χ(z + α) = Gm(1, χ)Am(α) ,

which shows that |Am(α)| = 2m/2 and that Am(α) is real, as both G2m(1, χ) and Gm(1, χ) are real.
Note that this holds for any α with Tr(2m/m)(α) = 1.

We will show now that Am(α) = (−2)m/2. Consider the sum of Am(γ) over all γ with relative
trace equal to 1, which is, on one hand 2mAm(α), as the polynomial x2

m
+ x = 1 has exactly 2m

roots in F22m and on the other hand, explicitly we have

∑

γ∈F∗
22m

Tr2m/m(γ)=1

Am(γ) =
∑

z∈F2m

∑

γ∈F∗
22m

Tr2m/m(γ)=1

χ(z + γ) =
∑

z∈F2m

∑

γ′∈F∗
22m

Tr2m/m(γ′)=1

χ(γ′) = 2m
∑

γ′∈F∗
22m

Tr2m/m(γ′)=1

χ(γ′) ,
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where the summation order has been exchanged, and Tr2m/m(γ) = Tr2m/m(γ′) as Tr2m/m(z) = 0
for any z ∈ F2m . Comparing the two results, we have

Am(α) =
∑

γ′∈F
∗
22m

Tr2m/m(γ′)=1

χ(γ′) = M0 +M1ω +M2ω
2 ,

where M0 is the number of γ′ with Tr2m/m(γ′) = 1 that are cubic residues, i.e. they have character
χ(γ′) equal to 1, M1 is the number of γ′ with Tr2m/m(γ′) = 1 that have character ω, and M2 is the
number of γ′ with Tr2m/m(γ′) = 1 that have character ω2, then M0+M1+M2 = 2m, and M1 = M2

since Am(α) is real. Therefore,we have Am(α) = M0 −M1, and so we consider two equations for
M0 and M1

{

M0 + 2M1 = 2m

M0 −M1 = ±2m/2

solving for M1 we have M1 =
1
3 (2

m ∓ 2m/2). Since M1 must be an integer, we have

{

M0 −M1 = 2m/2 if m/2 is even

M0 −M1 = −2m/2 if m/2 is odd.

�

Corollary 1 If m is even, the value of the Gauss sum G2m(1, χ) is −2m.

PROOF. It is a direct consequence of the two theorems above.

�
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