Gauss Sums of the Cubic Character over $GF(2^m)$: an elementary derivation

Davide Schipani[∗] , Michele Elia †

December 27, 2010

Abstract

An elementary approach is shown which derives the value of the Gauss sum of a cubic character over a finite field \mathbb{F}_{2^s} without using Davenport-Hasse's theorem (namely, if s is odd the Gauss sum is -1 , and if s is even its value is $-(-2)^{s/2}$.

Keywords: Gauss sum, character, binary finite fields.

Mathematics Subject Classification (2010): 12Y05, 12E30

1 Introduction

Let \mathbb{F}_{2^s} be a Galois field over \mathbb{F}_2 , and χ be the cubic character, namely χ is a mapping from $\mathbb{F}_{2^s}^*$ into the complex numbers defined as

$$
\chi(\alpha^h \theta^j) = e^{\frac{2i\pi}{3}h} \dot{=} \omega^h \quad h = 0, 1, 2 \ ,
$$

where θ is a cube, furthermore we set $\chi(0) = 0$ by definition.

Let $\text{Tr}_s(x) = \sum_{j=0}^{s-1} x^{2^j}$ be the trace function over \mathbb{F}_{2^s} , and $\text{Tr}_{s/r}(x) = \sum_{j=0}^{s/r-1} x^{2^{rj}}$ be the relative trace function over \mathbb{F}_{2^s} relatively to \mathbb{F}_{2^r} , with $r|s$ [\[3\]](#page-6-0). A Gauss sum of a character χ over \mathbb{F}_{2^s} is defined as [\[1\]](#page-6-1)

$$
G_s(\beta, \chi) = \sum_{y \in \mathbb{F}_{2^s}} \chi(y) e^{\pi i \text{Tr}_s(\beta y)} = \bar{\chi}(\beta) G_s(1, \chi) .
$$

The values of the Gauss sums of a cubic character over \mathbb{F}_{2^s} can be found by computing the Gauss sum over $GF(4)$ and applying Davenport-Hasse's theorem on the lifting of characters ([\[1,](#page-6-1) [2,](#page-6-2) [3\]](#page-6-0)) for s even (and by computing the Gauss sum over $GF(2)$ and then trivially lifting for s odd). However it is possible to use a more elementary approach, and this is the topic of the present work.

[∗]University of Zurich, Switzerland

[†]Politecnico di Torino, Italy

If s is odd then the cubic character is trivial because every element β in \mathbb{F}_{2^s} is a cube as the following chain of equalities shows

$$
\beta \cdot 1 = \beta \cdot (\beta^{2^{s}-1})^2 = \beta \beta^{2^{s+1}-2} = \beta^{2^{s+1}-1} = (\beta^{\frac{2^{s+1}-1}{3}})^3 ,
$$

since $\beta^{2^s-1} = 1$, and $s + 1$ is even, so that $2^{s+1} - 1$ is divisible by 3. In this case we have

$$
G_s(1,\chi) = \sum_{y \in \mathbb{F}_{2^s}} \chi(y) e^{\pi i \text{Tr}_s(y)} = \sum_{y \in \mathbb{F}_{2^s}^*} e^{\pi i \text{Tr}_s(y)} = -1 ,
$$

since the number of elements with trace 1 is equal to the number of elements with trace 0 (Tr_s $(x) \in$ \mathbb{F}_2 ; moreover $\text{Tr}_s(x) = 1$ and $\text{Tr}_s(x) = 0$ are two equations of degree 2^{s-1}), and $e^{\pi i \cdot 0} = 1$ while $e^{\pi i \cdot 1} = -1.$

If $s = 2m$ is even, the cubic character is nontrivial, and the computation of the Gauss sums requires some more effort; before we show how they can be computed with an elementary approach, we need some preparatory lemmas.

2 Preliminary facts

First of all we recall that, for any nontrivial character χ over \mathbb{F}_q , $\sum_{x\in\mathbb{F}_q}\chi(x)=0$. This is used to prove a property of a sum of characters, already known to Kummer [\[4\]](#page-6-3), which can be formulated in the following form:

Lemma 1 *Let* χ *be a nontrivial character and* β *any element of* \mathbb{F}_q *; then*

$$
\sum_{x \in \mathbb{F}_q} \chi(x)\bar{\chi}(x+\beta) = \begin{cases} q-1 & \text{if } \beta = 0 \\ -1 & \text{if } \beta \neq 0 \end{cases}.
$$

PROOF. If $\beta = 0$, the summand is $\chi(x)\overline{\chi}(x) = 1$, unless $x = 0$ in which case it is 0, then the conclusion is immediate.

When $\beta \neq 0$, we can exclude again the term with $x = 0$, as $\chi(x) = 0$, so that x is invertible, and the summand can be written as

$$
\chi(x)\bar{\chi}(x+\beta) = \chi(x)\bar{\chi}(x)\bar{\chi}(1+\beta x^{-1}) = \bar{\chi}(1+\beta x^{-1}) .
$$

With the substitution $y = 1 + \beta x^{-1}$, the summation becomes

$$
\sum_{\substack{y\in\mathbb{F}_{2^{2m}}\\y\neq 1}}\chi(y)=-1+\sum_{y\in\mathbb{F}_{2^{2m}}}\chi(y)=-1\enspace,
$$

as $\chi(y) = 1$ for $y = 1$.

We are now interested in the sum $\sum_{x\in\mathbb{F}_q}\chi(x)\chi(x+1).$ Note that for the Gauss sums over \mathbb{F}_{2^s} we have

$$
G_s(1,\chi) = \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \text{Tr}_s(y) = 0}} \chi(y) - \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \text{Tr}_s(y) = 1}} \chi(y) . \tag{1}
$$

It follows that, if χ is a nontrivial character, then the Gauss sum over \mathbb{F}_{2^s} satisfies the following:

$$
G_s(1, \chi) = 2 \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \text{Tr}_s(y) = 0}} \chi(y).
$$

In fact half of the field elements have trace 0 and the other half 1, so that

$$
\sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ \text{Tr}(y)=0}} \chi(y) = -\sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ \text{Tr}(y)=1}} \chi(y)
$$

as the sum over all field elements is zero, since χ is nontrivial.

Lemma 2 If χ is a nontrivial character over $\mathbb{F}_{2^{2m}}$, then

$$
\sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x)\chi(x+1) = G_{2m}(1,\chi) .
$$

PROOF. The sum $\sum_{x\in \mathbb F_{2^{2m}}} \chi(x)\chi(x+1)$ can be written as $\sum_{x\in \mathbb F_{2^{2m}}} \chi(x(x+1))$, since the character is a multiplicative function, now the function $f(x) = x(x + 1)$ is a mapping from $\mathbb{F}_{2^{2m}}$ onto the subset of elements with trace 0 , as ${\rm Tr}_s(x) = {\rm Tr}_s(x^2)$ for any s , and each image comes exactly from two elements, x and $x + 1$, that have the same trace, since $\text{Tr}_s(1) = 0$ for s even, which is our case. Therefore, half of the elements with trace 0 are images of elements with trace 0, and the remaining half are images of elements with trace 1. It follows that

$$
\sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x)\chi(x+1) = 2 \sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ \text{Tr}_{2m}(y)=0}} \chi(y) = G_{2m}(1,\chi) \tag{2}
$$

 \Box

Lemma 3 Let χ be a nontrivial character of order $2^r + 1$. Then the Gauss sum $G_{2m}(1, \chi)$ is a real number, *i.e.* $G_{2m}(1, \chi) = \pm 2^m$.

PROOF. Using [\(2\)](#page-2-0) we have

$$
\bar{G}_{2m}(1,\chi) = \sum_{x \in \mathbb{F}_{2^{2m}}} \bar{\chi}(x)\bar{\chi}(x+1) = \sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x^{2^r})\chi(x^{2^r}+1) = \sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x)\chi(x+1) = G_{2m}(1,\chi) ,
$$

as $\bar{\chi}(x) = \chi(x)^{2^r} = \chi(x^{2^r})$ and $x \to x^{2^r}$ is a field automorphism, so it just permutes the elements of the field. \Box

3 Main results

The absolute value of $G_s(1, \chi)$ can be evaluated using elementary standard techniques going back to Gauss (see e.g. [\[1\]](#page-6-1)), while its argument requires a more subtle analysis. Our main theorems in the following section derive in an elementary way the exact value of the Gauss sum for the cubic character χ over $\mathbb{F}_{2^{2m}}$ (the case of s odd is trivial, as shown above). Before we proceed, we show in a standard way what is its absolute value.

Since $G_{2m}(\beta, \chi) = \bar{\chi}(\beta) G_{2m}(1, \chi)$, on one hand, we have

$$
\sum_{\beta \in \mathbb{F}_{2^{2m}}} G_{2m}(\beta, \chi) \bar{G}_{2m}(\beta, \chi) = \sum_{\beta \in \mathbb{F}_{2^{2m}} \atop \beta \in \mathbb{F}_{2^{2m}}^*} \bar{\chi}(\beta) \chi(\beta) G_{2m}(1, \chi) \bar{G}_{2m}(1, \chi)
$$
\n
$$
= \sum_{\beta \in \mathbb{F}_{2^{2m}}^*} G_{2m}(1, \chi) \bar{G}_{2m}(1, \chi) = (2^{2m} - 1) G_{2m}(1, \chi) \bar{G}_{2m}(1, \chi) .
$$
\n(3)

On the other hand, by the definition of Gauss sum, we have

$$
\sum_{\beta\in\mathbb{F}_{2^{2m}}}G_{2m}(\beta,\chi)\bar{G}_{2m}(\beta,\chi)=\sum_{\beta\in\mathbb{F}_{2^{2m}}}\sum_{\alpha\in\mathbb{F}_{2^{2m}}}\sum_{\gamma\in\mathbb{F}_{2^{2m}}}\bar{\chi}(\alpha)e^{\pi i\text{Tr}_{2m}(\beta\alpha)}\chi(\gamma)e^{-\pi i\text{Tr}_{2m}(\gamma\beta)}
$$

,

and substituting $\alpha = \gamma + \theta$ in the last sum, we have

$$
\sum_{\beta \in \mathbb{F}_{2^{2m}}} G_{2m}(\beta, \chi) \bar{G}_{2m}(\beta, \chi) = \sum_{\gamma \in \mathbb{F}_{2^{2m}}} \sum_{\theta \in \mathbb{F}_{2^{2m}}} \bar{\chi}(\gamma + \theta) \chi(\gamma) \sum_{\beta \in \mathbb{F}_{2^{2m}}} e^{\pi i \text{Tr}_{2m}(\beta \theta)} = 2^{2m} (2^{2m} - 1) , \quad (4)
$$

as the sum on β is 2^{2m} if $\theta = 0$ and is 0 otherwise, since the values of the trace are equally distributed, as said above; consequently the sum over γ is $2^{2m} - 1$ times 2^{2m} , as $\chi(0) = 0$. From the comparison of [\(3\)](#page-3-0) with [\(4\)](#page-3-1) we get $G_{2m}(1,\chi)\bar{G}_{2m}(1,\chi)=2^{2m}$, then $|G_{2m}(1,\chi)|=2^m$.

Few initial values are $G_2(1,\chi) = 2$, $G_4(1,\chi) = -4$, $G_6(1,\chi) = 8$, $G_8(1,\chi) = -16$, and $G_{10}(1,\chi) = 32$, so a reasonable guess is $G_{2m}(1,\chi) = -(-2)^m$. This guess is correct as proved by the following theorems.

Theorem 1 If m is odd, the value of the Gauss sum $G_{2m}(1, \chi)$ is 2^m .

PROOF. Let α a primitive cubic root of unity in $\mathbb{F}_{2^{2m}}$, then it is a root of x^2+x+1 . In other words, a root α of x^2+x+1 , which does not belong to \mathbb{F}_{2^m} , as m is odd, can be used to define a quadratic extension of this field, i.e. $\mathbb{F}_{2^{2m}}$, and the elements of this extension can be represented in the form $x + \alpha y$, with $x, y \in \mathbb{F}_{2^m}$. Furthermore, the two roots α and $1 + \alpha$ of $x^2 + x + 1$ are either fixed or exchanged by any Frobenius automorphism; in particular the automorphism $\sigma^m(x) = x^{2^m}$ necessarily exchange the two roots as it fixes precisely all the elements of \mathbb{F}_{2^m} , while α does not belong to this field, so that $\sigma^m(\alpha)\neq\alpha$. Now, a Gauss sum $G_{2m}(1,\chi)$ can be written as

$$
G_{2m}(1,\chi) = 2 \sum_{\substack{z \in \mathbb{F}_{2^{2m}} \\ \text{Tr}_{2m}(z) = 0}} \chi(z) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2m} \\ \text{Tr}_{2m}(x + \alpha y) = 0}} \chi(x + \alpha y) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2m} \\ \text{Tr}_{m}(y) = 0}} \chi(x + \alpha y) ,
$$
 (5)

where we used the trace property

$$
\text{Tr}_{2m}(x + \alpha y) = \text{Tr}_{2m}(x) + \text{Tr}_{2m}(\alpha y) = \text{Tr}_{m}(x) + \text{Tr}_{m}(x^{2^{m}}) + \text{Tr}_{2m}(\alpha y) = \text{Tr}_{2m}(\alpha y),
$$

and the fact that

$$
\begin{array}{rcl}\n\text{Tr}_{2m}(\alpha y) & = & \text{Tr}_{m}(\alpha y) + \text{Tr}_{m}(\alpha y)^{2^{m}} = \text{Tr}_{m}(\alpha y) + \text{Tr}_{m}((\alpha y)^{2^{m}}) \\
& = & \text{Tr}_{m}(\alpha y) + \text{Tr}_{m}(\alpha^{2^{m}} y) = \text{Tr}_{m}(\alpha y) + \text{Tr}_{m}((\alpha + 1)y) = \text{Tr}_{m}(y) \end{array},
$$

since $\alpha^{2^m} = \alpha + 1$ as previously shown. The last summation in [\(5\)](#page-3-2) can be split into three sums by separating the cases $x = 0$ and $y = 0$

$$
2 \sum_{\substack{x,y \in \mathbb{F}_{2^m} \\ \text{Tr}_m(y)=0}} \chi(x+\alpha y) = 2 \sum_{\substack{y \in \mathbb{F}_{2^m} \\ \text{Tr}_m(y)=0}} \chi(\alpha y) + 2 \sum_{x \in \mathbb{F}_{2^m}} \chi(x) + 2 \sum_{\substack{x,y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(x+\alpha y) .
$$

Considering the three sums separately, we have:

$$
\sum_{x \in \mathbb{F}_{2^m}} \chi(x) = 2^m - 1 ,
$$

as $\chi(x) = 1$ unless $x = 0$ since m is odd;

$$
\sum_{\substack{y \in \mathbb{F}_{2m} \\ \text{Tr}_m(y)=0}} \chi(\alpha y) = \chi(\alpha)(2^{m-1} - 1) ,
$$

as the character is multiplicative, $\chi(y) = 1$ unless $y = 0$, and only the 0-trace elements (which are $2^{m-1}-1)$ should be counted;

$$
\sum_{\substack{x,y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(x+\alpha y) = \sum_{\substack{x,y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(y)\chi(xy^{-1}+\alpha) = \sum_{\substack{z,y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(z+\alpha) = (2^{m-1}-1)\sum_{z \in \mathbb{F}_{2^m}^*} \chi(z+\alpha) .
$$

as y is invertible, $\chi(y)=1$ since m is odd, z has been substituted for xy^{-1} , and the sum we get in the end, being independent of y , is simply multiplied by the number of values assumed by y . Altogether we have

$$
G_{2m}(1,\chi) = 2^{m+1} - 2 + \chi(\alpha)(2^m - 2) + (2^m - 2) \sum_{z \in \mathbb{F}_{2^m}^*} \chi(z + \alpha) = 2^{m+1} - 2 + (2^m - 2) \sum_{z \in \mathbb{F}_{2^m}} \chi(z + \alpha) ,
$$

and, for later use, we define $A(\alpha)=\sum_{z\in\mathbb{F}_{2^m}}\chi(z+\alpha).$ In order to evaluate $A(\alpha)$, we consider the sum of $A(\beta)$, for every $\beta \in \mathbb{F}_{2^{2m}}$, and observe that $A(\beta) = 2^m - 1$ if $\beta \in \mathbb{F}_{2^m}$, while, if $\beta \notin \mathbb{F}_{2^m}$ all sums assume the same value $A(\alpha)$, which is shown as follows: set $\beta = u + \alpha v$ with $v \neq 0$, then

$$
\sum_{z \in \mathbb{F}_{2^m}} \chi(z + u + \alpha v) = \sum_{z \in \mathbb{F}_{2^m}} \chi(v) \chi((z + u)v^{-1} + \alpha) = \sum_{z' \in \mathbb{F}_{2^m}} \chi(z' + \alpha) .
$$

Therefore, the sum $\sum_{\beta\in\mathbb{F}_{2^{2m}}}A(\beta)=\sum_{\beta}\sum_{z}\chi(z+\beta)=\sum_{z}\sum_{\beta}\chi(z+\beta)=0$ yields

$$
2^{m}(2^{m}-1) + (2^{2m} - 2^{m})A(\alpha) = 0
$$

which implies $A(\alpha) = -1$, and finally

$$
G_{2m}(1,\chi) = 2^{m+1} - 2 - (2^m - 2) = 2^m.
$$

 \Box

Remark 1. The above theorem can also be proved using a theorem by Stickelberger ([\[3,](#page-6-0) Theorem 5.16])

Theorem 2 *If* m *is even, the Gauss sum* $G_{2m}(1, \chi)$ *is equal to* $(-2)^{m/2}G_m(1, \chi)$.

PROOF. The relative trace of the elements of $\mathbb{F}_{2^{2m}}$ over \mathbb{F}_{2^m} , which is

$$
\text{Tr}_{(2m/m)}(x) = x + x^{2^m}
$$

,

introduces the polynomial $x+x^{2^m}$ which defines a mapping from $\mathbb{F}_{2^{2m}}$ onto \mathbb{F}_{2^m} with kernel the subfield \mathbb{F}_{2^m} ([\[3\]](#page-6-0)). The equation $x^{2^m}+x=y$ has in fact exactly 2^m roots in $\mathbb{F}_{2^{2m}}$ for every $y\in \mathbb{F}_{2^m}.$ By definition we have

$$
G_{2m}(1,\chi) = 2 \sum_{\substack{z \in \mathbb{F}_{2^{2m}} \\ \text{Tr}_{2m}(z) = 0}} \chi(z) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2m} \\ \text{Tr}_{2m}(x + \alpha y) = 0}} \chi(x + \alpha y) ,
$$

where α is a root of an irreducible quadratic polynomial $x^2 + x + b$ over \mathbb{F}_{2^m} , i.e. $\text{Tr}_m(b) = 1$ ([\[3,](#page-6-0) Corollary 3.79]) and $\text{Tr}_{(2m/m)}(\alpha) = 1$, which can be seen from the coefficient of x of the polynomial. Now

$$
\text{Tr}_{2m}(x + \alpha y) = \text{Tr}_{2m}(x) + \text{Tr}_{2m}(\alpha y) = \text{Tr}_{2m}(\alpha y) = \text{Tr}_{m}(\alpha y) + \text{Tr}_{m}(\alpha^{2^{m}} y) ,
$$

but $\alpha^{2^m}=1+\alpha$, so that $\textrm{Tr}_{2m}(x+\alpha y)=\textrm{Tr}_{m}(y)$, and we have

$$
G_{2m}(1,\chi) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2m} \\ \text{Tr}_m(y)=0}} \chi(x+\alpha y) = 2 \sum_{x \in \mathbb{F}_{2m}} \chi(x) + 2 \sum_{\substack{y \in \mathbb{F}_{2m}^* \\ \text{Tr}_m(y)=0}} \chi(\alpha y) + 2 \sum_{\substack{x,y \in \mathbb{F}_{2m}^* \\ \text{Tr}_m(y)=0}} \chi(x+\alpha y) ,
$$

where the first summation has been split into the sum of three summations, by separating the cases $y = 0$ and $x = 0$. We observe that, since the character over \mathbb{F}_{2^m} is not trivial, the first sum is 0 and the second is $\chi(\alpha)G_m(1,\chi)$, while the third sum can be written as follows

$$
2 \sum_{\substack{x,y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(x+\alpha y) = 2 \sum_{\substack{x,y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(y) \chi(xy^{-1}+\alpha) = 2 \sum_{\substack{y \in \mathbb{F}_{2^m}^* \\ \text{Tr}_m(y)=0}} \chi(y) \sum_{z \in \mathbb{F}_{2^m}^*} \chi(z+\alpha) .
$$

Putting all together, we obtain

$$
G_{2m}(1,\chi) = G_m(1,\chi) \sum_{z \in \mathbb{F}_{2m}} \chi(z+\alpha) = G_m(1,\chi) A_m(\alpha) ,
$$

which shows that $|A_m(\alpha)| = 2^{m/2}$ and that $A_m(\alpha)$ is real, as both $G_{2m}(1, \chi)$ and $G_m(1, \chi)$ are real. Note that this holds for any α with $\text{Tr}_{(2m/m)}(\alpha)=1.$

We will show now that $A_m(\alpha)=(-2)^{m/2}.$ Consider the sum of $A_m(\gamma)$ over all γ with relative trace equal to 1, which is, on one hand $2^m A_m(\alpha)$, as the polynomial $x^{2^m}+x=1$ has exactly 2^m roots in $\mathbb{F}_{2^{2m}}$ and on the other hand, explicitly we have

$$
\sum_{\gamma \in \mathbb{F}_{2^{2m}}^*} A_m(\gamma) = \sum_{z \in \mathbb{F}_{2^m}} \sum_{\gamma \in \mathbb{F}_{2^{2m}}^*} \chi(z + \gamma) = \sum_{z \in \mathbb{F}_{2^m}} \sum_{\gamma' \in \mathbb{F}_{2^{2m}}^*} \chi(\gamma') = 2^m \sum_{\gamma' \in \mathbb{F}_{2^{2m}}^*} \chi(\gamma') ,
$$

\n
$$
\text{Tr}_{2m/m}(\gamma) = 1 \qquad \text{Tr}_{2m/m}(\gamma') = 1 \qquad \text{Tr}_{2m/m}(\gamma') = 1 \qquad \text{Tr}_{2m/m}(\gamma') = 1
$$

where the summation order has been exchanged, and $\text{Tr}_{2m/m}(\gamma) = \text{Tr}_{2m/m}(\gamma')$ as $\text{Tr}_{2m/m}(z) = 0$ for any $z \in \mathbb{F}_{2^m}$. Comparing the two results, we have

$$
A_m(\alpha) = \sum_{\substack{\gamma' \in \mathbb{F}_2^*\\ \text{Tr}_{2m/m}(\gamma') = 1}} \chi(\gamma') = M_0 + M_1 \omega + M_2 \omega^2,
$$

where M_0 is the number of γ' with $\text{Tr}_{2m/m}(\gamma')=1$ that are cubic residues, i.e. they have character $\chi(\gamma')$ equal to 1, M_1 is the number of γ' with $\text{Tr}_{2m/m}(\gamma')=1$ that have character ω , and M_2 is the number of γ' with $\text{Tr}_{2m/m}(\gamma')=1$ that have character ω^2 , then $M_0+M_1+M_2=2^m$, and $M_1=M_2$ since $A_m(\alpha)$ is real. Therefore, we have $A_m(\alpha) = M_0 - M_1$, and so we consider two equations for M_0 and M_1

$$
\begin{cases}\nM_0 + 2M_1 = 2^m \\
M_0 - M_1 = \pm 2^{m/2}\n\end{cases}
$$

solving for M_1 we have $M_1 = \frac{1}{3}(2^m \mp 2^{m/2})$. Since M_1 must be an integer, we have

$$
\begin{cases}\nM_0 - M_1 = 2^{m/2} & \text{if } m/2 \text{ is even} \\
M_0 - M_1 = -2^{m/2} & \text{if } m/2 \text{ is odd.} \n\end{cases}
$$

 \Box

Corollary 1 *If* m *is even, the value of the Gauss sum* $G_{2m}(1, \chi)$ *is* -2^m *.*

PROOF. It is a direct consequence of the two theorems above.

Acknowledgment

The Research was supported in part by the Swiss National Science Foundation under grant No. 126948

References

- [1] B. Berndt, R.J. Evans, H. Williams, *Gauss and Jacobi Sums*, Wiley, New York, 1998.
- [2] D. Jungnickel, *Finite Fields, Structure and Arithmetics*, Wissenshaftsverlag, Mannheim, 1993.
- [3] R. Lidl, H. Niederreiter, *Finite Fields*, Cambridge University Press, Cambridge, 1986.
- [4] A. Winterhof, On the Distribution of Powers in Finite Fields, *Finite Fields and Their applications*, 4, (1998), p.43-54.