Gauss Sums of the Cubic Character over $GF(2^m)$: an elementary derivation

Davide Schipani^{*}, Michele Elia[†]

December 27, 2010

Abstract

An elementary approach is shown which derives the value of the Gauss sum of a cubic character over a finite field \mathbb{F}_{2^s} without using Davenport-Hasse's theorem (namely, if *s* is odd the Gauss sum is -1, and if *s* is even its value is $-(-2)^{s/2}$).

Keywords: Gauss sum, character, binary finite fields.

Mathematics Subject Classification (2010): 12Y05, 12E30

1 Introduction

Let \mathbb{F}_{2^s} be a Galois field over \mathbb{F}_2 , and χ be the cubic character, namely χ is a mapping from $\mathbb{F}_{2^s}^*$ into the complex numbers defined as

$$\chi(\alpha^h \theta^j) = e^{\frac{2i\pi}{3}h} \doteq \omega^h \quad h = 0, 1, 2 ,$$

where θ is a cube, furthermore we set $\chi(0) = 0$ by definition.

Let $\operatorname{Tr}_s(x) = \sum_{j=0}^{s-1} x^{2^j}$ be the trace function over \mathbb{F}_{2^s} , and $\operatorname{Tr}_{s/r}(x) = \sum_{j=0}^{s/r-1} x^{2^{rj}}$ be the relative trace function over \mathbb{F}_{2^s} relatively to \mathbb{F}_{2^r} , with r|s [3]. A Gauss sum of a character χ over \mathbb{F}_{2^s} is defined as [1]

$$G_s(\beta, \chi) = \sum_{y \in \mathbb{F}_{2^s}} \chi(y) e^{\pi i \operatorname{Tr}_s(\beta y)} = \bar{\chi}(\beta) G_s(1, \chi) \ .$$

The values of the Gauss sums of a cubic character over \mathbb{F}_{2^s} can be found by computing the Gauss sum over GF(4) and applying Davenport-Hasse's theorem on the lifting of characters ([1, 2, 3]) for *s* even (and by computing the Gauss sum over GF(2) and then trivially lifting for *s* odd). However it is possible to use a more elementary approach, and this is the topic of the present work.

^{*}University of Zurich, Switzerland

[†]Politecnico di Torino, Italy

If *s* is odd then the cubic character is trivial because every element β in \mathbb{F}_{2^s} is a cube as the following chain of equalities shows

$$\beta \cdot 1 = \beta \cdot (\beta^{2^{s}-1})^{2} = \beta \beta^{2^{s+1}-2} = \beta^{2^{s+1}-1} = (\beta^{\frac{2^{s+1}-1}{3}})^{3} ,$$

since $\beta^{2^s-1} = 1$, and s + 1 is even, so that $2^{s+1} - 1$ is divisible by 3. In this case we have

$$G_s(1,\chi) = \sum_{y \in \mathbb{F}_{2^s}} \chi(y) e^{\pi i \operatorname{Tr}_s(y)} = \sum_{y \in \mathbb{F}_{2^s}^*} e^{\pi i \operatorname{Tr}_s(y)} = -1 ,$$

since the number of elements with trace 1 is equal to the number of elements with trace $0 (\text{Tr}_s(x) \in \mathbb{F}_2; \text{moreover } \text{Tr}_s(x) = 1 \text{ and } \text{Tr}_s(x) = 0 \text{ are two equations of degree } 2^{s-1})$, and $e^{\pi i \cdot 0} = 1$ while $e^{\pi i \cdot 1} = -1$.

If s = 2m is even, the cubic character is nontrivial, and the computation of the Gauss sums requires some more effort; before we show how they can be computed with an elementary approach, we need some preparatory lemmas.

2 **Preliminary facts**

First of all we recall that, for any nontrivial character χ over \mathbb{F}_q , $\sum_{x \in \mathbb{F}_q} \chi(x) = 0$. This is used to prove a property of a sum of characters, already known to Kummer [4], which can be formulated in the following form:

Lemma 1 Let χ be a nontrivial character and β any element of \mathbb{F}_q ; then

$$\sum_{x \in \mathbb{F}_q} \chi(x)\bar{\chi}(x+\beta) = \begin{cases} q-1 & \text{if } \beta = 0\\ -1 & \text{if } \beta \neq 0 \end{cases} .$$

PROOF. If $\beta = 0$, the summand is $\chi(x)\overline{\chi}(x) = 1$, unless x = 0 in which case it is 0, then the conclusion is immediate.

When $\beta \neq 0$, we can exclude again the term with x = 0, as $\chi(x) = 0$, so that x is invertible, and the summand can be written as

$$\chi(x)\bar{\chi}(x+\beta) = \chi(x)\bar{\chi}(x)\bar{\chi}(1+\beta x^{-1}) = \bar{\chi}(1+\beta x^{-1}) \; .$$

With the substitution $y = 1 + \beta x^{-1}$, the summation becomes

$$\sum_{\substack{y\in\mathbb{F}_{2^{2m}}\\y\neq 1}}\chi(y)=-1+\sum_{y\in\mathbb{F}_{2^{2m}}}\chi(y)=-1\ ,$$

as $\chi(y) = 1$ for y = 1.

	J

We are now interested in the sum $\sum_{x \in \mathbb{F}_q} \chi(x)\chi(x+1)$. Note that for the Gauss sums over \mathbb{F}_{2^s} we have

$$G_s(1,\chi) = \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 0}} \chi(y) - \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 1}} \chi(y) \quad .$$
(1)

It follows that, if χ is a nontrivial character, then the Gauss sum over \mathbb{F}_{2^s} satisfies the following:

$$G_s(1,\chi) = 2 \sum_{\substack{y \in \mathbb{F}_{2^s} \\ \operatorname{Tr}_s(y) = 0}} \chi(y)$$

In fact half of the field elements have trace 0 and the other half 1, so that

$$\sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ \mathrm{Tr}(y) = 0}} \chi(y) = -\sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ \mathrm{Tr}(y) = 1}} \chi(y)$$

as the sum over all field elements is zero, since χ is nontrivial.

Lemma 2 If χ is a nontrivial character over $\mathbb{F}_{2^{2m}}$, then

$$\sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x) \chi(x+1) = G_{2m}(1,\chi) \ .$$

PROOF. The sum $\sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x)\chi(x+1)$ can be written as $\sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x(x+1))$, since the character is a multiplicative function, now the function f(x) = x(x+1) is a mapping from $\mathbb{F}_{2^{2m}}$ onto the subset of elements with trace 0, as $\operatorname{Tr}_s(x) = \operatorname{Tr}_s(x^2)$ for any s, and each image comes exactly from two elements, x and x + 1, that have the same trace, since $\operatorname{Tr}_s(1) = 0$ for s even, which is our case. Therefore, half of the elements with trace 0 are images of elements with trace 0, and the remaining half are images of elements with trace 1. It follows that

$$\sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x)\chi(x+1) = 2 \sum_{\substack{y \in \mathbb{F}_{2^{2m}} \\ \operatorname{Tr}_{2m}(y) = 0}} \chi(y) = G_{2m}(1,\chi) \quad .$$
(2)

Lemma 3 Let χ be a nontrivial character of order $2^r + 1$. Then the Gauss sum $G_{2m}(1, \chi)$ is a real number, *i.e.* $G_{2m}(1, \chi) = \pm 2^m$.

PROOF. Using (2) we have

$$\bar{G}_{2m}(1,\chi) = \sum_{x \in \mathbb{F}_{2^{2m}}} \bar{\chi}(x)\bar{\chi}(x+1) = \sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x^{2^r})\chi(x^{2^r}+1) = \sum_{x \in \mathbb{F}_{2^{2m}}} \chi(x)\chi(x+1) = G_{2m}(1,\chi) ,$$

as $\bar{\chi}(x) = \chi(x)^{2^r} = \chi(x^{2^r})$ and $x \to x^{2^r}$ is a field automorphism, so it just permutes the elements of the field.

3 Main results

The absolute value of $G_s(1, \chi)$ can be evaluated using elementary standard techniques going back to Gauss (see e.g. [1]), while its argument requires a more subtle analysis. Our main theorems in the following section derive in an elementary way the exact value of the Gauss sum for the cubic character χ over $\mathbb{F}_{2^{2m}}$ (the case of *s* odd is trivial, as shown above). Before we proceed, we show in a standard way what is its absolute value.

Since $G_{2m}(\beta,\chi) = \bar{\chi}(\beta)G_{2m}(1,\chi)$, on one hand, we have

$$\sum_{\beta \in \mathbb{F}_{2^{2m}}} G_{2m}(\beta, \chi) \bar{G}_{2m}(\beta, \chi) = \sum_{\beta \in \mathbb{F}_{2^{2m}}} \bar{\chi}(\beta) \chi(\beta) G_{2m}(1, \chi) \bar{G}_{2m}(1, \chi) = (2^{2m} - 1) G_{2m}(1, \chi) \bar{G}_{2m}(1, \chi) .$$

$$(3)$$

On the other hand, by the definition of Gauss sum, we have

$$\sum_{\beta \in \mathbb{F}_{2^{2m}}} G_{2m}(\beta, \chi) \bar{G}_{2m}(\beta, \chi) = \sum_{\beta \in \mathbb{F}_{2^{2m}}} \sum_{\alpha \in \mathbb{F}_{2^{2m}}} \sum_{\gamma \in \mathbb{F}_{2^{2m}}} \bar{\chi}(\alpha) e^{\pi i \operatorname{Tr}_{2m}(\beta \alpha)} \chi(\gamma) e^{-\pi i \operatorname{Tr}_{2m}(\gamma \beta)}$$

and substituting $\alpha = \gamma + \theta$ in the last sum, we have

$$\sum_{\beta \in \mathbb{F}_{2^{2m}}} G_{2m}(\beta, \chi) \bar{G}_{2m}(\beta, \chi) = \sum_{\gamma \in \mathbb{F}_{2^{2m}}} \sum_{\theta \in \mathbb{F}_{2^{2m}}} \bar{\chi}(\gamma + \theta) \chi(\gamma) \sum_{\beta \in \mathbb{F}_{2^{2m}}} e^{\pi i \operatorname{Tr}_{2m}(\beta \theta)} = 2^{2m} (2^{2m} - 1) \quad , \quad (4)$$

as the sum on β is 2^{2m} if $\theta = 0$ and is 0 otherwise, since the values of the trace are equally distributed, as said above; consequently the sum over γ is $2^{2m} - 1$ times 2^{2m} , as $\chi(0) = 0$. From the comparison of (3) with (4) we get $G_{2m}(1,\chi)\bar{G}_{2m}(1,\chi) = 2^{2m}$, then $|G_{2m}(1,\chi)| = 2^m$.

Few initial values are $G_2(1,\chi) = 2$, $G_4(1,\chi) = -4$, $G_6(1,\chi) = 8$, $G_8(1,\chi) = -16$, and $G_{10}(1,\chi) = 32$, so a reasonable guess is $G_{2m}(1,\chi) = -(-2)^m$. This guess is correct as proved by the following theorems.

Theorem 1 If m is odd, the value of the Gauss sum $G_{2m}(1, \chi)$ is 2^m .

PROOF. Let α a primitive cubic root of unity in $\mathbb{F}_{2^{2m}}$, then it is a root of $x^2 + x + 1$. In other words, a root α of $x^2 + x + 1$, which does not belong to \mathbb{F}_{2^m} , as m is odd, can be used to define a quadratic extension of this field, i.e. $\mathbb{F}_{2^{2m}}$, and the elements of this extension can be represented in the form $x + \alpha y$, with $x, y \in \mathbb{F}_{2^m}$. Furthermore, the two roots α and $1 + \alpha$ of $x^2 + x + 1$ are either fixed or exchanged by any Frobenius automorphism; in particular the automorphism $\sigma^m(x) = x^{2^m}$ necessarily exchange the two roots as it fixes precisely all the elements of \mathbb{F}_{2^m} , while α does not belong to this field, so that $\sigma^m(\alpha) \neq \alpha$. Now, a Gauss sum $G_{2m}(1, \chi)$ can be written as

$$G_{2m}(1,\chi) = 2\sum_{\substack{z \in \mathbb{F}_{2^{2m}} \\ \operatorname{Tr}_{2m}(z) = 0}} \chi(z) = 2\sum_{\substack{x,y \in \mathbb{F}_{2^m} \\ \operatorname{Tr}_{2m}(x+\alpha y) = 0}} \chi(x+\alpha y) = 2\sum_{\substack{x,y \in \mathbb{F}_{2^m} \\ \operatorname{Tr}_{m}(y) = 0}} \chi(x+\alpha y) ,$$
(5)

where we used the trace property

$$\operatorname{Tr}_{2m}(x+\alpha y) = \operatorname{Tr}_{2m}(x) + \operatorname{Tr}_{2m}(\alpha y) = \operatorname{Tr}_m(x) + \operatorname{Tr}_m(x^{2^m}) + \operatorname{Tr}_{2m}(\alpha y) = \operatorname{Tr}_{2m}(\alpha y)$$

and the fact that

$$\begin{aligned} \operatorname{Tr}_{2m}(\alpha y) &= \operatorname{Tr}_m(\alpha y) + \operatorname{Tr}_m(\alpha y)^{2^m} = \operatorname{Tr}_m(\alpha y) + \operatorname{Tr}_m((\alpha y)^{2^m}) \\ &= \operatorname{Tr}_m(\alpha y) + \operatorname{Tr}_m(\alpha^{2^m} y) = \operatorname{Tr}_m(\alpha y) + \operatorname{Tr}_m((\alpha + 1)y) = \operatorname{Tr}_m(y) , \end{aligned}$$

since $\alpha^{2^m} = \alpha + 1$ as previously shown. The last summation in (5) can be split into three sums by separating the cases x = 0 and y = 0

$$2\sum_{\substack{x,y\in\mathbb{F}_{2^m}\\\mathrm{Tr}_m(y)=0}}\chi(x+\alpha y) = 2\sum_{\substack{y\in\mathbb{F}_{2^m}\\\mathrm{Tr}_m(y)=0}}\chi(\alpha y) + 2\sum_{x\in\mathbb{F}_{2^m}}\chi(x) + 2\sum_{\substack{x,y\in\mathbb{F}_{2^m}\\\mathrm{Tr}_m(y)=0}}\chi(x+\alpha y)$$

Considering the three sums separately, we have:

$$\sum_{x \in \mathbb{F}_{2^m}} \chi(x) = 2^m - 1 \quad ,$$

as $\chi(x) = 1$ unless x = 0 since *m* is odd;

$$\sum_{\substack{y \in \mathbb{F}_{2m} \\ \operatorname{Tr}_m(y) = 0}} \chi(\alpha y) = \chi(\alpha)(2^{m-1} - 1) \ ,$$

as the character is multiplicative, $\chi(y) = 1$ unless y = 0, and only the 0-trace elements (which are $2^{m-1} - 1$) should be counted;

$$\sum_{\substack{x,y \in \mathbb{F}_{2m}^* \\ \operatorname{Tr}_m(y) = 0}} \chi(x + \alpha y) = \sum_{\substack{x,y \in \mathbb{F}_{2m}^* \\ \operatorname{Tr}_m(y) = 0}} \chi(y) \chi(xy^{-1} + \alpha) = \sum_{\substack{z,y \in \mathbb{F}_{2m}^* \\ \operatorname{Tr}_m(y) = 0}} \chi(z + \alpha) = (2^{m-1} - 1) \sum_{z \in \mathbb{F}_{2m}^*} \chi(z + \alpha) .$$

as *y* is invertible, $\chi(y) = 1$ since *m* is odd, *z* has been substituted for xy^{-1} , and the sum we get in the end, being independent of *y*, is simply multiplied by the number of values assumed by *y*. Altogether we have

$$G_{2m}(1,\chi) = 2^{m+1} - 2 + \chi(\alpha)(2^m - 2) + (2^m - 2) \sum_{z \in \mathbb{F}_{2m}^*} \chi(z + \alpha) = 2^{m+1} - 2 + (2^m - 2) \sum_{z \in \mathbb{F}_{2m}} \chi(z + \alpha) ,$$

and, for later use, we define $A(\alpha) = \sum_{z \in \mathbb{F}_{2^m}} \chi(z + \alpha)$. In order to evaluate $A(\alpha)$, we consider the sum of $A(\beta)$, for every $\beta \in \mathbb{F}_{2^{2m}}$, and observe that $A(\beta) = 2^m - 1$ if $\beta \in \mathbb{F}_{2^m}$, while, if $\beta \notin \mathbb{F}_{2^m}$ all sums assume the same value $A(\alpha)$, which is shown as follows: set $\beta = u + \alpha v$ with $v \neq 0$, then

$$\sum_{\in \mathbb{F}_{2^m}} \chi(z+u+\alpha v) = \sum_{z\in \mathbb{F}_{2^m}} \chi(v)\chi((z+u)v^{-1}+\alpha) = \sum_{z'\in \mathbb{F}_{2^m}} \chi(z'+\alpha)$$

Therefore, the sum $\sum_{\beta \in \mathbb{F}_{2^{2m}}} A(\beta) = \sum_{\beta} \sum_{z} \chi(z+\beta) = \sum_{z} \sum_{\beta} \chi(z+\beta) = 0$ yields

$$2^{m}(2^{m}-1) + (2^{2m}-2^{m})A(\alpha) = 0$$

which implies $A(\alpha) = -1$, and finally

2

$$G_{2m}(1,\chi) = 2^{m+1} - 2 - (2^m - 2) = 2^m$$
.

Remark 1. The above theorem can also be proved using a theorem by Stickelberger ([3, Theorem 5.16])

Theorem 2 If m is even, the Gauss sum $G_{2m}(1,\chi)$ is equal to $(-2)^{m/2}G_m(1,\chi)$.

PROOF. The relative trace of the elements of $\mathbb{F}_{2^{2m}}$ over \mathbb{F}_{2^m} , which is

$$\operatorname{Tr}_{(2m/m)}(x) = x + x^{2^m}$$

introduces the polynomial $x + x^{2^m}$ which defines a mapping from $\mathbb{F}_{2^{2m}}$ onto \mathbb{F}_{2^m} with kernel the subfield \mathbb{F}_{2^m} ([3]). The equation $x^{2^m} + x = y$ has in fact exactly 2^m roots in $\mathbb{F}_{2^{2m}}$ for every $y \in \mathbb{F}_{2^m}$. By definition we have

$$G_{2m}(1,\chi) = 2\sum_{\substack{z \in \mathbb{F}_{2^{2m}} \\ \operatorname{Tr}_{2m}(z) = 0}} \chi(z) = 2\sum_{\substack{x,y \in \mathbb{F}_{2^m} \\ \operatorname{Tr}_{2m}(x+\alpha y) = 0}} \chi(x+\alpha y) ,$$

where α is a root of an irreducible quadratic polynomial $x^2 + x + b$ over \mathbb{F}_{2^m} , i.e. $\operatorname{Tr}_m(b) = 1$ ([3, Corollary 3.79]) and $\operatorname{Tr}_{(2m/m)}(\alpha) = 1$, which can be seen from the coefficient of x of the polynomial. Now

$$\operatorname{Tr}_{2m}(x + \alpha y) = \operatorname{Tr}_{2m}(x) + \operatorname{Tr}_{2m}(\alpha y) = \operatorname{Tr}_{2m}(\alpha y) = \operatorname{Tr}_{m}(\alpha y) + \operatorname{Tr}_{m}(\alpha^{2^{m}}y) ,$$

but $\alpha^{2^m} = 1 + \alpha$, so that $\operatorname{Tr}_{2m}(x + \alpha y) = \operatorname{Tr}_m(y)$, and we have

$$G_{2m}(1,\chi) = 2\sum_{\substack{x,y \in \mathbb{F}_{2m} \\ \operatorname{Tr}_m(y) = 0}} \chi(x + \alpha y) = 2\sum_{x \in \mathbb{F}_{2m}} \chi(x) + 2\sum_{\substack{y \in \mathbb{F}_{2m}^* \\ \operatorname{Tr}_m(y) = 0}} \chi(\alpha y) + 2\sum_{\substack{x,y \in \mathbb{F}_{2m}^* \\ \operatorname{Tr}_m(y) = 0}} \chi(x + \alpha y) ,$$

where the first summation has been split into the sum of three summations, by separating the cases y = 0 and x = 0. We observe that, since the character over \mathbb{F}_{2^m} is not trivial, the first sum is 0 and the second is $\chi(\alpha)G_m(1,\chi)$, while the third sum can be written as follows

$$2\sum_{\substack{x,y\in\mathbb{F}_{2m}^{*}\\\mathrm{Tr}_{m}(y)=0}}\chi(x+\alpha y) = 2\sum_{\substack{x,y\in\mathbb{F}_{2m}^{*}\\\mathrm{Tr}_{m}(y)=0}}\chi(y)\chi(xy^{-1}+\alpha) = 2\sum_{\substack{y\in\mathbb{F}_{2m}^{*}\\\mathrm{Tr}_{m}(y)=0}}\chi(y)\sum_{z\in\mathbb{F}_{2m}^{*}}\chi(z+\alpha) \ .$$

Putting all together, we obtain

$$G_{2m}(1,\chi) = G_m(1,\chi) \sum_{z \in \mathbb{F}_{2m}} \chi(z+\alpha) = G_m(1,\chi) A_m(\alpha) ,$$

which shows that $|A_m(\alpha)| = 2^{m/2}$ and that $A_m(\alpha)$ is real, as both $G_{2m}(1, \chi)$ and $G_m(1, \chi)$ are real. Note that this holds for any α with $\operatorname{Tr}_{(2m/m)}(\alpha) = 1$.

We will show now that $A_m(\alpha) = (-2)^{m/2}$. Consider the sum of $A_m(\gamma)$ over all γ with relative trace equal to 1, which is, on one hand $2^m A_m(\alpha)$, as the polynomial $x^{2^m} + x = 1$ has exactly 2^m roots in $\mathbb{F}_{2^{2m}}$ and on the other hand, explicitly we have

$$\sum_{\substack{\gamma \in \mathbb{F}^*_{2^{2m}} \\ \operatorname{Tr}_{2m/m}(\gamma) = 1}} A_m(\gamma) = \sum_{z \in \mathbb{F}_{2^m}} \sum_{\substack{\gamma \in \mathbb{F}^*_{2^{2m}} \\ \operatorname{Tr}_{2m/m}(\gamma) = 1}} \chi(z + \gamma) = \sum_{z \in \mathbb{F}_{2^m}} \sum_{\substack{\gamma' \in \mathbb{F}^*_{2^{2m}} \\ \operatorname{Tr}_{2m/m}(\gamma') = 1}} \chi(\gamma') = 2^m \sum_{\substack{\gamma' \in \mathbb{F}^*_{2^{2m}} \\ \operatorname{Tr}_{2m/m}(\gamma') = 1}} \chi(\gamma') ,$$

where the summation order has been exchanged, and $\operatorname{Tr}_{2m/m}(\gamma) = \operatorname{Tr}_{2m/m}(\gamma')$ as $\operatorname{Tr}_{2m/m}(z) = 0$ for any $z \in \mathbb{F}_{2^m}$. Comparing the two results, we have

$$A_m(\alpha) = \sum_{\substack{\gamma' \in \mathbb{F}_{22m}^* \\ \operatorname{Tr}_{2m/m}(\gamma') = 1}} \chi(\gamma') = M_0 + M_1 \omega + M_2 \omega^2 ,$$

where M_0 is the number of γ' with $\operatorname{Tr}_{2m/m}(\gamma') = 1$ that are cubic residues, i.e. they have character $\chi(\gamma')$ equal to 1, M_1 is the number of γ' with $\operatorname{Tr}_{2m/m}(\gamma') = 1$ that have character ω , and M_2 is the number of γ' with $\operatorname{Tr}_{2m/m}(\gamma') = 1$ that have character ω^2 , then $M_0 + M_1 + M_2 = 2^m$, and $M_1 = M_2$ since $A_m(\alpha)$ is real. Therefore, we have $A_m(\alpha) = M_0 - M_1$, and so we consider two equations for M_0 and M_1

$$\begin{cases} M_0 + 2M_1 = 2^m \\ M_0 - M_1 = \pm 2^{m/2} \end{cases}$$

solving for M_1 we have $M_1 = \frac{1}{3}(2^m \mp 2^{m/2})$. Since M_1 must be an integer, we have

$$\begin{cases} M_0 - M_1 = 2^{m/2} & \text{if } m/2 \text{ is even} \\ M_0 - M_1 = -2^{m/2} & \text{if } m/2 \text{ is odd.} \end{cases}$$

Corollary 1 If m is even, the value of the Gauss sum $G_{2m}(1, \chi)$ is -2^m .

PROOF. It is a direct consequence of the two theorems above.

Г		

Acknowledgment

The Research was supported in part by the Swiss National Science Foundation under grant No. 126948

References

- [1] B. Berndt, R.J. Evans, H. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998.
- [2] D. Jungnickel, Finite Fields, Structure and Arithmetics, Wissenshaftsverlag, Mannheim, 1993.
- [3] R. Lidl, H. Niederreiter, *Finite Fields*, Cambridge University Press, Cambridge, 1986.
- [4] A. Winterhof, On the Distribution of Powers in Finite Fields, *Finite Fields and Their applications*, 4, (1998), p.43-54.