
ar
X

iv
:1

01
2.

53
49

v1
  [

m
at

h.
A

P]
  2

4 
D

ec
 2

01
0
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Abstract

In this paper, we study the Cauchy problem of a periodic 2-component µ-Hunter-Saxton
system. We first establish the local well-posedness for the periodic 2-component µ-Hunter-
Saxton system by Kato’s semigroup theory. Then, we derive precise blow-up scenarios for
strong solutions to the system. Moreover, we present a blow-up result for strong solutions
to the system. Finally, we give a global existence result to the system.
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1 Introduction

Recently, a new 2-component system was introduced by Zuo in [20] as follows:


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

















































µ(u)t − utxx = 2µ(u)ux − 2uxuxx − uuxxx + ρρx −γ1uxxx,

t > 0, x ∈ R,

ρt = (ρu)x + 2γ2ρx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(1.1)

where µ(u) =
∫

S
udx with S = R/Z and γi ∈ R, i = 1, 2. By integrating both sides of the first

equation in the system (1.1) over the circle S = R/Z and using the periodicity of u, one obtain

µ(ut) = µ(u)t = 0.
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This yields the following periodic 2-component µ-Hunter-Saxton system:




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









































−utxx = 2µ(u)ux − 2uxuxx − uuxxx + ρρx −γ1uxxx,

t > 0, x ∈ R,

ρt = (ρu)x + 2γ2ρx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(1.2)

with γi ∈ R, i = 1, 2. This system is a 2-component generalization of the generalized Hunter-
Saxton equation obtained in [15]. The author [20] shows that this system is a bihamiltonian
Euler equation, and also can be viewed as a bivariational equation.

Obviously, (1.1) is equivalent to (1.2) under the condition µ(ut) = µ(u)t = 0. In this paper,
we will study the system (1.2) under the assumption µ(ut) = µ(u)t = 0.

For ρ ≡ 0 and γ = 0, and replacing t by −t, the system (1.2) reduces to the generalized
Hunter-Saxton equation (named µ-Hunter-Saxton equation) as follows:

− utxx = −2µ(u)ux + 2uxuxx + uuxxx, (1.3)

which is obtained and studied in [15]. The µ-Hunter-Saxton equation lies mid-way between the
periodic Hunter-Saxton and Camassa-Holm equations with u = u(t, x) being a time-dependent
function on the circle S = R/Z and µ(u) =

∫

S
udx denotes its mean. Recently, the periodic µ-

Hunter-Saxton equation and the periodic µ-Degasperis-Procesi equation have also been studied
in [9]. For µ(u) = 0, the equation (1.3) reduces to the Hunter-Saxton equation [10]

utxx + 2uxuxx + uuxxx = 0, (1.4)

modeling the propagation of weakly nonlinear orientation waves in a massive nematic liquid
crystal. In the Hunter-Saxton equation [10], x is the space variable in a reference frame moving
with the linearized wave velocity, t is a slow-time variable and u(t, x) is a measure of the
average orientation of the medium locally around x at time t. More precisely, the orientation
of the molecules is described by the field of unit vectors (cos u(t, x), sin u(t, x)) [19]. The single-
component model also arises in a different physical context as the high-frequency limit [6, 11] of
the Camassa-Holm equation for shallow water waves [2, 12] and a re-expression of the geodesic
flow on the diffeomorphism group of the circle [4] with a bi-Hamiltonian structure [8] which
is completely integrable [5]. The Hunter-Saxton equation also has a bi-Hamiltonian structure
[12, 17] and is completely integrable [1, 11]. The initial value problem for the Hunter-Saxton
equation (1.4) on the line (nonperiodic case) and on the unit circle S = R/Z were studied by
Hunter and Saxton in [10] using the method of characteristics and by Yin in [19] using Kato
semigroup method, respectively.

For ρ 6≡ 0 , γi = 0, i = 1, 2 µ(u) = 0 and replacing t by −t, peakon solutions of the Cauchy
problem of the system (1.2) have been analysed in [3]. Moreover, the Cauchy problem of 2-
component periodic Hunter-Saxton system has been discussed in [16]. However, the Cauchy
problem of the system (1.2) has not been studied yet. The aim of this paper is to establish the
local well-posedness for the system (1.2), to derive precise blow-up scenarios, to prove that the
system (1.2) has global strong solutions and also finite time blow-up solutions.
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The paper is organized as follows. In Section 2, we establish the local well-posedness of
the initial value problem associated with the system (1.2). In Section 3, we derive two precise
blow-up scenarios. In Section 4, we present a explosion criteria of strong solutions to the system
(1.2) with general initial data. In Section 5, we give a new global existence result of strong
solutions to the system (1.2).

Notation Given a Banach space Z, we denote its norm by ‖·‖Z . Since all space of functions
are over S = R/Z, for simplicity, we drop S in our notations of function spaces if there is no
ambiguity. We let [A,B] denote the commutator of linear operator A and B. For convenience,
we let (·|·)s×r and (·|·)s denote the inner products of Hs × Hr, s, r ∈ R+ and Hs, s ∈ R+,
respectively.

2 Local well-posedness

In this section, we will establish the local well-posedness for the Cauchy problem of the system
(1.2) in Hs ×Hs−1, s ≥ 2, by applying Kato’s theory [13].

The condition µ(ut) = 0 ensures that the first equation in (1.2) can be recast in the form

ut − (u+ γ1)ux = ∂x(µ− ∂2
x)

−1(2µu+
1

2
u2x +

1

2
ρ2),

where A = µ − ∂2
x is an isomorphism between Hs and Hs−2. Using this identity, the system

(1.2) takes the form of a quasi-linear evolution equation of hyperbolic type:






















































ut − (u+ γ1)ux = ∂x(µ− ∂2
x)

−1 (2µu+ 1
2u

2
x +

1
2ρ

2),

t > 0, x ∈ R,

ρt − (u+ 2γ2)ρx = uxρ, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R.

(2.1)

Let z :=

(

u

ρ

)

, A(z) =

(

−(u+ γ1)∂x 0

0 −(u+ 2γ2)∂x

)

and

f(z) =

(

∂x(µ − ∂2
x)

−1(2µu+ 1
2u

2
x +

1
2ρ

2)

uxρ

)

.

Set Y = Hs ×Hs−1, X = Hs−1 ×Hs−2, Λ = (µ− ∂2
x)

1

2 and Q =

(

Λ 0

0 Λ

)

. Obviously, Q is

an isomorphism of Hs ×Hs−1 onto Hs−1 ×Hs−2.

Similar to the proof of Theorem 2.2 in [7], we get the following conclusion.

Theorem 2.1 Given z0 = (u0, ρ0) ∈ Hs ×Hs−1, s ≥ 2, then there exists a maximal T = T (‖
z0 ‖Hs×Hs−1) > 0, and a unique solution z = (u, ρ) to (2.1) such that

z = z(·, z0) ∈ C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2).
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Moreover, the solution depends continuously on the initial data, i.e., the mapping

z0 → z(·, z0) : Hs ×Hs−1 → C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2)

is continuous.

Recall that the periodic 2-component Hunter-Saxton system discussed in [16] only has lo-
cal existence but not local well-posedness because of the lack of uniqueness. The ambiguity
disappears in the case of the periodic 2-component µ-Hunter-Saxton system from the Theorem
2.1. This is a very important difference between the 2-component Hunter-Saxton system and
the 2-component µ-Hunter-Saxton system.

Consequently, we will give another equivalent form of (1.2). Integrating both sides of the
first equation of (1.2) with respect to x, we obtain

utx = −2µ(u)u+
1

2
u2x + uuxx −

1

2
ρ2 + γ1uxx + a(t),

where a(t) is determined by the periodicity of u to be

a(t) = 2µ(u)2 +
1

2

∫

S

(u2x + ρ2)dx.

Using the system (1.2), we have

1

2

d

dt

∫

S

(u2x + ρ2)dx (2.2)

=

∫

S

(uxuxt + ρρt)dx

=−
∫

S

uutxxdx+

∫

S

ρρtdx

=

∫

S

2µ(u)uuxdx− 2

∫

S

uuxuxxdx−
∫

S

u2uxxxdx+

∫

S

uρxρdx

− γ1

∫

S

uuxxxdx+

∫

S

ρ(uρ)xdx+ 2γ2

∫

S

ρρxdx

=

∫

S

uρxρdx+

∫

S

ρ(uρ)xdx = 0.

Combing µ(u)t = µ(ut) = 0, we have
d

dt
a(t) = 0.

For the sake of convenience, let

µ0 := µ(u0) = µ(u) =

∫

S

u(t, x)dx,

µ1 :=

(
∫

S

(u2x + ρ2)dx

)
1

2

=

(
∫

S

(u20,x + ρ20)dx

)
1

2

and write a := a(0) henceforth. Therefore,

utx = −2µ0u+
1

2
u2x + uuxx −

1

2
ρ2 + γ1uxx + a (2.3)
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is a valid reformulation of the first equation in (1.2). Integrating once more in x, we get

ut − (u+ γ1)ux = ∂−1
x (−2µ0u− 1

2
u2x −

1

2
ρ2 + a) + h(t),

where ∂−1
x f(x) :=

∫ x
0 f(y)dy and h(t) : [0,∞) → R is a continuous function. The same proce-

dure in the case of the 2-component Hunter-Saxton system leads to the arbitrary continuous
function h(t), which is the reason for non-uniqueness. This time, the condition µ(ut) = 0 im-
plies that the mean value of the expression on the right-hand side above must be zero. This fact
and the uniqueness of the solution of (1.2) imply that the continuous function h(t) is unique.

Thus we get another equivalent form of (1.2)






















































ut − (u+ γ1)ux = ∂−1
x (−2µ0u− 1

2u
2
x

−1
2ρ

2 + a) + h(t), t > 0, x ∈ R,

ρt − (u+ 2γ2)ρx = uxρ, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

u(t, x+ 1) = u(t, x), t ≥ 0, x ∈ R,

ρ(t, x+ 1) = ρ(t, x), t ≥ 0, x ∈ R,

(2.4)

where ∂−1
x f(x) :=

∫ x
0 f(y)dy and h(t) : [0,∞) → R is a continuous function.

3 The precise blow-up scenario

In this section, we present the precise blow-up scenarios for strong solutions to the system
(1.2).

We first recall the following lemmas.

Lemma 3.1 [14] If r > 0, then Hr ∩ L∞ is an algebra. Moreover

‖ fg ‖Hr≤ c(‖ f ‖L∞‖ g ‖Hr + ‖ f ‖Hr‖ g ‖L∞),

where c is a constant depending only on r.

Lemma 3.2 [14] If r > 0, then

‖ [Λr, f ]g ‖L2≤ c(‖ ∂xf ‖L∞‖ Λr−1g ‖L2 + ‖ Λrf ‖L2‖ g ‖L∞),

where c is a constant depending only on r.

Next we prove the following useful result on global existence of solutions to (1.2).

Theorem 3.1 Let z0 =

(

u0

ρ0

)

∈ Hs × Hs−1, s ≥ 2, be given and assume that T is the

maximal existence time of the corresponding solution z =

(

u

ρ

)

to (2.4) with the initial data

z0. If there exists M > 0 such that

‖ux(t, ·)‖L∞ + ‖ρ(t, ·)‖
L∞ + ‖ρx(t, ·)‖L∞ ≤ M, t ∈ [0, T ),

then the Hs ×Hs−1-norm of z(t, ·) does not blow up on [0,T).
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Proof Let z =

(

u

ρ

)

be the solution to (2.4) with the initial data z0 ∈ Hs ×Hs−1, s ≥ 2,

and let T be the maximal existence time of the corresponding solution z, which is guaranteed
by Theorem 2.1. Throughout this proof, c > 0 stands for a generic constant depending only
on s.

Applying the operator Λs to the first equation in (2.4), multiplying by Λsu, and integrating
over S, we obtain

d

dt
‖u‖2Hs = 2(uux, u)s + 2(u, ∂−1

x (−2µ0u− 1

2
u2x −

1

2
ρ2 + a) + h(t))s. (3.1)

Let us estimate the first term of the right-hand side of (3.1).

|(uux, u)s| = |(Λs(u∂xu),Λ
su)0| (3.2)

= |([Λs, u]∂xu,Λ
su)0 + (uΛs∂xu,Λ

su)0|

≤ ‖[Λs, u]∂xu‖L2‖Λsu‖L2 +
1

2
|(uxΛsu,Λsu)0|

≤ (c‖ux‖L∞ +
1

2
‖ux‖L∞)‖u‖2Hs

≤ c‖ux‖L∞‖u‖2Hs ,

where we used Lemma 3.2 with r = s. Let f ∈ Hs−1, s ≥ 2. We have

|∂−1
x f | = |

∫ x

0
fdx| ≤

∫

S

|f |dx ≤ ‖f‖L2

and

‖∂−1
x f‖L2 =

(
∫ 1

0
(∂−1

x f)2dx

)1/2

≤
(
∫ 1

0
‖f‖2L2dx

)1/2

= ‖f‖L2 .

Thus
‖∂−1

x f‖Hs ≤ ‖∂−1
x f‖L2 + ‖f‖Hs−1 ≤ 2‖f‖Hs−1 .

Then, we estimate the second term of the right-hand side of (3.1) in the following way:

|(∂−1
x (−2µ0u− 1

2
u2x −

1

2
ρ2 + a) + h(t), u)s| (3.3)

≤ ‖∂−1
x (−2µ0u− 1

2
u2x −

1

2
ρ2 + a) + h(t)‖Hs‖u‖Hs

≤ (‖∂−1
x (−2µ0u− 1

2
u2x −

1

2
ρ2 + a)‖Hs + ‖h(t)‖Hs)‖u‖Hs

≤ (2‖ − 2µ0u− 1

2
u2x −

1

2
ρ2 + a‖Hs−1 + ‖h(t)‖Hs )‖u‖Hs

≤ (4|µ0|‖u‖Hs + ‖u2x‖Hs−1 + ‖ρ2‖Hs−1 + 2‖a‖Hs−1 + ‖h(t)‖Hs)‖u‖Hs

≤ c(‖u‖Hs + ‖ux‖L∞‖ux‖Hs−1 + ‖ρ‖L∞‖ρ‖Hs−1 + |a|+ max
t∈[0,T )

|h(t)|)‖u‖Hs

≤ c(‖ux‖L∞ + ‖ρ‖L∞ + 1)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1),

where we used Lemma 3.1 with r = s− 1. Combining (3.2) and (3.3) with (3.1), we get

d

dt
‖u‖2Hs ≤ c(‖ρ‖L∞ + ‖ux‖L∞ + 1)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1). (3.4)
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In order to derive a similar estimate for the second component ρ, we apply the operator Λs−1

to the second equation in (2.4), multiply by Λs−1ρ, and integrate over S, to obtain

d

dt
‖ρ‖2Hs−1 = 2(uρx, ρ)s−1 + 2(uxρ, ρ)s−1. (3.5)

Let us estimate the first term of the right hand side of (3.5)

|(uρx, ρ)s−1|
= |(Λs−1(u∂xρ),Λ

s−1ρ)0|
= |([Λs−1, u]∂xρ,Λ

s−1ρ)0 + (uΛs−1∂xρ,Λ
s−1ρ)0|

≤ ‖[Λs−1, u]∂xρ‖L2‖Λs−1ρ‖L2 +
1

2
|(uxΛs−1ρ,Λs−1ρ)0|

≤ c(‖ux‖L∞‖ρ‖Hs−1 + ‖ρx‖L∞‖u‖Hs−1)‖ρ‖Hs−1 +
1

2
‖ux‖L∞‖ρ‖2Hs−1

≤ c(‖ux‖L∞ + ‖ρx‖L∞)(‖ρ‖2Hs−1 + ‖u‖2Hs),

here we applied Lemma 3.2 with r = s − 1. Then we estimate the second term of the right
hand side of (3.5). Based on Lemma 3.1 with r = s− 1, we get

|(uxρ, ρ)s−1| ≤ ‖uxρ‖Hs−1‖ρ‖Hs−1

≤ c(‖ux‖L∞‖ρ‖Hs−1 + ‖ρ‖L∞‖ux‖Hs−1)‖ρ‖Hs−1

≤ c(‖ux‖L∞ + ‖ρx‖L∞)(‖ρ‖2Hs−1 + ‖u‖2Hs).

Combining the above two inequalities with (3.5), we get

d

dt
‖ρ‖2Hs−1 ≤ c(‖ux‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1). (3.6)

By (3.4) and (3.6), we have

d

dt
(‖u‖2Hs + ‖ρ‖2Hs−1 + 1)

≤ c(‖ux‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞ + 1)(‖u‖2Hs + ‖ρ‖2Hs−1 + 1).

An application of Gronwall’s inequality and the assumption of the theorem yield

(‖u‖2Hs + ‖ρ‖2Hs−1 + 1) ≤ exp(c(M + 1)t)(‖u0‖2Hs + ‖ρ0‖2Hs−1 + 1).

This completes the proof of the theorem.
Given z0 ∈ Hs ×Hs−1 with s ≥ 2. Theorem 2.1 ensures the existence of a maximal T > 0

and a solution z =

(

u

ρ

)

to (2.4) such that

z = z(·, z0) ∈ C([0, T );Hs ×Hs−1) ∩ C1([0, T );Hs−1 ×Hs−2).

Consider now the following initial value problem

{

qt = u(t,−q) + 2γ2, t ∈ [0, T ),

q(0, x) = x, x ∈ R,
(3.7)

7



where u denotes the first component of the solution z to (2.4). Then we have the following two
useful lemmas.

Similar to the proof of Lemma 4.1 in [18], applying classical results in the theory of ordinary
differential equations, one can obtain the following result on q which is crucial in the proof of
blow-up scenarios.

Lemma 3.3 Let u ∈ C([0, T );Hs)
⋂

C1([0, T );Hs−1), s ≥ 2. Then Eq.(3.7) has a unique
solution q ∈ C1([0, T ) ×R;R). Moreover, the map q(t, ·) is an increasing diffeomorphism of R
with

qx(t, x) = exp

(

−
∫ t

0
ux(s,−q(s, x))ds

)

> 0, (t, x) ∈ [0, T )× R.

Lemma 3.4 Let z0 =

(

u0

ρ0

)

∈ Hs ×Hs−1, s ≥ 2 and let T > 0 be the maximal existence

time of the corresponding solution z =

(

u

ρ

)

to (1.2). Then we have

ρ(t,−q(t, x))qx(t, x) = ρ0(−x), ∀ (t, x) ∈ [0, T )× S. (3.8)

Moreover, if there exists M > 0 such that ux ≤ M for all (t, x) ∈ [0, T ) × S, then

‖ρ(t, ·)‖L∞ ≤ eMT ‖ρ0(·)‖L∞ , ∀ t ∈ [0, T ).

Proof Differentiating the left-hand side of the equation (3.8) with respect to the time variable
t, and applying the relations (2.4) and (3.7), we obtain

d

dt
ρ(t,−q(t, x))qx(t, x)

=(ρt(t,−q)− ρx(t,−q)qt(t, x))qx(t, x) + ρ(t,−q(t, x))qxt(t, x)

=(ρt − (u(t,−q) + 2γ2)ρx)qx(t, x)− uxρqx(t, x)

=(ρt − (u+ 2γ2)ρx − uxρ)qx(t, x) = 0

This proves (3.8). By Lemma 3.3, in view of (3.8) and the assumption of the lemma, we obtain

‖ρ(t, ·)‖L∞(S) = ‖ρ(t, ·)‖L∞(R)

= ‖ρ(t,−q(t, ·))‖L∞(R)

= ‖exp
(
∫ t

0
ux(s,−q(s, x))ds

)

ρ0(−x)‖L∞(R)

≤ eMT ‖ρ0(·)‖L∞(R) = eMT ‖ρ0(·)‖L∞(S), ∀ t ∈ [0, T ).

Our next result describes the precise blow-up scenarios for sufficiently regular solutions to
(1.2).

Theorem 3.2 Let z0 =

(

u0

ρ0

)

∈ Hs × Hs−1, s > 5
2 be given and let T be the maximal

existence time of the corresponding solution z =

(

u

ρ

)

to (2.4) with the initial data z0. Then

the corresponding solution blows up in finite time if and only if

lim sup
t→T

sup
x∈S

{ux(t, x)} = +∞ or lim sup
t→T

{‖ρx(t, ·)‖L∞} = +∞.
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Proof By Theorem 2.1 and Sobolev’s imbedding theorem it is clear that if

lim sup
t→T

sup
x∈S

{ux(t, x)} = +∞ or lim sup
t→T

{‖ρx(t, ·)‖L∞} = +∞,

then T < ∞.

Let T < ∞. Assume that there exists M1 > 0 and M2 > 0 such that

ux(t, x) ≤ M1, ∀ (t, x) ∈ [0, T ) × S,

and

‖ρx(t, ·)‖L∞ ≤ M2, ∀ t ∈ [0, T ).

By Lemma 3.4, we have

‖ρ(t, ·)‖L∞ ≤ eM1T ‖ρ0‖L∞ , ∀ t ∈ [0, T ).

By (2.2) and the first equation in (2.4), a direct computation implies the following inequality

d

dt

∫

S

u(t, x)2dx (3.9)

= 2

∫

S

u

(

(u+ γ1)ux + ∂−1
x (−2µ0u− 1

2
u2x −

1

2
ρ2 + a) + h(t)

)

dx

≤
∫

S

u2dx+

∫

S

(
∫ x

0
(−2µ0u− 1

2
u2y −

1

2
ρ2 + a)dy

)2

dx+ 2|h(t)|
∫

S

|u(t, x)|dx

≤
∫

S

u2dx+ 8µ2
0(

∫

S

|u|dx)2 + 2

(
∫

S

(
1

2
u2x +

1

2
ρ2 + a)dx

)2

+ max
t∈[0,T )

|h(t)| + max
t∈[0,T )

|h(t)|
∫

S

u(t, x)2dx

= (1 + 8µ2
0 + max

t∈[0,T )
|h(t)|)

∫

S

u2dx+
1

2

[
∫ 1

0
(u20,x + ρ20 + 2a)dx

]2

+ max
t∈[0,T )

|h(t)|

for t ∈ (0, T ).

Multiplying the first equation in (1.2) by m = uxx and integrating by parts, we find

d

dt

∫

S

m2dx = − 4µ

∫

S

muxdx+ 4

∫

S

uxm
2dx+ 2

∫

S

ummxdx (3.10)

− 2

∫

S

mρρxdx+ 2γ1

∫

S

mmxdx

= 3

∫

S

uxm
2dx− 2

∫

S

mρρxdx

≤ 3M1

∫

S

m2dx+ ‖ρ‖L∞

∫

S

m2 + ρ2xdx

≤ (3M1 + ‖ρ‖L∞)

∫

S

m2dx+ ‖ρ‖L∞

∫

S

ρ2xdx.

9



Differentiating the first equation in (1.2) with respect to x, multiplying the obtained equa-
tion by mx = uxxx, integrating by parts and using Lemma 3.4, we obtain

d

dt

∫

S

m2
xdx (3.11)

= − 4µ

∫

S

mmx + 4

∫

S

m2mxdx+ 6

∫

S

uxm
2
x + 2

∫

S

umxxmx

− 2

∫

S

ρ2xmx − 2

∫

S

ρρxxmxdx+ 2γ1

∫

S

mxmxxdx

= 5

∫

S

uxm
2
xdx− 2

∫

S

ρ2xmxdx− 2

∫

S

ρρxxmxdx

≤ 5M1

∫

S

m2
xdx+ 2‖ρx‖2L∞

∫

S

|mx|dx+ ‖ρ‖L∞

∫

S

(ρ2xx +m2
x)dx

≤ 5M1

∫

S

m2
xdx+ ‖ρ‖L∞

∫

S

(ρ2xx +m2
x)dx+ 2‖ρx‖2L∞ + 2‖ρx‖2L∞

∫

S

m2
xdx

≤ (5M1 + ‖ρ‖L∞ + 2M2
2 )

∫

S

m2
xdx+ ‖ρ‖L∞

∫

S

ρ2xxdx+ 2M2
2 .

Differentiating the second equation in (1.2) with respect to x, multiplying the obtained
equation by ρx and integrating by parts, we obtain

d

dt

∫

S

ρ2xdx = 3

∫

S

uxρ
2
xdx+ 2

∫

S

mρρxdx (3.12)

≤ 3M1

∫

S

ρ2xdx+ ‖ρ‖L∞

∫

S

(m2 + ρ2x)dx

= (3M1 + ‖ρ‖L∞)

∫

S

ρ2xdx+ ‖ρ‖L∞

∫

S

m2dx.

Differentiating the second equation in (1.2) with respect to x twice, multiplying the obtained
equation by ρxx, integrating by parts and using Lemma 3.4, we obtain

d

dt

∫

S

ρ2xxdx (3.13)

= 5

∫

S

uxρ
2
xxdx+

∫

S

uxxx(2ρρxx − 3ρ2x)dx

≤ 5M1

∫

S

ρ2xxdx+

∫

S

mx(2ρρxx − 3ρ2x)dx

≤ 5M1

∫

S

ρ2xxdx+ 3‖ρx‖2L∞

∫

S

|mx|dx+ ‖ρ‖L∞

∫

S

2mxρxxdx

≤ (5M1 + ‖ρ‖L∞)

∫

S

ρ2xxdx+ (3M2
2 + ‖ρ‖L∞)

∫

S

m2
xdx+ 3M2

2 .

Summing (2.2), (3.9)-(3.13), we have

d

dt

∫

S

(u2 + u2x +m2 +m2
x + ρ2 + ρ2x + ρ2xx)dx

≤ K1

∫

S

(u2 + u2x +m2 +m2
x + ρ2 + ρ2x + ρ2xx)dx+K2,

10



where

K1 = 1 + 8µ2
0 + max

t∈[0,T )
|h(t)|+ 8eM1T ‖ρ0‖L∞ + 16M1 + 5M2

2 ,

K2 =
1

2

[
∫

S

(u20,x + ρ20 + 2a)dx

]2

+ max
t∈[0,T )

|h(t)| + 5M2
2 .

By means of Gronwall’s inequality and the above inequality, we deduce that

‖u(t, ·)‖2H3 + ‖ρ(t, ·)‖2H2

≤ eK1t(‖u0‖2H3 + ‖ρ0‖2H2 +
K2

K1
), ∀ t ∈ [0, T ).

The above inequality, Sobolev’s imbedding theorem and Theorem 3.1 ensure that the solution
z does not blow-up in finite time. This completes the proof of the theorem.

For initial data z0 =

(

u0

ρ0

)

∈ H2 ×H1, we have the following precise blow-up scenario.

Theorem 3.3 Let z0 =

(

u0

ρ0

)

∈ H2 ×H1, and let T be the maximal existence time of the

corresponding solution z =

(

u

ρ

)

to (2.4) with the initial data z0. Then the corresponding

solution blows up in finite time if and only if

lim sup
t→T

sup
x∈S

ux(t, x) = +∞.

Proof Let z =

(

u

ρ

)

be the solution to (2.4) with the initial data z0 ∈ H2 ×H1, and let T

be the maximal existence time of the solution z, which is guaranteed by Theorem 2.1.

Let T < ∞. Assume that there exists M1 > 0 such that

ux(t, x) ≤ M1, ∀ (t, x) ∈ [0, T ) × S.

By Lemma 3.4, we have

‖ρ(t, ·)‖L∞ ≤ eM1T ‖ρ0‖L∞ , ∀ t ∈ [0, T ).

Combining (2.2), (3.9)-(3.10) and (3.12), we obtain

d

dt

∫

S

(u2 + u2x +m2 + ρ2 + ρ2x)dx ≤ K3

∫

S

(u2 + u2x +m2 + ρ2 + ρ2x)dx+K4,

where

K3 = 1 + 8µ2
0 + max

t∈[0,T )
|h(t)|+ 6M1 + 4eM1T ‖ρ0‖L∞ ,

K4 =
1

2

[
∫ 1

0
(u20,x + ρ20 + 2a)dx

]2

+ max
t∈[0,T )

|h(t)|.
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By means of Gronwall’s inequality and the above inequality, we get

‖u(t, ·)‖2H2 + ‖ρ(t, ·)‖2H1 ≤ eK3t(‖u0‖2H2 + ‖ρ0‖2H1 +
K4

K3
).

The above inequality ensures that the solution z does not blow-up in finite time.

On the other hand, by Sobolev’s imbedding theorem, we see that if

lim sup
t→T

sup
x∈S

ux(t, x) = +∞,

then the solution will blow up in finite time. This completes the proof of the theorem.

Remark 3.1 Note that Theorem 3.2 shows that

T (‖z0‖Hs×Hs−1) = T (‖z0‖Hs′×Hs′−1), ∀s, s′ > 5

2
,

while Theorem 3.3 implies that

T (‖z0‖Hs×Hs−1) ≤ T (‖z0‖H2×H1), ∀s, s′ ≥ 2.

4 Blow-up

In this section, we discuss the blow-up phenomena of the system (1.2) and prove that there
exist strong solutions to (1.2) which do not exist globally in time.

Lemma 4.1 ([9])If f ∈ H1(S) is such that
∫

S
f(x)dx = 0, then we have

max
x∈S

f2(x) ≤ 1

12

∫

S

f2
x(x)dx.

Note that
∫

S
(u(t, x)− µ0)dx = µ0 − µ0 = 0. By Lemma 4.1, we find that

max
x∈S

[u(t, x)− µ0]
2 ≤ 1

12

∫

S

u2x(t, x)dx ≤ 1

12
µ2
1.

So we have

‖u(t, ·)‖L∞(S) ≤ |µ0|+
√
3

6
µ1. (4.1)

Theorem 4.1 Let z0 =

(

u0

ρ0

)

∈ Hs × Hs−1, s ≥ 2, and T be the maximal time of the

solution z =

(

u

ρ

)

to (1.2) with the initial data z0. If γ1 = 2γ2, µ0 = 0 and there exists a

point x0 ∈ S, such that ρ0(−x0) = 0, then the corresponding solutions to (1.2) blow up in finite
time.
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Proof Let m(t) = ux(t,−q(t, x0)), γ(t) = ρ(t,−q(t, x0)), where q(t, x) is the solution of
Eq.(3.7). By Eq.(3.7) we can obtain

dm

dt
= (utx − (u+ γ1)uxx)(t,−q(t, x0)).

Evaluating the integrated representation (2.3) at (t,−q(t, x0)) with the assumption µ = 0 we
get

d

dt
m(t) =

1

2
m(t)2 − 1

2
γ(t)2 + a.

Since γ(0) = 0, we infer from Lemmas 3.3-3.4 that γ(t) = 0 for all t ∈ [0, T ). Note that
a = 2µ(u)2 + 1

2

∫

S
(u2x + ρ2)dx > 0. (Indeed, if a(t) = 0, then (u, ρ) = (0, 0). This is a trivial

case, we do not consider it.) Then we have d
dtm(t) ≥ a > 0. Thus, it follows that m(t0) > 0

for some t0 ∈ (0, T ). Solving the following inequality yields

d

dt
m(t) ≥ 1

2
m(t)2.

Therefore

0 <
1

m(t)
≤ 1

m(t0)
− 1

2
(t− t0), t ∈ [t0, T ).

The above inequality implies that T < t0+
2

m(t0)
and lim

t→T
m(t) = +∞. In view of Theorem 3.2,

this completes the proof of the theorem.

Theorem 4.2 Let z0 =

(

u0

ρ0

)

∈ Hs × Hs−1, s ≥ 2, and T be the maximal time of the

solution z =

(

u

ρ

)

to (1.2) with the initial data z0. If γ1 = 2γ2, µ0 6= 0, |µ0|+
√
3
6 µ1 < a

2|µ0|

and there exists a point x0 ∈ S, such that ρ0(−x0) = 0, then the corresponding solutions to
(1.2) blow up in finite time.

Proof Let m(t) = ux(t,−q(t, x0)), γ(t) = ρ(t,−q(t, x0)), where q(t, x) is the solution of
Eq.(3.7). By Eq.(3.7) we can obtain

dm

dt
= (utx − (u+ γ1)uxx)(t,−q(t, x0)).

Evaluating the integrated representation (2.3) at (t,−q(t, x0)) we have

d

dt
m(t) =

1

2
m(t)2 − 1

2
γ(t)2 + a− 2µ0u.

Since γ(0) = 0, we infer from Lemmas 3.3-3.4 that γ(t) = 0 for all t ∈ [0, T ). In view of (4.1)

and the condition |µ0| +
√
3
6 µ1 < a

2|µ0| , we have a − 2µ0u ≥ a − 2|µ0u| > 0. Then we have
d
dtm(t) ≥ a− 2µ0u > 0. The left proof is the same as Theorem 4.1, so we omit it here.
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5 Global Existence

In this section, we will present a global existence result. Firstly, we give two useful lemmas.

Theorem 5.1 Let z0 =

(

u0

ρ0

)

∈ H2 × H1, and T be the maximal time of the solution

z =

(

u

ρ

)

to (1.2) with the initial data z0. If γ1 = 2γ2, ρ0(x) 6= 0 for all x ∈ S, then the

corresponding solution z exists globally in time.

Proof By Lemma 3.3, we know that q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

(
∫ t

0
ux(s, q(s, x))ds

)

> 0, ∀ (t, x) ∈ [0, T ) × R.

Moreover,

sup
y∈S

uy(t, y) = sup
x∈R

ux(t,−q(t, x)), ∀ t ∈ [0, T ). (5.1)

Set M(t, x) = ux(t,−q(t, x)) and α(t, x) = ρ(t,−q(t, x)) for t ∈ [0, T ) and x ∈ R. By γ1 = 2γ2,
(1.2) and Eq.(3.7), we have

∂M

∂t
= (utx − (u+ γ1)uxx)(t,−q(t, x)) and

∂α

∂t
= αM. (5.2)

Evaluating (2.3) at (t,−q(t, x)) we get

∂tM(t, x) =
1

2
M(t, x)2 − 1

2
α(t, x)2 + a− 2µ0u(t,−q(t, x)).

Write f(t, x) = a− 2µ0u(t,−q(t, x)). By (4.1) we have

|f(t, x)| ≤ a+ 2|µ0|‖u‖L∞ ≤ a+ 2|µ0|(|µ0|+
√
3

6
µ1)

= 4µ2
0 +

1

2
µ2
1 +

√
3

3
|µ0|µ1

and

∂tM(t, x) =
1

2
M(t, x)2 − 1

2
α(t, x)2 + f(t, x). (5.3)

By Lemmas 3.3-3.4, we know that α(t, x) has the same sign with α(0, x) = ρ0(−x) for every
x ∈ R. Moreover, there is a constant β > 0 such that inf

x∈R
|α(0, x)| = inf

x∈S
|ρ0(−x)| ≥ β > 0 since

ρ0(x) 6= 0 for all x ∈ S and S is a compact set. Thus,

α(t, x)α(0, x) > 0, ∀x ∈ R.

Next, we consider the following Lyapunov function first introduced in [3].

w(t, x) = α(t, x)α(0, x) +
α(0, x)

α(t, x)
(1 +M2), (t, x) ∈ [0, T )× R. (5.4)
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By Sobolev’s imbedding theorem, we have

0 < w(0, x) = α(0, x)2 + 1 +M(0, x)2 (5.5)

= ρ0(x)
2 + 1 + u0,x(x)

2

≤ 1 +max
x∈S

(ρ0(x)
2 + u0,x(x)

2) := C1.

Differentiating (5.4) with respect to t and using (5.2)-(5.3), we obtain

∂w

∂t
(t, x) =

α(0, x)

α(t, x)
M(t, x)(2f − 1)

≤ |f − 1

2
|α(0, x)
α(t, x)

(1 +M2)

≤ (4µ2
0 +

1

2
µ2
1 +

√
3

3
|µ0|µ1 +

1

2
)w(t, x).

By Gronwall’s inequality, the above inequality and (5.5), we have

w(t, x) ≤ w(0, x)e(4µ
2

0
+ 1

2
µ2

1
+

√
3

3
|µ0|µ1+

1

2
)t ≤ C1e

(4µ2

0
+ 1

2
µ2

1
+

√
3

3
|µ0|µ1+

1

2
)t

for all (t, x) ∈ [0, T ) × R. On the other hand,

w(t, x) ≥ 2
√

α2(0, x)(1 +M2) ≥ 2β|M(t, x)|, ∀ (t, x) ∈ [0, T )× R.

Thus,

|M(t, x)| ≤ 1

2β
w(t, x) ≤ 1

2β
C1e

(4µ2

0
+ 1

2
µ2

1
+

√
3

3
|µ0|µ1+

1

2
)t

for all (t, x) ∈ [0, T ) × R. Then by (5.1) and the above inequality, we have

lim sup
t→T

sup
y∈S

uy(t, y) = lim sup
t→T

sup
x∈R

ux(t,−q(t, x)) ≤ 1

2β
C1e

(4µ2

0
+ 1

2
µ2

1
+

√
3

3
|µ0|µ1+

1

2
)t.

This completes the proof by using Theorem 3.3.
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