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ABSTRACT. It is well known that to each infinite class of classical groups
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Quillen’s plus construction. In this paper we generalize this fact to the
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1. INTRODUCTION

We say that a pointed space X is an infinite loop space if there is a se-
quence of (pointed) spaces Xy, X1, -+ with Xq = X and weak homotopy
equivalences X, ~ QX,, 1.

Example 1.1. Let GL(n) be the general linear group over C and let BGL be
the limit of classifying space liﬂBGL(n). By the Bott peoriodicity theorem
[1, 2] we have a weak homotopy equivalence

Z x BGL ~ Q*(Z x BGL);

thus BGL is an infinite loop space. Similarly for BO, BSp, where O and
Sp are the infinite orthogonal and symplectic group over C respectively.

In fact we have a very general method of construction. First, we need some
preliminaries. Let X,, be the symmetric group on the set {1,2,--- ,n}. For
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any 0 € X, and 7 € ¥,,, c D T is given by 0 & 7 =

(1a) L o), 1<i<m,
(1b) o ®7(i) = {m—i-T(i), m<i<m-+n,

and c¢(m,n) € ¥4, is defined by

n 4+, 1<i<m,
c<m,n><i>={ sis

T—m, m<1i<m-+n.

The definitions imply c¢(m, n) = c¢(n,m)~!.

Theorem 1.2. Given a sequence of topological groups G(1),G(2),--- ,G(n),- - -
together with homomorphisms ¢, : L, — G(m), fm : G(m) — G(m + 1),
m > 0, satisfying,

(1) fO’f’ any o« S Zm7 we hcwe fm¢m(a) = ¢m+1(a);

(Q)Set fm,n = fm+n—l e fm-i—lfm; then fmm(G(m)) and ¢N(C(n> m))(fm?ﬂ(G(n)))gbn(c(m’ n))

are commutative in G(m +n).

Let BG be the classifying space of G = lim,,_,o, G(n), then BGT (where +
is the Quillen’s plus construction) is an infinite loop space.

Proof. Define a topological category £ as follows. The objects of £ are posi-
tive integers, homg(m, n) is empty if m # n and home(m, m) = G(m). One
checks that (&, ®, 0, ¢) has a structure of permutative category and the rest
of the proof is the same as in [3], p.62. O

Corollary 1.3. Let R be a discrete commutative ring and set SL(co, R) =
lim, o, SL(n, R), then BSL(co, R)" is an infinite loop space.

Proof. We can easily find natural homomorphisms ¢,, : ¥, — SL(2n, R),
n > 0 that satisfy the conditions of the previous theorem. O

Similarly we can show that BGL(co, R)*, BO(c0, R)", BSO(c0, R)*, BSp(co, R)™
are all infinite loop spaces. All these spaces are derived from infinite classes
of classical (algebraic) groups.

The main purpose of this paper is to construct infinite loop spaces from
affine Kac-Moody groups, which are infinite dimensional generalization of
algebraic groups. Roughly speaking, for a commutative ring R there are
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seven infinite classes of affine Kac-Moody groups over R, and to each infinite
class we can associate an infinite loop space.

62 is a short review of Kac-Moody algebras and Kac-Moody groups, in §3
we construct the infinite loop spaces corresponding to affine Kac-Moody
groups of type Ag)—p in the final section we consider several variations and
the other cases. Throughout this paper R will be a fixed commutative ring.

2. Kac-MooDy ALGEBRAS AND Kac-Mooby GROUPS

In this section, we give a brief review of Kac-Moody algebras and Kac-
Moody groups, details can be found in [4] [6] [7].

Definition 2.1. A generalized Cartan matriz is a matric A = (a; ;)"

2,7=1
satisfying, a;; = 2, a;; are non-positive integers for i # j, and a;; # 0

implies a;,; # 0.

Definition 2.2. The Kac-Moody algebra g(A) associated to a generalized
Cartan matriz A = (ay){;=, s the Lie algebra (over C) generated by 3n
elements e;, fi, hi, (i =1,--- . n) with the following defining relations:

[his hj] = 05 [hiyej] = aizej; [hi, fi] = —ais £ e, fi] = 6i sl
(ad €)' " "e; = 0; (ad f;)""if; =0, if i # j.

Let A = (a;;)} be a generalized Cartan matrix. For 0 < 4,5 < n set
mi; = 2,3,4 or 6 if a;;a;; = 0,1,2 or 3 respectively and set m;; = 0
otherwise. We associate to A a discrete group W (A) (the Weyl group) on
n generator si,-- - , s, with relations {(s;s;)"™ = 1}o<; j<n-

As ad e; and ad e; are locally nilpotent endomorphisms of g(A), the expres-
sions exp(e;) and exp(f;) make sense. Set s, = exp(e;)exp(—fi)exp(e;) €
Aut(g(A)) and let W’(A) be the subgroup of Aut(g(A)) generated by all s/.
The map s, — s; extends to a group homomorphism ¢ : W/(A) — W(A).

Let V be the vector space over Q, with basis {a;}i—1,... , and let W(A) act
on V by si(a;) = a; — a; ja;. Real roots of A = (a; ;)7 are defined to be
elements of V' of the form w(a;), with w € W(A) and 0 < i < n. Every
real root a is an integral linear combination of {a;}, the coefficients of which
of all positive or negative; the root a is said to be positive or negative
accordingly. Denote by A, A, A_ the sets of all real roots, positive and
negative roots respectively. We say that a set of roots 6 is prenilpotent if
there exist w,w’ € W(A) such that all elements of w(#) are positive and all
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elements of w'(f) are negative; if, moreover, a,b € 6 and a +b € A imply
a+b € 0, then we said that 0 is nilpotent.

For 0 <i < n and w' € W’/(A), the pair of opposite elements w'{e;, —e;} C
g(A) depends only on the real root a = ¢(w’)(a;) (see [7] for the proof of
this claim); set F, = w'{e;, —e;} and denote by L, the C-subalgebra of g(A)
generated by E,.

For each real root a, we denote by i, the group scheme over Z isomorphic
to Spec Z and whose Lie algebra is the Z-subalgebra of g(A) generated by
E,.

Let 6 be nilpotent set of real roots, then Ly = @,y Lo is a nilpotent Lie
algebra. Let Uy be the unipotent complex algebraic group whose Lie algebra
is Ly. The following proposition was proved in [7].

Proposition 2.3. There exist a uniquely defined group scheme Uy over Z
containing all 4, for a € 6, whose fibre over C is the group Uy and such that
for any order on 0, the product morphism [] ., — Ug is an isomorphism of
the underlying schemes.

a€cl

Now we present Tits’ definition of Kac-Moody group associated to a gener-
alized Cartan matrix A = (a;;)7;-; and a commutative ring R.

Let A be a free abelian group with basis hi,--- , h,, and A’ its dual, then
there are n elements ay,-- -, a, € N satisfying (h;, ;) = a; ;. Set T(R) =
Hom(N', R*). The group W(A) also acts on A" by s;(A) = XA — (A, hy)ay.
The automorphism of T(R) induced by s; will also denoted by s;.

For a real root a, and a nilpotent set of real roots 0, set i,(R), Up(R) to be
the groups of R points of i, X Spec R and iy x Spec R respectively. For
each pair of roots {a, b}, set ¥(a,b) = (Na + Nb) N A.

The Steinberg group &(R) over R is defined as the inductive limit of the
groups U, (R) and Ly, ) (R), where a € A and {a, b} runs over all prenilpo-
tent pairs of roots, relative to all the canonical injections U (R) — Ly (R)
for ¢ € ¥(a,b). For each 0 <i < n, s, := exp(e;)exp(—f;)exp(e;) is an auto-
morphism of g(A) which permutes the L, and the E,; therefore, it induces
an automorphism of &(R) which we again denote by s..

Definition 2.4. The Kac-Moody group Ga(R) associated to A over R is
defined to be the quotient of the free product of &(R) and T(R) by the
following relations.
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to(r)t~t = m;(t(aq)r); Fits; ' = si(t);
5(r7Y) =57" for r € R* st = si(u),

where z; : R — U,,(R) and x_; - R — Y_,,(R) are the isomorphisms associ-
ated to e; and f; respectively, 5;(r) is the canonical image of x;(r)x_;(r=Y)a;(r)
in &(R), 3; = 5i(1), and r™ € T(R) is defined by r"(\) = r™hi) for X € N

It is easy to see G4(R) is functorial in R, we call G4 the Tits functor

associated to A = (a;;)f;—,. Set r = 1in 5;(r™') = §r™ we have 37 =

(—1)" this formula will be used in the next section.

Remark 2.5. The above defining relations was given in [6], and is slightly
different from that of [T], in fact the formula $2 = (—1)" cannot be derived
from the defining relations in [7].

Remark 2.6. From the defining relations we see that Ga(R) (as a group)
is generated by the image of Uy, (R) in G4(R).
3. CONSTRUCTION OF INFINITE LOOP SPACES

As shown in [4] there are seven infinite classes of generalized Cartan matrices
of affine type, whose Dynkin diagrams are listed below.

Qo

(1)
h Al
a1 a2 as ar—1

%

(1)
A—L Bl
a1 a2 as ar—1

Qo a1 a2 a1
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Qg aj+1
1)
Dl+1
a1 a2 as ar—1
(1)
Azz
—w9 o
Qo a1 a2 ar—1
Qo
2)
A21—1
] —.i.
a1 a2 as ar—1
(2)
Dl+1
Qg aq a2 aj—1

To each infinite class of generalized Cartan matrices of affine type and any
commutative ring R we want to associate a sequence of Kac-Moody groups
G(n) that satisfies the conditions of Theorem 1.2. First consider the case of

Ag)_l, let g; and G;(R) be the corresponding Kac-Moody algebra and group
respectively. In the following we use the notations of §2 freely, sometimes
the subscript [ will be used to indicate that the notations are associated to

Ag)_l. For example, V; will be the vector space over Q, with basis {a; }i—o.... ;-
The group W;(A) acts on V; and A, denotes the set of real roots of Ag)_l

In g;41 set €] = sj(er1), f| = s1(fix1), h) = sj(his1) = hig1 +2h; respectively
and for ¢ <[ set €] = e;, f/ = fi, hi = h; respectively.

Lemma 3.1. In g;.1 we have, fori,7 <1,
[h/i, h;] = 0; [h;,e'-] = aij€;‘§ [hé, f]/] = _a'ijf]/‘; [€;> f;] = 6i7jh;§
(ad e;_1)%e; = 0; (ad fi_1)*f] = 0.
Proof. The first four relations follow from direct computations. Now set
g1 = Ce;_1®Cf;_1®Ch;_; and consider g;;1 as a g;_1-module by restricting

of the adjoint representation. Since [h;_1,€]] = —e] and [f,_1, €]] = 0 (follows
from the fact that every root is either positive or negative), representation
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theory of go = slo(C) implies (ad e;_1)*¢; = 0. The proof for the last relation
is exactly the same. O

By the defining relations of g;, the map e; — €}, f; — f/ extends to an
injective Lie algebra homomorphism ¢; : g; — gi11.

Lemma 3.2. Define a linear map 7, : V; — Vi1 by 7i(a;) = a; for i <1 and

(@) = a; + ajy1, then Tl(Al:t) C Al:l—:i-l and p(E,) = Erq) for any a € 2.

Proof. 1t is easy to see that the map s; — s; for @ < [ and s; — s;5;415;
extends to a group homomorphism w; : W;(A) — Wj;1(A) and for any
v e Viand W € Wi(A) we have 7, - W (v) = wy(W) - 7y(v). Thus the first
assertion follows readily. Similarly, the map s — s} for ¢ < [ and
s1 = sysia(s) ™ = exp(ey) - exp(—fi) - exp(e])

extends to a group homomorphism wy : W/ (A) — W/, ,(A), where W/(A) C
Aut(g(A);) and W/, ,(A) € Aut(g(A)i+1). One checks that w; and w; are
compatible with the homomorphisms ¢, : W/(A) — W (A) and ¢4 :
W/ 1 (A) = Wit (A). We also have for any w' € W/(A), ¢;-w' = wj(w') - ¢;.
Now we are ready to prove the second assertion. First, it is true for a = a;,
i < [ by the definition of ¢;. Let a = ¢;(w’)(a;) be an element of A;, with
W € W/(A), then @i(Ea) = o (Ba,) = wi(e)ou(Eay) = w(s") (Brgun)) —
Egpawjw)(m@)) = Bugw)(mi@)) = En@i@)@) = En. This finishes the
proof. O

For any a € A\, let U, be the corresponding group scheme defined in §2,
then we can define a homomorphism 1, : 4, — &, that is compatible
with the map E, — E; ().

Lemma 3.3. Let  C A\, be a nilpotent set of real roots, then 1,(0) C Ay
is also nilpotent; let Uy and U, ) be the group schemes in Proposition 2.3,
then the homomorphism 1, : Ug — ;o) for a € 0 extends uniquely to a
homomorphism g : g — Uy, (9).

Proof. By lemma 3.2 the homomorphism ¢; : g; — g;+1 induces an isomor-
phism Ly — L. Thus for a,b € 0, the commutation relation of {4, and
iy in Ly is exactly the same as that of U, ) and U, ) in ;). Now the
lemma follows readily. U

By Lemma 3.2 and Lemma 3.3 the group homomorphisms v, (R) : i,(R) —
U@ (R), a € A, extend to a group homomorphism (R) : &;(R) —
6[+1(R).
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Let A; be a free abelian groups with basis hg, - - - , by and A} its dual. Define
linear map wl A = Nig1 by wi(h;) = h; for i < 1 and wi(hy) = hy + 2h4.
Denote by wj the dual map of w;, then w; induces a group homomorphism

wi(R) : T(R) = T (R).

From the defining relations of Kac-Moody groups and the constructions
of ¥(R) and w;(R) we see that the homomorphism of free products ¥ *
wi(R) : 6)(R) x T (R) — &111(R) * T111(R) reduces to a homomorphism
g1 Gi(R) = Gi11(R). Set G(n) := Go,(R) and f,, := gops1-gon. In order to
apply Theorem 1.2, we have to define group homomorphism ¢, : ¥,, — G(n)
for each n > 0.

First we need some preliminaries. Let W, be the signed permutation group,
i.e., the group of linear transformations of R' leaving invariant the set
{#£e;} of standard basis vectors and their negatives. It has [ — 1 genera-

tors 71, - -+ ,7;_1 and the following defining relations:
= =2——1 _ 2—_2[17,3
T, =TT
TiTT; - =TT ---(my;; facors on each side),

where 7; is defined by sending {e;, €;11} to {—e;11,€;} and leaves the other
basis vectors invariant.

Lemma 3.4. The s;, 0 < i <l in Gi(R) satisfy the following two relations,

D1 _ 220
§j8;5; =s8;8; 7,

5iS;8; -+ = 8;8;8; -+ (my; facors on each side).

Let W, be the subgroup of Gi(R) generated by {S;}o<i<i, then the mapT; — s;
extends to a group homomorphism h; : W, — Wj.

Proof. We prove the first assertion and the second assertion will follow di-
rectly. As 52 = (—1)" the first relation is equivalent to

(1)t = (e,

which is one of the defining relations of Gj(R). The second relation was
proved in Remark 3.7 of [7]. O

Define w; € W, by sending {es_1, €2} to {ei1, €042} and leaving the
other ba81s vectors invariant. set S; = ho,(w;), direct computation shows
that S; = S5, 152i59i—152i+152i52i—1.
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Let o(i) € X, be the permutation that swaps the i-th element with the
(i + 1)-th one, then the map (i) — S; extends to a group homomorphism

Gt Xn = G(n) = Goy(R).

Theorem 3.5. Let G;(R) be the Kac-Moody group associated to Ag)_l over
R and set G(oo, R) = lim, .o, G(n) = lim_, Gi(R), then BG(oco, R)" is
an infinite loop space.

Proof. 1t suffices to show that G(n) = G2, (R), fn = gont1gon : G(n) —
G(n+1) and ¢, : ¥, = G(n) = Go,(R) satisfy the conditions of Theorem
1.2. The condition (1) is obviously satisfied, thus we only need to verify
the condition (2). Set fimn = fimin-1-"* fm+1fm, We want to show that
fmn(G(m)) and c¢(n, m)(fo.m(G(n)))c(m,n) are commutative in G(m + n).
Set Spm 1= Gam+2nSn(c(n,m)) in the following. By remark 2.6, f,,,.(G(m))
is generated by the subgroups {i,(R)}.co and c(n,m)(fom(G(n)))c(m,n)
is generated by the subgroups {il,(R)}.co’, where

© = {*ag, -, £a2m-1, (S2m—1 - S2m - - * S2m+2n—1)(Ea2m+2n)}
= {+ag, -, *agm—1, E(a2m—1 + -+ + G2m12n)}
and
@/ = Snm{iaﬂa ) j:a2n—1> (s2n—1 cSom S2m+2n—1)(j:a'2m+2n)}-

Thus in order to verify condition (2) it suffices to show that for any o € ©
and € ©', U,(R) and Ug(R) are commutative, or the subalgebras L, and
Lg of gomton are commutative.

Direct computation shows that
(S2m—1 " S2m " - * S2mt2n—1)(£@2m120) = Snm(Ea2m120),
(S2n—1+ Som * - * S2mr2n—1) (£2mt20) = Smn(£a2m+20),
Smn(Fag) = £(ap + a1 + 2(az + - - - + agm) + G2m41),
Snm{tar, -+, £asn1} = {£asms1, -+ £aomion-1},

Snm{EA2nt1, " Fomyon1} = {Fa1, -+, Fagm 1}
Thus we only need to show that L., is commutative with L (ao4a;,+2(as+--+azm)+azms1)
and Liq,,,,,, is commutative with L. (a,,, ;4 tasmi2.)- We proof the first
assertion, the proof for the second one is similar.

Firstly, we have [f(Jveao+a1+2(a2+---+a2m)+azm+1] S La1+2(a2+---+a2m)+a2m+17 but
it is well known that the highest root in Zay + Zas + - - - + Zasy 11 N Domaon
is ay + - - + agmy1. Hence [fo, €agtar+2(as+-+asm)tasmsr) = 0. We also have
(10, €ag+ai+2(as+tazm)+asmsr) = 0- Set gg = Ceg @ Cfy @ Chy and consider
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Gomaon as a go-module by restricting of the adjoint representation. By the
representation theory of go = sly(C), it follows that

[607 eao-‘ral+2(a2+~~~+a2m)+a2m+1] =0.

Similarly we have

[60> fao+a1+2(a2+---+a2m)+a2m+1] =0
and

[an fao+a1+2(a2+---+a2m)+a2m+1] =0.
This finishes the proof of the theorem. U

4. THE OTHER CASES

The constructions in the other cases is similar. For example in the case of

Al(l), let g; be the Kac-Moody algebra associated to Al(l), and in g;,q set
e, = s)(eis1), f| = s)(fix1), b} = sj(hiy1) = hip1 + hy respectively and for
i < lsete, =e, fl = fi, h) = h; respectively. In the case of D;i)l, set
er = 8- sialewn), fi = 5105121 (fivn), by = 87+ 814 (uga) = hepr + e+ i
respectively. For the rest constructions we just repeat the arguments of the
previous section.

Remark 4.1. In §3 we require that /A, is freely generated by {ho,--- , M},

in fact this restriction is not necessary. For example, in the case of Al(l) we
can set /\; to be freely generated by {hy,---,} and add an hy := —h; —
+-—hy. When R is a field K, the corresponding Kac-Moody group G,(K) is
isomorphic to SLi,1(K[t,t7']), then G(oo, K)T is of course an infinite loop
space and our construction is meaningless in this case. However, generally
we don’t know the explicit realization of Gi(R).

We can also treat the (topological) affine Kac-Moody groups over C (see [5]
for the definition), and by the method of §2 we can get the following result.

Theorem 4.2. Let {A;}52 be one of the seven (infinite) classes of affine
generalized Cartan matrices and let {G};>o be the associated simply-connected
Kac-Moody groups over C, then we can define for each I > 2 a natural ho-
momorphism f; : Gy — Gi11 such that BG = lim;_,, BGy is an infinite loop
space.

Remark 4.3. In fact there exists a (infinite) classes of classical Lie groups
{G (1) }1>2 such that Gy is isomorphic to a central extension of the group of
polynomial loops or twisted polynomial loops on G(I).
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