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1. Introduction

We say that a pointed space X is an infinite loop space if there is a se-
quence of (pointed) spaces X0, X1, · · · with X0 = X and weak homotopy
equivalences Xn ≃ ΩXn+1.

Example 1.1. Let GL(n) be the general linear group over C and let BGL be
the limit of classifying space lim

−→
BGL(n). By the Bott peoriodicity theorem

[1, 2] we have a weak homotopy equivalence

Z× BGL ≃ Ω2(Z×BGL);

thus BGL is an infinite loop space. Similarly for BO, BSp, where O and
Sp are the infinite orthogonal and symplectic group over C respectively.

In fact we have a very general method of construction. First, we need some
preliminaries. Let Σn be the symmetric group on the set {1, 2, · · · , n}. For
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any σ ∈ Σm and τ ∈ Σn, σ ⊕ τ is given by σ ⊕ τ =

σ ⊕ τ(i) =

{
σ(i), 1 ≤ i ≤ m,(1a)

m+ τ(i), m < i ≤ m+ n,(1b)

and c(m,n) ∈ Σm+n is defined by

c(m,n)(i) =

{
n+ i, 1 ≤ i ≤ m,(2a)

i−m, m < i ≤ m+ n.(2b)

The definitions imply c(m,n) = c(n,m)−1.

Theorem 1.2. Given a sequence of topological groups G(1), G(2), · · · , G(n), · · ·
together with homomorphisms φm : Σm → G(m), fm : G(m) → G(m + 1),
m > 0, satisfying,

(1) for any α ∈ Σm, we have fmφm(α) = φm+1(α);

(2)set fm,n = fm+n−1 · · · fm+1fm, then fm,n(G(m)) and φn(c(n,m))(fn,m(G(n)))φn(c(m,n))
are commutative in G(m+ n).

Let BG be the classifying space of G = limn→∞G(n), then BG+ (where +
is the Quillen’s plus construction) is an infinite loop space.

Proof. Define a topological category ξ as follows. The objects of ξ are posi-
tive integers, homξ(m,n) is empty if m 6= n and homξ(m,m) = G(m). One
checks that (ξ,⊕, 0, c) has a structure of permutative category and the rest
of the proof is the same as in [3], p.62. �

Corollary 1.3. Let R be a discrete commutative ring and set SL(∞, R) =
limn→∞ SL(n,R), then BSL(∞, R)+ is an infinite loop space.

Proof. We can easily find natural homomorphisms φn : Σn → SL(2n,R),
n > 0 that satisfy the conditions of the previous theorem. �

Similarly we can show thatBGL(∞, R)+, BO(∞, R)+, BSO(∞, R)+, BSp(∞, R)+

are all infinite loop spaces. All these spaces are derived from infinite classes
of classical (algebraic) groups.

The main purpose of this paper is to construct infinite loop spaces from
affine Kac-Moody groups, which are infinite dimensional generalization of
algebraic groups. Roughly speaking, for a commutative ring R there are
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seven infinite classes of affine Kac-Moody groups over R, and to each infinite
class we can associate an infinite loop space.

§2 is a short review of Kac-Moody algebras and Kac-Moody groups, in §3
we construct the infinite loop spaces corresponding to affine Kac-Moody

groups of type A
(2)
2l−1, in the final section we consider several variations and

the other cases. Throughout this paper R will be a fixed commutative ring.

2. Kac-Moody Algebras and Kac-Moody Groups

In this section, we give a brief review of Kac-Moody algebras and Kac-
Moody groups, details can be found in [4, 6, 7].

Definition 2.1. A generalized Cartan matrix is a matrix A = (ai,j)
n
i,j=1

satisfying, ai,i = 2, ai,j are non-positive integers for i 6= j, and ai,j 6= 0
implies aj,i 6= 0.

Definition 2.2. The Kac-Moody algebra g(A) associated to a generalized
Cartan matrix A = (aij)

n
i,j=1 is the Lie algebra (over C) generated by 3n

elements ei, fi, hi, (i = 1, · · · , n) with the following defining relations:

[hi, hj] = 0; [hi, ej ] = aijej; [hi, fj ] = −aijfj ; [ei, fj] = δi,jhi;

(ad ei)
1−aijej = 0; (ad fi)

1−aijfj = 0, if i 6= j.

Let A = (ai,j)
n
1 be a generalized Cartan matrix. For 0 < i, j ≤ n set

mi,j = 2, 3, 4 or 6 if ai,jaj,i = 0, 1, 2 or 3 respectively and set mi,j = 0
otherwise. We associate to A a discrete group W (A) (the Weyl group) on
n generator s1, · · · , sn with relations {(sisj)

mi,j = 1}0<i,j≤n.

As ad ei and ad ei are locally nilpotent endomorphisms of g(A), the expres-
sions exp(ei) and exp(fi) make sense. Set s′i = exp(ei)exp(−fi)exp(ei) ∈
Aut(g(A)) and let W ′(A) be the subgroup of Aut(g(A)) generated by all s′i.
The map s′i → si extends to a group homomorphism φ : W ′(A) → W (A).

Let V be the vector space over Q, with basis {ai}i=1,··· ,n and let W (A) act
on V by si(aj) = aj − ai,jai. Real roots of A = (ai,j)

n
1 are defined to be

elements of V of the form w(ai), with w ∈ W (A) and 0 < i ≤ n. Every
real root a is an integral linear combination of {ai}, the coefficients of which
of all positive or negative; the root a is said to be positive or negative
accordingly. Denote by △, △+, △− the sets of all real roots, positive and
negative roots respectively. We say that a set of roots θ is prenilpotent if
there exist w,w′ ∈ W (A) such that all elements of w(θ) are positive and all
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elements of w′(θ) are negative; if, moreover, a, b ∈ θ and a + b ∈ △ imply
a + b ∈ θ, then we said that θ is nilpotent.

For 0 < i ≤ n and w′ ∈ W ′(A), the pair of opposite elements w′{ei,−ei} ⊂
g(A) depends only on the real root a = φ(w′)(ai) (see [7] for the proof of
this claim); set Ea = w′{ei,−ei} and denote by La the C-subalgebra of g(A)
generated by Ea.

For each real root a, we denote by Ua the group scheme over Z isomorphic
to Spec Z and whose Lie algebra is the Z-subalgebra of g(A) generated by
Ea.

Let θ be nilpotent set of real roots, then Lθ =
⊕

a∈θ La is a nilpotent Lie
algebra. Let Uθ be the unipotent complex algebraic group whose Lie algebra
is Lθ. The following proposition was proved in [7].

Proposition 2.3. There exist a uniquely defined group scheme Uθ over Z

containing all Ua for a ∈ θ, whose fibre over C is the group Uθ and such that
for any order on θ, the product morphism

∏
a∈θ → Uθ is an isomorphism of

the underlying schemes.

Now we present Tits’ definition of Kac-Moody group associated to a gener-
alized Cartan matrix A = (ai,j)

n
i,j=1 and a commutative ring R.

Let ∧ be a free abelian group with basis h1, · · · , hn, and ∧′ its dual, then
there are n elements α1, · · · , αn ∈ ∧′ satisfying 〈hi, αj〉 = ai,j. Set T(R) =
Hom(∧′, R∗). The group W (A) also acts on ∧′ by si(λ) = λ − 〈λ, hi〉αi.
The automorphism of T(R) induced by si will also denoted by si.

For a real root a, and a nilpotent set of real roots θ, set Ua(R), Uθ(R) to be
the groups of R points of Ua × Spec R and Uθ × Spec R respectively. For
each pair of roots {a, b}, set ϑ(a, b) = (Na + Nb) ∩△.

The Steinberg group S(R) over R is defined as the inductive limit of the
groups Ua(R) and Uϑ(a,b)(R), where a ∈ △ and {a, b} runs over all prenilpo-
tent pairs of roots, relative to all the canonical injections Uc(R) → Uϑ(a,b)(R)
for c ∈ ϑ(a, b). For each 0 < i ≤ n, s′i := exp(ei)exp(−fi)exp(ei) is an auto-
morphism of g(A) which permutes the La and the Ea; therefore, it induces
an automorphism of S(R) which we again denote by s′i.

Definition 2.4. The Kac-Moody group GA(R) associated to A over R is
defined to be the quotient of the free product of S(R) and T(R) by the
following relations.
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txi(r)t
−1 = xi(t(αi)r); s̃its̃

−1
i = s′i(t);

s̃i(r
−1) = s̃ir

hi for r ∈ R∗ s̃ius̃
−1
i = s′i(u),

where xi : R → Uai(R) and x−i : R → U−ai(R) are the isomorphisms associ-
ated to ei and fi respectively, s̃i(r) is the canonical image of xi(r)x−i(r

−1)xi(r)
in S(R), s̃i = s̃i(1), and r

hi ∈ T(R) is defined by rhi(λ) = r〈λ,hi〉 for λ ∈ ∧′.

It is easy to see GA(R) is functorial in R, we call GA the T its functor
associated to A = (aij)

n
i,j=1. Set r = 1 in s̃i(r

−1) = s̃ir
hi we have s̃2i =

(−1)hi , this formula will be used in the next section.

Remark 2.5. The above defining relations was given in [6], and is slightly
different from that of [7], in fact the formula s̃2i = (−1)hi cannot be derived
from the defining relations in [7].

Remark 2.6. From the defining relations we see that GA(R) (as a group)
is generated by the image of Uai(R) in GA(R).

3. Construction of infinite loop spaces

As shown in [4] there are seven infinite classes of generalized Cartan matrices
of affine type, whose Dynkin diagrams are listed below.

s s s

s

s s

h
h
h
h
h
h

h
h
h
h
h
h
h
h
h
h
h
h

a1 a2 a3

a0

al−1 al

A
(1)
l

· · ·

s s s

s

s s

a1 a2 a3

a0

al−1 al

B
(1)
l

>· · ·

s s s s s

a0 a1 a2 al−1 al

C
(1)
l

> <· · ·
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s s s

s

s

s

s

a1 a2 a3

a0

al−1 al

al+1

D
(1)
l+1

· · ·

s s s s s

a0 a1 a2 al−1 al

A
(1)
2l

< <· · ·

s s s

s

s s

a1 a2 a3

a0

al−1 al

A
(2)
2l−1

<· · ·

s s s s s

a0 a1 a2 al−1 al

D
(2)
l+1

< >· · ·

To each infinite class of generalized Cartan matrices of affine type and any
commutative ring R we want to associate a sequence of Kac-Moody groups
G(n) that satisfies the conditions of Theorem 1.2. First consider the case of

A
(2)
2l−1, let gl and Gl(R) be the corresponding Kac-Moody algebra and group

respectively. In the following we use the notations of §2 freely, sometimes
the subscript l will be used to indicate that the notations are associated to

A
(2)
2l−1. For example, Vl will be the vector space over Q, with basis {ai}i=0,··· ,l.

The group Wl(A) acts on Vl and △l denotes the set of real roots of A
(2)
2l−1

In gl+1 set e
′
l = s′l(el+1), f

′
l = s′l(fl+1), h

′
l = s′l(hl+1) = hl+1+2hl respectively

and for i < l set e′i = ei, f
′
i = fi, h

′
i = hi respectively.

Lemma 3.1. In gl+1 we have, for i, j ≤ l,

[h′i, h
′
j] = 0; [h′i, e

′
j ] = aije

′
j; [h′i, f

′
j ] = −aijf

′
j ; [e

′
i, f

′
j] = δi,jh

′
i;

(ad el−1)
2e′l = 0; (ad fl−1)

2f ′
l = 0.

Proof. The first four relations follow from direct computations. Now set
gl−1 = Cel−1⊕Cfl−1⊕Chl−1 and consider gl+1 as a gl−1-module by restricting
of the adjoint representation. Since [hl−1, e

′
l] = −e′l and [fl−1, e

′
l] = 0 (follows

from the fact that every root is either positive or negative), representation
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theory of g0 ∼= sl2(C) implies (ad el−1)
2e′l = 0. The proof for the last relation

is exactly the same. �

By the defining relations of gl, the map ei → e′i, fi → f ′
i extends to an

injective Lie algebra homomorphism ϕl : gl → gl+1.

Lemma 3.2. Define a linear map τl : Vl → Vl+1 by τl(ai) = ai for i < l and
τl(al) = al + al+1, then τl(△

±
l ) ⊂ △±

l+1 and ϕl(Ea) = Eτl(a) for any a ∈ △l.

Proof. It is easy to see that the map si → si for i < l and sl → slsl+1sl
extends to a group homomorphism wl : Wl(A) → Wl+1(A) and for any
v ∈ Vl and W ∈ Wl(A) we have τl ·W (v) = wl(W ) · τl(v). Thus the first
assertion follows readily. Similarly, the map s′i → s′i for i < l and

s′l → s′ls
′
l+1(s

′
l)
−1 = exp(e′i) · exp(−f

′
i) · exp(e

′
i)

extends to a group homomorphism w′
l : W

′
l (A) →W ′

l+1(A), where W
′
l (A) ⊆

Aut(g(A)l) and W ′
l+1(A) ⊆ Aut(g(A)l+1). One checks that wl and w′

l are
compatible with the homomorphisms φl : W ′

l (A) → Wl(A) and φl+1 :
W ′

l+1(A) → Wl+1(A). We also have for any ω′ ∈ W ′
l (A), ϕl ·ω

′ = w′
l(ω

′) ·ϕl.
Now we are ready to prove the second assertion. First, it is true for a = ai,
i ≤ l by the definition of ϕl. Let a = φl(ω

′)(ai) be an element of △l, with
ω′ ∈ W ′

l (A), then ϕl(Ea) = ϕlω
′(Eai) = w′

l(ω
′)ϕl(Eai) = w′

l(ω
′)(Eτl(ai)) =

Eφl+1w
′

l
(ω′)(τl(ai)) = Ewlφl(ω′)(τl(ai)) = Eτl(φl(ω′)(ai)) = Eτl(a). This finishes the

proof. �

For any a ∈ △l, let Ua be the corresponding group scheme defined in §2,
then we can define a homomorphism ψa : Ua → Uτl(a) that is compatible
with the map Ea → Eτl(a).

Lemma 3.3. Let θ ⊂ △l be a nilpotent set of real roots, then τl(θ) ⊂ △l+1

is also nilpotent; let Uθ and Uτl(θ) be the group schemes in Proposition 2.3,
then the homomorphism ψa : Ua → Uτl(a) for a ∈ θ extends uniquely to a
homomorphism ψθ : Uθ → Uτl(θ).

Proof. By lemma 3.2 the homomorphism ϕl : gl → gl+1 induces an isomor-
phism Lθ → Lτl(θ). Thus for a, b ∈ θ, the commutation relation of Ua and
Ub in Uθ is exactly the same as that of Uτl(a) and Uτl(b) in Uτl(θ). Now the
lemma follows readily. �

By Lemma 3.2 and Lemma 3.3 the group homomorphisms ψa(R) : Ua(R) →
Uτl(a)(R), a ∈ △l, extend to a group homomorphism ψ(R) : Sl(R) →
Sl+1(R).
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Let ∧l be a free abelian groups with basis h0, · · · , hl and ∧′
l its dual. Define

linear map ωl : ∧l → ∧l+1 by ωl(hi) = hi for i < l and ωl(hl) = hl + 2hl+1.
Denote by ω′

l the dual map of ωl, then ω
′
l induces a group homomorphism

ωl(R) : Tl(R) → Tl+1(R).

From the defining relations of Kac-Moody groups and the constructions
of ψ(R) and ωl(R) we see that the homomorphism of free products ψ ∗
ωl(R) : Sl(R) ∗ Tl(R) → Sl+1(R) ∗ Tl+1(R) reduces to a homomorphism
gl : Gl(R) → Gl+1(R). Set G(n) := G2n(R) and fn := g2n+1 ·g2n. In order to
apply Theorem 1.2, we have to define group homomorphism φn : Σn → G(n)
for each n > 0.

First we need some preliminaries. Let W l be the signed permutation group,
i.e., the group of linear transformations of Rl leaving invariant the set
{±ei} of standard basis vectors and their negatives. It has l − 1 genera-
tors r1, · · · , rl−1 and the following defining relations:

rjr
2
i r

−1
j = r2i r

−2ai,j
j

rirjri · · · = rjrirj · · · (mi,j facors on each side),

where ri is defined by sending {ei, ei+1} to {−ei+1, ei} and leaves the other
basis vectors invariant.

Lemma 3.4. The s̃i, 0 < i < l in Gl(R) satisfy the following two relations,

s̃j s̃
2
i s̃

−1
j = s̃2i s̃

−2ai,j
j ,

s̃is̃j s̃i · · · = s̃j s̃is̃j · · · (mi,j facors on each side).

Let W̃l be the subgroup of Gl(R) generated by {s̃i}0<i<l, then the map ri → s̃i

extends to a group homomorphism hl :W l → W̃l.

Proof. We prove the first assertion and the second assertion will follow di-
rectly. As s̃2i = (−1)hi the first relation is equivalent to

s̃j(−1)hi s̃−1
j = (−1)hi−2ai,jhi,

which is one of the defining relations of Gl(R). The second relation was
proved in Remark 3.7 of [7]. �

Define wi ∈ W 2n by sending {e2i−1, e2i} to {e2i+1, e2i+2} and leaving the
other basis vectors invariant. set Si = h2n(wi), direct computation shows
that Si = s̃32i+1s̃2is̃2i−1s̃2i+1s̃2is̃2i−1.
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Let σ(i) ∈ Σn be the permutation that swaps the i-th element with the
(i + 1)-th one, then the map σ(i) → Si extends to a group homomorphism
ςn : Σn → G(n) = G2n(R).

Theorem 3.5. Let Gl(R) be the Kac-Moody group associated to A
(2)
2l−1 over

R and set G(∞, R) = limn→∞G(n) = liml→∞Gl(R), then BG(∞, R)+ is
an infinite loop space.

Proof. It suffices to show that G(n) = G2n(R), fn = g2n+1g2n : G(n) →
G(n + 1) and ςn : Σn → G(n) = G2n(R) satisfy the conditions of Theorem
1.2. The condition (1) is obviously satisfied, thus we only need to verify
the condition (2). Set fm,n = fm+n−1 · · · fm+1fm, we want to show that
fm,n(G(m)) and c(n,m)(fn,m(G(n)))c(m,n) are commutative in G(m+ n).
Set snm := φ2m+2nςn(c(n,m)) in the following. By remark 2.6, fm,n(G(m))
is generated by the subgroups {Ua(R)}a∈Θ and c(n,m)(fn,m(G(n)))c(m,n)
is generated by the subgroups {Ua(R)}a∈Θ′ , where

Θ = {±a0, · · · ,±a2m−1, (s2m−1 · s2m · · · s2m+2n−1)(±a2m+2n)}

= {±a0, · · · ,±a2m−1,±(a2m−1 + · · ·+ a2m+2n)}

and

Θ′ = snm{±a0, · · · ,±a2n−1, (s2n−1 · s2m · · · s2m+2n−1)(±a2m+2n)}.

Thus in order to verify condition (2) it suffices to show that for any α ∈ Θ
and β ∈ Θ′, Uα(R) and Uβ(R) are commutative, or the subalgebras Lα and
Lβ of g2m+2n are commutative.

Direct computation shows that

(s2m−1 · s2m · · · s2m+2n−1)(±a2m+2n) = snm(±a2m+2n),

(s2n−1 · s2m · · · s2m+2n−1)(±a2m+2n) = smn(±a2m+2n),

smn(±a0) = ±(a0 + a1 + 2(a2 + · · ·+ a2m) + a2m+1),

snm{±a1, · · · ,±a2n−1} = {±a2m+1, · · · ,±a2m+2n−1},

snm{±a2n+1, · · · ,±a2m+2n−1} = {±a1, · · · ,±a2m−1}.

Thus we only need to show that L±a0 is commutative with L±(a0+a1+2(a2+···+a2m)+a2m+1)

and L±a2m+2n
is commutative with L±(a2m−1+···+a2m+2n). We proof the first

assertion, the proof for the second one is similar.

Firstly, we have [f0, ea0+a1+2(a2+···+a2m)+a2m+1
] ∈ La1+2(a2+···+a2m)+a2m+1

, but
it is well known that the highest root in Za1+Za2+ · · ·+Za2m+1 ∩△2m+2n

is a1 + · · ·+ a2m+1. Hence [f0, ea0+a1+2(a2+···+a2m)+a2m+1
] = 0. We also have

[h0, ea0+a1+2(a2+···+a2m)+a2m+1
] = 0. Set g0 = Ce0 ⊕ Cf0 ⊕ Ch0 and consider
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g2m+2n as a g0-module by restricting of the adjoint representation. By the
representation theory of g0 ∼= sl2(C), it follows that

[e0, ea0+a1+2(a2+···+a2m)+a2m+1
] = 0.

Similarly we have

[e0, fa0+a1+2(a2+···+a2m)+a2m+1
] = 0

and

[f0, fa0+a1+2(a2+···+a2m)+a2m+1
] = 0.

This finishes the proof of the theorem. �

4. The other cases

The constructions in the other cases is similar. For example in the case of

A
(1)
l , let gl be the Kac-Moody algebra associated to A

(1)
l , and in gl+1 set

e′l = s′l(el+1), f
′
l = s′l(fl+1), h

′
l = s′l(hl+1) = hl+1 + hl respectively and for

i < l set e′i = ei, f
′
i = fi, h

′
i = hi respectively. In the case of D

(1)
l+1, set

e′l = s′l · s
′
l−1(el+1), f

′
l = s′l · s

′
l−1(fl+1), h

′
l = s′l · s

′
l−1(hl+1) = hl+1 + hl + hl−1

respectively. For the rest constructions we just repeat the arguments of the
previous section.

Remark 4.1. In §3 we require that ∧l is freely generated by {h0, · · · , hl},

in fact this restriction is not necessary. For example, in the case of A
(1)
l we

can set ∧l to be freely generated by {h1, · · · , hl} and add an h0 := −h1 −
· · ·−hl. When R is a field K, the corresponding Kac-Moody group Gl(K) is
isomorphic to SLl+1(K[t, t−1]), then G(∞, K)+ is of course an infinite loop
space and our construction is meaningless in this case. However, generally
we don’t know the explicit realization of Gl(R).

We can also treat the (topological) affine Kac-Moody groups over C (see [5]
for the definition), and by the method of §2 we can get the following result.

Theorem 4.2. Let {Al}l>2 be one of the seven (infinite) classes of affine
generalized Cartan matrices and let {Gl}l>2 be the associated simply-connected
Kac-Moody groups over C, then we can define for each l > 2 a natural ho-
momorphism fl : Gl → Gl+1 such that BG = liml→∞BGl is an infinite loop
space.

Remark 4.3. In fact there exists a (infinite) classes of classical Lie groups
{G(l)}l>2 such that Gl is isomorphic to a central extension of the group of
polynomial loops or twisted polynomial loops on G(l).
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