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TOPOLOGICAL EXPANDERS

MATTHEW KAHLE

Abstract. We describe a natural topological generalization of edge expansion
for graphs to arbitrary simplicial complexes and prove that this property holds
with high probability for certain random complexes.

1. Introduction

Expander graphs is a vast subject — expanders have been studied from the
points of view of number theory, combinatorics, probability, and geometry, and have
extensive applications in computer science. For a nice introduction and survey see
[7]. We define edge expansion precisely below, but roughly speaking expanders are
graphs that are simultaneously sparse and well-connected. The main goal of this
article is to give a natural topological generalization of edge expansion to simplicial
complexes and to provide examples in every dimension. Our definition of degree
k topological expansion is in terms of the coboundary operator dk which defines
simplicial cohomology [6].

There have recently been a few other notions of higher-dimensional expanders
discussed. Following Lafforgue’s proof of the Ramanujan conjectures, Lubotzky,
Samuels, and Vishne defined and constructed Ramanujan complexes [10, 11], which
have a spectral property analogous to that of Ramanujan graphs. More recently
Fox, Gromov, Lafforgue, Naor, and Pach described a geometric overlap property as
an analogue of expansion and showed that some of the Ramanujan examples studied
earlier provided explicit examples, and they discussed probabilistic examples as well
[5]. Our aim here is to complement these studies with a general topological notion
of expansion.

We first review the usual definition of edge expansion.

Definition 1.1. For a graph G on n vertices, the edge expansion h(G) is defined
as

h(G) = min
0<|S|≤n/2

|∂(S)|

|S|
,

where ∂(S) denotes the set of edges with exactly one vertex in S.

Note that h(G) > 0 if and only if G is connected. However, rather than discuss
edge expansion of a single graph, one is often more interested in families of graphs,
where one takes a sequence of graphs with the number of vertices n → ∞. If
one had a sequence of d-regular graphs S = {Gi}, for example, and h(Gi) stayed
bounded away from zero as i → ∞, we would consider S to be an expanding family.

It is not totally obvious that such families exist. The first known examples of
were probabilistic [14], and then Margulis [12] and independently Lubotzky, Philips,
and Sarnak [9], gave explicit examples using Deligne’s proof of the Weil conjecture.
Although the first constructions relied on deep number-theoretic facts, Pinsker’s
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earlier observation was that a sequence of random d-regular graphs already gives
an edge-expanding family with probability 1.

Although one often studies expansion for a sequence d-regular graphs, we need
not be restricted to graphs of bounded degree, or even to regular graphs. For
example, Erdős-Rényi random graphs G(n, p) are also known to have strong edge
expansion properties as n → ∞ [2] once p ≫ logn/n. (We use ≫ and ≪ loosely,
meaning “much greater than,” or “much less than.”)

Definition 1.2. The Erdős-Rényi random graph G(n, p) is the probability space
of all graphs on vertex set [n] = {1, 2, . . . , n} with each edge having probability p,
independently. In other words for every graph G on vertex set [n],

Prob[G ∈ G(n, p)] = pe(G)(1 − p)(
n

2)−e(G),

where e(G) denote the number of edges of G.

We say that G(n, p) asymptotically almost surely (a.a.s. ) has property P if for
G ∈ G(n, p),

Prob[G ∈ P ] → 1

as n → ∞.
The following theorem is due to Erdős and Rényi [4].

Theorem 1.3. Let ω = ω(n) be any function that tends to infinity with n. If

p = (logn + ω)/n then G(n, p) is a.a.s. connected, and if p = (log n − ω)/n then

G(n, p) is a.a.s. disconnected.

Once p is much larger than logn/n, G(n, p) exhibits strong edge expansion. The
following theorem is due to Benjamini, Haber, Krivelevich, and Lubetzky [2]. Let
δ(G) denote the minimum degree of G.

Theorem 1.4. Let ǫ > 0 and 0 < c < 1/2 be constants and p ≥ (1 + ǫ) logn/n.
Then a.a.s. G ∈ G(n, p) has edge expansion bounded below by

h(G) > cδ(G).

A few comments about Theorem 1.4 are in order.

(1) The importance of the function logn/n is that if p ≪ logn/n then G ∈
G(n, p) is a.a.s. disconnected, in which case h(G) = 0.

(2) For every graph G we have h(G) ≤ δ(G), so this is the best rate of growth
of edge expansion that one might hope for.

(3) The 1/2 in this statement of Theorem 1.4 can not be improved, since the
edge expansion of the complete graph Kn is given by h(Kn) = (n − 1)/2,
and we are getting closer to this case as the edge probability p gets closer
to 1.

(4) For every vertex v the expectation of the degree deg(v) is given by

E[deg(v)] = p(n− 1) ≈ pn.
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Once p ≥ (1 + ǫ) logn/n, a.a.s. every vertex degree is tightly concentrated
around this mean.

Linial and Meshulam defined 2-dimensional analogues of G(n, p) and proved a
cohomological analogue of Theorem 1.3 [8], and Meshulam and Wallach extended
the result to arbitrary dimension [13].

Let ∆n denote the (n− 1)-dimensional simplex and ∆n
i its i-skeleton.

Definition 1.5. The random simplicial complex Yd(n, p) is the probability space
of all simplicial complexes with complete (d − 1)-skeleton and each d-dimensional
face appearing independently with probability p. In other words for every

∆n
d−1 ⊆ Y ⊆ ∆n

d ,

we have

Prob(Y ∈ Yd(n, p)) = pfi(Y )(1− p)(
n

i+1)−fi(Y ),

where fi denotes the number of i-dimensional faces of Y .

Let R be any (fixed) finite coefficient ring. The main results of [8] and [13] for
Y ∈ Y (n, p) is the following.

Theorem 1.6. Let ω = ω(n) be any function that tends to infinity with n. If

p = (k+1) logn+ω
n then a.a.s. Hk(Y,R) = 0 and if p = (k+1) logn−ω

n then a.a.s.

Hk(Y,R) 6= 0.

The case k = 1 and R = Z/2 was proved in [8] and the general case in [13]. Note
that k = 0 is exactly Theorem 1.3. One of the main ideas in proving Theorem 1.6
is an isoperimetric inequality for ∆n (or ∆n

k+1), which we describe next.

Fix a coefficient ring R, and for a simplicial complex S let Ck(S) denote the
set of k-cochains of S, i.e. Ck(S) = {f : S(k) → R}, where S(k) is the set of
k-dimensional faces of S. Let dk : Ck → Ck+1 denote the simplicial coboundary
map (see for example [6]).

Definition 1.7. For a simplicial complex S and φ ∈ Ck(S) define

b(φ) = |supp(dk(φ))|,

and

w(φ) = min
X∈Ck−1(S)

|supp(φ + dk−1(X)|.

Here supp(A) denotes the support of A, i.e. supp(A) = {σ ∈ S(k) | A(σ) 6= 0}, and
| · | denotes the cardinality of a set.

A useful isoperimetric inequality observed by Linial, Meshulam, and Wallach is
the following.

Lemma 1.8. For every φ ∈ Ck(∆n),

b(φ) ≥
n

k + 1
w(φ).

For a short self-contained proof and examples to show that the constant 1
k+1

is best possible, see [13]. What we are interested in here is whether a similar
inequality might hold for much sparser simplicial complexes. This motivates the
following definition, which is the first main point of this article.
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Definition 1.9. For a simplicial complex S define the degree k topological expansion

hk(S) by

hk(S) = min
{φ∈Ck(S)|w(φ) 6=0}

b(φ)

w(φ)
.

Note that when k = 0 this agrees exactly with the usual definition of edge
expansion for graphs. First of all, if we talk about sets of vertices and edges, this is
really working with R = Z/2 coefficients. Second, if we work in reduced cohomology
then the coboundary of the empty set is the set of all n vertices. So for every subset
of vertices φ, we have w(φ) = min(|φ|, n − |φ|), or said another way w(φ) = |φ| if
and only if |φ| ≤ n/2. Clearly b(φ) is the number of edges with one end in φ.

We also note that hk(S) > 0 if and only if the kth cohomologyHk(S,R) vanishes.
To see this note that b(φ) = 0 if and only if φ is a cocycle, and w(φ) = 0 if and only
if φ is a coboundary. So we only have hk(S) = 0 if there is some k-cocycle which is
not a coboundary, i.e. a nontrivial element of kth cohomology.

Continuing the analogy with edge expansions of graphs, we expect this to be
most interesting for sequences of simplicial complexes where the number of vertices
n → ∞, and where the properly renormalized degree k topological expansion stays
bounded away from zero. To discuss the proper renormalization we introduce the
following notation. For a simplicial complex S and k ≥ 0, set

δk(S) = min
σ∈S(k)

#(k + 1)-dimensional faces in S(k+1) containing σ.

Just as h(G) ≤ δ(G) for a graph G, it is easy to see more generally that hk(S) ≤
δk(S) for a simplicial complex S. So we might think of a sequence of simplicial
complexes {Si}i∈N as an expanding family if hk(Si)/δk(Si) stays bounded away
from zero as i → ∞. The second main point of this article is to show that the
random complexes Yd(n, p) provide such examples once p ≫ log n

n .

2. Main result

Fix a finite coefficient ring R and k ≥ 1. Our main result is the following.

Theorem 2.1. For every ǫ > 0 there exists C = C(ǫ) such that for p ≥ C logn
n and

Y ∈ Yk+1(n, p) we have a.a.s.

hk(Y ) >

(

1

k + 1
− ǫ

)

δk(Y ).

The constant 1
k+1 can not be improved for these complexes, since the bound in

Lemma 1.8 is best possible, and this is the limiting case as p → 1. As Theorem 1.6 is
a generalization of Theorem 1.3 to higher dimensions, Theorem 2.1 a generalization
of Theorem 1.4 (although our constant C is probably not optimal).

Proof of Theorem 2.1. We follow a similar counting argument to that in [8] and
[13], but can afford to be much coarser here since we make no effort to optimize
the constant C.

First we note that once p ≥ C logn/n with C > k standard large deviation
bounds that a.a.s. every k-face σ satisfies deg(σ) ≈ pn, so in particular δk(Y ) ≈ pn
[3]. A more precise statement is that a.a.s. δ(Y )(1 − o(1))pn, but to ease notation
we occasionally just replace δk(Y ) by pn.

Given a cochain φ ∈ Ck(Y ) we desire to put a lower bound on b(φ) in terms of

w(φ). There is a natural inclusion i : Y →֒ ∆n
k+1, and we let φ̃ denote the “image”
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of φ in Ck(∆n
k+1). Cochains normally pull back rather than push forward, but this

makes sense here because Y and ∆n
k+1 share the same (complete) k-skeleton, and

for the same reason we have w(φ) = w(φ̃).

By Lemma 1.8 we have that b(φ̃) ≥ n
k+1w(φ̃). It is easy to see that b(φ) =

|supp(dk(φ̃)) ∩ Y |. By writing b(φ) as a sum of indicator random variables for

the k-faces in supp(dk(φ̃)) we see that has a binomial distribution SN,p where

N = |supp(dk(φ̃)| = b(φ̃) ≥ n
k+1w(φ̃); see for example the introduction of [3]. Now

we can use large deviation bounds for binomial random variables. For example
Theorem 1.7 in [3] states that if 0 < p < 1/2, p(1− p)N ≥ 12, and 0 < c < 1

12 then
we have

Prob(|SN,p − pN | ≥ cpN) ≤ (cpN)−1/2e−c2pN/3

Set c = ǫ
k+1 . If w(φ) = i ≥ 1 then

Prob

[

b(φ)

w(φ)
≤

(

1

k + 1
− ǫ

)

δk(Y )

]

= Prob

[

b(φ) ≤

(

1

k + 1
− ǫ

)

pni

]

≤ Prob [|SN,p − pN | ≥ cNp]

≤ (cpN)−1/2e−c2pN/3

≤ e−c2pni/3(k+1)

We apply a union bound for the event that there exists a cochain φ ∈ Ck(Y )

with b(φ)
w(φ) ≤

(

1
k+1 − ǫ

)

δk(Y ). Note that a simple upper bound on the total number

of cochains with w(φ) = i is given by

|{φ ∈ Ck(Y ) | w(φ) = i}| ≤

(
(

n
k+1

)

i

)

(r − 1)i,

where r is the cardinality of our finite coefficient ring R. So the total probability
of a bad cochain is at most

∑

i≥1

∣

∣{φ ∈ Ck(Y ) | w(φ) = i}
∣

∣ Prob

[

b(φ) ≤ i

(

1

k + 1
− ǫδk(Y )

])

≤
∑

i≥1

(
(

n
k+1

)

i

)

(r − 1)ie−c2pni/3(k+1)

≤
∑

i≥1

(

nk+1

i

)

(r − 1)ie−c2pni/3(k+1)

≤
∑

i≥1

n(k+1)i

i!
(r − 1)ie−c2pni/3(k+1)

≤
∑

i≥1

(

enk+1(r − 1)

i

)i
(

e−c2pn/3(k+1)
)i

,

this last step by Stirling’s approximation i! ≥ (i/e)i.
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Now write p = C logn
n . Choose any C > 3(k+1)2

c2 and write c1 = k + 1 − c2C
3(k+1) .

By choice of C we have that c1 > 0.
Hence the probability that we have any cochain violating the expansion isoperi-

metric inequality is bounded above by

∑

i≥1

(

enk+1(r − 1)

i

)i
(

e−c2pn/3(k+1)
)i

=
∑

i≥1

(

enk+1(r − 1)

i

)i
(

e−c2C log n/3(k+1)
)i

≤
∑

i≥1

(

enk+1(r − 1)

i

)i
(

n−c2C/3(k+1)
)i

≤

( n

k+1)
∑

i≥1

(

en−c1(r − 1)

i

)i

≤

( n

k+1)
∑

i≥1

(

en−c1(r − 1)
)i

≤
e(r − 1)n−c1

1− e(r − 1)n−c1
→ 0

as n → ∞.
This proves the theorem, and in particular we see that since c = ǫ

k+1 , choosing

C > 3(k+1)4

ǫ2 and setting p ≥ C logn/n is sufficient to ensure that a.a.s. hk(Y ) ≥
(

1
k+1 − ǫ

)

δk(Y ).

�

3. Comments

We have discussed what seems to be the natural topological generalization of edge
expansion to higher-dimensional simplicial complexes. Linial, Meshulam, and Wal-
lach had already observed that (k+1)-dimensional skeletons of (n−1)-dimensional
simplexes ∆n

k+1 already meet this definition, and we have extended their results for
vanishing of cohomology to show that in roughly the same regime where cohomology
vanishes we have sparse examples of degree k topological expanders.

Their results and ours depend on the coefficient ring R being finite, and it would
be interesting to know what happens, say, for Z coefficients. On a related note, it
was recently showed by Babson, Hoffman, and Kahle that in the k = 2 case the
threshold for vanishing of π1(Y ) is quite different than the threshold for H1(Y,R),
and along the way they establish linear isoperimetric inequalities on π1(Y ) [1],
showing that area A(γ) ≤ cL(γ) for some constant c and all contractible curves γ.
This seems to be a different, but perhaps complementary, kind of isoperimetry to
what is discussed here.

As mentioned in the introduction, other examples of “expanding” simplicial com-
plexes have been considered. For example, it is known that if one takes the clique
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complex of a particular Cayley graph on PGLr(Fpm), the resulting simplicial com-
plex has interesting spectral properties [10, 11], and also geometric overlap proper-
ties [5]. Since there are several closely related notions of expansion for graphs, it
would be interesting to know whether these Ramanujan complexes are also topo-
logical expanders in the sense described here. At the moment we do not have any
explicit examples of topological expanders for k ≥ 1, and these would seem to be
natural candidates.

Acknowledgements I thank Noga Alon, Eric Babson, Dominic Dotterrer, and
Larry Guth for several helpful and inspiring conversations.
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