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Summary

It has been proved that there are no real hypersurfaces satisfying RA =

0 in non-flat complex space forms. In this paper we prove that the same

is true in the case of CR submanifolds of maximal CR dimension, that

is there are no CR submanifolds of maximal CR dimension satisfying

RA = 0 in non-flat complex space forms.
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1 Introduction

S. Maeda proved in [4] the non-existence of real hypersurfaces satisfying RA = 0
in the complex projective space, where we denoted by R the curvature tensor
and by A the shape operator of a hypersurface. On the other hand M. Ortega
proved in [2] that there are no real hypersurfaces in non-flat complex space
forms such that RA = 0.

As a real hypersurface is a typical example of a CR submanifold of maximal
CR dimension, we will in this paper generalize the results obtained by S. Maeda
and M. Ortega to CR submanifolds of maximal CR dimension.

Let M be an (n + p)-dimensional complex space form, i.e. a Kaehler man-
ifold of constant holomorphic sectional curvature 4c, endowed with metric g.
Let M be an n-dimensional real submanifold of M and J be the almost com-
plex structure of M . For a tangent space Tx(M) of M at x, we put Hx(M) =
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JTx(M)∩Tx(M). Then,Hx(M) is the maximal complex subspace of Tx(M) and
is called the holomorphic tangent space to M at x. If the complex dimension
dimCHx(M) is constant overM ,M is called a Cauchy-Riemann submanifold or
briefly a CR submanifold and the constant dimCHx(M) is called the CR dimen-
sion of M . If, for any x ∈ M ,Hx(M) satisfies dimCHx(M) = n−1

2
, then M is

called a CR submanifold of maximal CR dimension. It follows that there exists
a unit vector field ξ normal to M such that JTx(M) ⊂ Tx(M)⊕ span{ξx}, for
any x ∈ M .

2 CR submanifolds of maximal CR dimension of

a complex space form

Let M be an (n + p)-dimensional complex space form with Kaehler structure
(J, g) and of constant holomorphic sectional curvature 4c. Let M be an n-
dimensional CR submanifold of maximal CR dimension in M and ι : M →
M immersion. Also, we denote by ι the differential of the immersion. The
Riemannian metric g of M is induced from the Riemannian metric g of M in
such a way that g(X,Y ) = g(ιX, ιY ), where X, Y ∈ T (M). We denote by T (M)
and T⊥(M) the tangent bundle and the normal bundle of M , respectively.

On M we have the following decomposition into tangential and normal com-
ponents:

JιX = ιFX + u(X)ξ, X ∈ T (M). (1)

Here F is a skew-symmetric endomorphism acting on T (M) and u in one-form
on M .

Since T⊥
1
(M) = {η ∈ T⊥(M)|g(η, ξ) = 0} is J-invariant, from now on we

will denote the orthonormal basis of T⊥(M) by ξ, ξ1, · · · , ξq, ξ1∗ , · · · , ξq∗ , where
ξa∗ = Jξa and q = p−1

2
. Also, Jξ is the vector field tangent to M and we write

Jξ = −ιU. (2)

Furthermore, using (1), (2) and the Hermitian property of J implies

F 2X = −X + u(X)U, (3)

FU = 0, (4)

∇XU = FAX, (5)

g(X,U) = u(X). (6)

2



Next, we denote by∇ and∇ the Riemannian connection ofM andM , respective-
ly, and by D the normal connection induced from ∇ in the normal bundle of
M . They are related by the following Gauss equation

∇ιXιY = ι∇XY + h(X,Y ), (7)

where h denotes the second fundamental form, and by Weingarten equations

∇ιXξ = −ιAX +DXξ (8)

= −ιAX +

q∑

a=1

{sa(X)ξa + sa∗(X)ξa∗},

∇ιXξa = −ιAaX +DXξa = −ιAaX − sa(X)ξ (9)

+

q∑

b=1

{sab(X)ξb + sab∗(X)ξb∗},

∇ιXξa∗ = −ιAa∗X +DXξa∗ = −ιAa∗X − sa∗(X)ξ (10)

+

q∑

b=1

{sa∗b(X)ξb + sa∗b∗(X)ξb∗},

where the s’s are the coefficients of the normal connectionD and A, Aa, Aa∗ ; a =
1, · · · , q, are the shape operators corresponding to the normals ξ, ξa, ξa∗ , respecti-
vely. They are related to the second fundamental form by

h(X,Y ) = g(AX, Y )ξ (11)

+

q∑

a=1

{g(AaX,Y )ξa + g(Aa∗X,Y )ξa∗}.

Since the ambient manifold is a Kaehler manifold, using (1), (2), (9) and (10), it
follows that

sa∗(X) = u(AaX), (12)

sa(X) = −u(Aa∗X), (13)

for all X, Y tangent to M and a = 1, · · · , q.
The Codazzi and the Gauss equation for the distinguished vector field ξ are

(∇XA)Y − (∇Y A)X = c{u(X)FY − u(Y )FX − 2g(FX, Y )U} (14)

+

q∑

a=1

{sa(X)AaY − sa(Y )AaX}+

q∑

a=1

{sa∗(X)Aa∗Y − sa∗(Y )Aa∗X},
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RXY Z = c{g(Y, Z)X − g(X,Z)Y + g(FY,Z)FX (15)

− g(FX,Z)FY − 2g(FX, Y )FZ}

+ g(AY,Z)AX − g(AX,Z)AY

+

q∑

a=1

{g(AaY, Z)AaX − g(AaX,Z)AaY }

+

q∑

a=1

{g(Aa∗Y, Z)Aa∗X − g(Aa∗X,Z)Aa∗Y },

respectively, for all X , Y , Z tangent to M , where R denotes the Riemannian
curvature tensor of M .

3 CR submanifolds of maximal CR dimension

satisfying RA = 0

Theorem 1. Let M be an n-dimensional CR submanifold of maximal CR di-

mension in an (n+ p)-dimensional complex space form (M,J, g), where n ≥ 3
and the constant holomorphic sectional curvature of M equals 4c. Let p < n, A

be the shape operator of the distinguished vector field ξ and R be the Riemannian

curvature tensor of M . If RA = 0 on M , then M is an Euclidean space.

Proof. Because of the assumption that RA = 0 we have

g(RXY (AZ),W ) = g(ARXY Z,W ),

for X , Y , Z, W tangent to M , that is

c{g(Y,AZ)g(X,W )− g(X,AZ)g(Y,W ) + g(FY,AZ)g(FX,W ) (16)

− g(FX,AZ)g(FY,W )− 2g(FX, Y )g(FAZ,W )}

+ g(AY,AZ)g(AX,W )− g(AX,AZ)g(AY,W )

+

q∑

a=1

{g(AaY,AZ)g(AaX,W )− g(AaX,AZ)g(AaY,W )}

+

q∑

a=1

{g(Aa∗Y,AZ)g(Aa∗X,W )− g(Aa∗X,AZ)g(Aa∗Y,W )} =

c{g(Y, Z)g(AX,W )− g(X,Z)g(AY,W ) + g(FY,Z)g(AFX,W )

− g(FX,Z)g(AFY,W )− 2g(FX, Y )g(AFZ,W )}

+ g(AY,Z)g(A2X,W )− g(AX,Z)g(A2Y,W )

+

q∑

a=1

{g(AaY, Z)g(AAaX,W )− g(AaX,Z)g(AAaY,W )}

+

q∑

a=1

{g(Aa∗Y, Z)g(AAa∗X,W )− g(Aa∗X,Z)g(AAa∗Y,W )}
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Interchanging X and Z in (16) and subtracting the resulting equation and
(16) we obtain

c{ − g(FX,AZ)g(FX,Z)− g(X,AX)g(Z,Z) + 3g(FZ,X)g(FAX,Z) (17)

+ g(X,X)g(Z,AZ)− 4g(FZ,X)g(FX,AZ)}

− g(AX,AX)g(AZ,Z) + g(AX,X)g(AZ,AZ)

+

q∑

a=1

{g(AaX,X)g(AaZ,AZ)− g(AaX,AZ)g(AaX,Z)}

+

q∑

a=1

{g(Aa∗X,X)g(Aa∗Z,AZ)− g(Aa∗X,AZ)g(Aa∗X,Z)}

+

q∑

a=1

{g(AaZ,AX)g(AaX,Z)− g(AaX,AX)g(AaZ,Z)}

+

q∑

a=1

{g(Aa∗Z,AX)g(Aa∗X,Z)− g(Aa∗X,AX)g(Aa∗Z,Z)} = 0.

From (17) it follows

c{ − g(X,AX)Z3g(FAX,Z)FX + g(X,X)AZ + 3g(FX,AZ)FX} (18)

− g(AX,AX)AZ + g(AX,X)A2Z

+

q∑

a=1

{g(AaX,X)AAaZ − g(AaX,Z)AAaX + g(Aa∗X,X)AAa∗Z

− g(Aa∗X,Z)AAa∗X + g(AaX,Z)AaAX − g(AaX,AX)AaZ

+ g(Aa∗X,Z)Aa∗AX − g(Aa∗X,AX)Aa∗Z} = 0,

because Z is an arbitrary tangent vector.
On the other hand, from (17) it follows

c{ − g(X,AX)Z + 3g(FZ,X)FAX + g(X,X)AZ − 3g(FZ,X)AFX}

(19)

− g(AX,AX)AZ + g(AX,X)A2Z

+

q∑

a=1

{g(AaX,X)AAaZ − g(AaX,Z)AAaX + g(Aa∗X,X)AAa∗Z

− g(Aa∗X,Z)AAa∗X + g(AaX,Z)AaAX − g(AaX,AX)AaZ

+ g(Aa∗X,Z)Aa∗AX − g(Aa∗X,AX)Aa∗Z} = 0,

because Z is an arbitrary tangent vector.
Subtracting (18) and (19) we obtain

c{−g(FAX,Z)FX + g(FX,AZ)FX − g(FZ,X)FAX + g(FZ,X)AFX} = 0.
(20)
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After putting Z = X in (20) we obtain

c{−g(FAX,X)FX + g(FX,AX)FX} = 0. (21)

Multiplying (21) with AX , we obtain

2cg(FAX,X)2 = 0. (22)

If c 6= 0, then from (22) it follows that

FAX = 0. (23)

From (23) we conclude that

AX = αU, (24)

for some function α and X ∈ T (M).
Multiplying the Codazzi (14) equation with U and putting Y = U , we obtain

g((∇XA)U,U) = g((∇UA)X,U) (25)

+

q∑

a=1

{2g(Aa∗U,U)g(AaU,X)− 2g(Aa∗U,X)g(AaU,U)}.

Differentiating (24), we obtain

(∇Y A)X = (Y α)U − αU, (26)

Y ∈ T (M).
Now, from (25) and (26) we get

Xα = Uα+

q∑

a=1

{2g(Aa∗U,U)g(AaU,X)− 2g(Aa∗U,X)g(AaU,U)}. (27)

From the Codazzi (14) equation multiplied with U , (26) and (27) it follows

q∑

a=1

{g(Aa∗U,U)g(AaU,X)− g(AaU,U)g(Aa∗U,X)}+ (28)

q∑

a=1

{−g(Aa∗U,U)g(AaU, Y ) + g(AaU,U)g(Aa∗U, Y )} =

− cg(FX, Y ) +

q∑

a=1

{g(Aa∗U, Y )g(AaU,X)− g(Aa∗U,X)g(AaU, Y )}

Putting X = FX in (28) and then X = U in the resulting equation, we obtain

q∑

a=1

{−g(Aa∗U,U)g(AaU, Y ) + g(AaU,U)g(Aa∗U, Y )} = 0. (29)
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From (28) and (29) we obtain

cFX =

q∑

a=1

{g(AaU,X)Aa∗U − g(Aa∗U,X)AaU}. (30)

From (30) it follows that FX is a linear combination of AaU and Aa∗U ;
a = 1, · · · , q.
Since every tangent vector Y orthogonal to U can be expressed as Y = FX ,
for n− 1 > 2q = p− 1, i.e. n > p, it follows that there exists a unit vector field
Y = FX which is orthogonal to span{AaU,Aa∗U}; a = 1, · · · , q.
Putting such Y = FX in (30) instead of X we get

cF 2X = 0, (31)

from which it follows F 2X = 0, for X ∈ T (M).
This is a contradiction because of (3). �

Theorem 2. Let M be an n-dimensional CR submanifold of maximal CR

dimension in an (n+ p)-dimensional complex space form (M, J, g), where
n ≥ 3 and the constant holomorphic sectional curvature of M equals 4c. Let

the distinguished vector field ξ be parallel with respect to the normal connection

D, A be the shape operator of ξ and R be the Riemannian curvature tensor of

M . If RA = 0 on M , then M is an Euclidean space.

Proof. As in the proof of the Theorem 1 we obtain

(∇Y A)X = (Y α)U − αU, (32)

for some function α and X , Y ∈ T (M).
Putting Y = U in the Codazzi equation (14) and multiplying the resulting
equation with U we obtain

g((∇XA)U − (∇UA)X,U) = 0. (33)

From (32) and (33) it follows

Xα = Uα. (34)

From the the Codazzi equation (14) multiplied with U and (34) we obtain

−2cg(FX, Y ) = 0, (35)

from which it follows that g(FX, Y ) = 0.
This is a contradiction. �
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