
ar
X

iv
:1

01
2.

52
38

v1
  [

m
at

h.
A

G
] 

 2
3 

D
ec

 2
01

0

CHARACTERIZATIONS OF PROJECTIVE SPACES AND HYPERQUADRICS

STÉPHANE DRUEL AND MATTHIEU PARIS

1. Introduction

Projective spaces and hyperquadrics are the simplest projective algebraic varieties, and they can

be characterized in many ways. The aim of this paper is to provide a new characterization of them

in terms of positivity properties of the tangent bundle. We refer the reader to the article [ADK08]

which reviews these matters. Notice that our results generalize Mori’s (see [Mor79]), Wahl’s (see

[Wah83] and [Dru04]), Andreatta-Wísniewski’s (see [AW01] and [Ara06]), Araujo-Druel-Kovács’s

(see [ADK08]) and Paris’s (see [Par10]) characterizations of projective spaces and hyperquadrics.

K. Ross recently posted a somewhat related result (see [ROS10]).

In this paper, we prove the following theorems. Here Qn denotes a smooth quadric hypersurface

in Pn+1, and OQn(1) denotes the restriction of O
P

n+1(1) to Qn. When n = 1, (Q1,OQ1(1)) is just

(P1,O
P

1(2)).

Theorem A. Let X be a smooth complex projective n-dimensional variety and E an ample vector

bundle on X of rank r+k with r > 1 and k > 1. If h0(X,T⊗r
X ⊗det(E )⊗−1) 6= 0, then (X,det(E )) ≃

(Pn,OP
n(l)) with r + k 6 l 6 r(n+1)

n .

Theorem B. Let X be a smooth complex projective n-dimensional variety and E an ample vector

bundle on X of rank r > 1. If h0(X,T⊗r
X ⊗det(E )⊗−1) 6= 0, then either (X,det(E )) ≃ (Pn,OP

n(l))

with r 6 l 6 r(n+1)
n , or (X,E ) ≃ (Qn,OQn(1)

⊕r) and r = 2i+ nj with i > 0 and j > 0.

The line of argumentation follows [AW01] (see also [ADK08] and [Par10]). We first prove The-

orem A and Theorem B for Fano manifolds with Picard number ρ(X) = 1 (see Proposition 14).

Then the argument for the proof of the main Theorem goes as follows. We argue by induction

on dim(X). We may assume ρ(X) > 2. Hence the H-rationally connected quotient of X with

respect to an unsplit covering family H of rational curves on X is non-trivial. It can be ex-

tended in codimension one so that we can produce a normal variety XB equipped with a surjective

morphism πB with integral fibers onto a smooth curve B such that either B ≃ P1, XB → B

is a Pd-bundle for some d > 1 and h0(XB , T
⊗i
XB/P1 ⊗ π∗G ⊗r−i ⊗ det(E )⊗−1

|XB
) 6= 0 for some in-

teger 1 6 i 6 r where G be a vector bundle on P1 such that G ∗(2) is nef, or XB → B is a

Pd-bundle for some d > 1 and h0(XB , T
⊗r
XB/B ⊗ det(E )⊗−1

|XB
⊗ π∗BG ∗) 6= 0 where G is a nef vec-

tor bundle on C, or the geometric generic fiber of πB is isomorphic to a smooth hyperquadric and

h0(XB , T
[⊗r]
XB/B⊗det(E )⊗−1

|XB
⊗π∗BG ∗) 6= 0 where G is a nef vector bundle on C. But this is impossible

unless X ≃ P1 ×P1 (see Lemma 3, Lemma 4 and Proposition 6).

Throughout this paper we work over the field of complex numbers.
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2. Proofs

2.1. Projective spaces and hyperquadrics. In this section, we gather some properties of the

tangent bundle to projective spaces and smooth hyperquadrics.

Lemma 1. Let n, r and k be integers with n > 1 and r > 1. Then h0(Pn, T⊗r
P

n (−k)) 6= 0 if and

only if k 6
r(n+1)

n .

Proof. It is well-known that TPn is stable in the sense of Mumford-Takemoto with slope µ(TPn) =
n+1
n with respect to OP

n(1). By [HL97, Theorem 3.1.4], T⊗r
P

n (−r) is semistable with slope µ(T⊗r
P

n (−k)) =
r(n+1)

n − k. It follows that if h0(Pn, T⊗r
P

n (−k)) 6= 0 then k 6
r(n+1)

n . Conversely, let us assume that

k 6
r(n+1)

n . Write r = an + b where a and b are integers with a > 0 and 0 6 b < n. Then

k − a(n+ 1) = xk − a(n+ 1)y 6 x
b(n+1)

n y = xb+ b
ny = b and

h0(Pn, T⊗r
P

n (−k) = h0(Pn, T⊗an
P

n (−a(n+ 1))⊗ T⊗b
P

n(−k + a(n+ 1)))

> h0(Pn, [T⊗n
P

n (−(n+ 1))]⊗a ⊗ T⊗b
P

n(−b))

> h0(Pn, [det(TPn)(−(n+ 1))]⊗a ⊗ T⊗b
P

n(−b))

= h0(Pn, T⊗b
P

n(−b)) > 1,

as claimed. �

Let d be a positive integer. Let Q ⊂ Pd+1 = P(W ) be a smooth hyperquadric defined by a non

degenerate quadratic form q on W := Cd+2 and let OQ(1) denote the restriction of O
P

d+1(1) to Q.

Let x be a point of Q and w ∈W \{0} representing x; then TQ(−1)x identifies with x⊥/ < x > and

q induces an isomorphism TQ(−1) ≃ Ω1
Q(1) or equivalently a nonzero section in H0(Q, (TQ(−1))⊗2)

still denoted by q. Let V := x⊥/ < x >. Let G := SO(W ) and let P ⊂ SO(W ) be the parabolic

subgroup such that G/P ≃ Q corresponding to x ∈ Q. Let det ∈ H0(Q,det(TQ(−1)) be a nonzero

section.

Lemma 2. Let the notations be as above.

(1) The vector bundle TQ is stable in the sense of Mumford-Takemoto; in particular, one has

h0(Q,T⊗r
Q (−k)) = 0 for k > r > 1.

(2) The space of sections H0(Q, (TQ(−1))⊗r) is generated as a C-vector space by the σ · q⊗i ⊗

det⊗j’s where i and j are nonnegative integers such that r = 2i + dj and σ ∈ Sr the

symmetric group on r letters acting as usual on the vector bundle (TQ(−1))⊗r.

Proof. Observe that TQ(−1) is homogeneous or equivalently that

TQ(−1) ≃ (G× V )/P

over Q ≃ G/P where g ∈ P acts on G× V by the formula

g · (g′, v) = (g′g, ρ(g−1) · v)

and

ρ : P → GL(TQ(−1)x) = GL(V )

is the stabilizer representation. It vanishes on the unipotent radical U of P and can be viewed

as the representation of the Levi subgoup L ≃ C∗ × SO(V ) ⊂ P on V given by the standard
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representation of SO(V ) on V . It is irreducible and therefore TQ(−1) is indecomposable hence

stable by [Ram66] and [Ume78] with slope µ(TQ(−1)) = 0 with respect to OQ(1). By [HL97,

Theorem 3.1.4], (TQ(−1))⊗k is semistable with slope µ((TQ(−1))⊗r) = 0. This ends the proof of

the first part of the Lemma.

Observe that (TQ(−1))⊗r is homogeneous and that the stabilizer representation

P → GL((TQ(−1))⊗r
x )

is ρ⊗r. In particular, (TQ(−1))⊗r decomposes as the direct sum of indecomposable vector bundles

hence as the direct sum of stable vector bundles with slope 0. It follows that there is a one-to-one

correspondence between the set of nonzero section in H0(Q, (TQ(−1))⊗r) and the set of rank one

direct summands of TQ(−1))⊗r. Finally, we obtain an isomorphism

H0(Q, (TQ(−1))⊗r) ≃ (V ⊗r)SO(V )

since SO(V ) has no nontrivial character. The result now follows from [Wey39, Theorem 2.9 A]. �

2.2. Fibrations over curves. In this section, we prove our main Theorems for fibrations over

curves.

Lemma 3. Let F be a vector bundle on P1 of rank m > 2, X := P
P

1(F ) and π : X → P1 the

natural morphism. Let E be an ample vector bundle on X of rank r+ k with r > 2 and k > 0. Let

G be a vector bundle on P1 such that G ∗(2) is nef. If h0(X,T⊗i
X/P1 ⊗ π∗G⊗r−i ⊗ det(E )⊗−1) 6= 0

for some integer 0 6 i 6 r then X ≃ P1 × P1, F = O
P

1(a)⊕2 for some integer a, k = 0, 2i = r

and det(E ) ≃ O
P

1(2)⊠ O
P

1(2).

Proof. Write F ≃ O
P

1(a1) ⊕ · · · ⊕ O
P

1(am) with a1 6 · · · 6 am. Let b := am − a1 > 0. Let σ be

a section of π corresponding to a surjective morphism O
P

1(a1) ⊕ · · · ⊕ O
P

1(am) ։ O
P

1(am) and

let σ1 the section of π corresponding to the projection map O
P

1(a1) ⊕ · · · ⊕ O
P

1(am) ։ O
P

1(a1).

Then σ ≡ σ1 + bℓ where ℓ is vertical line and

det(E ) · σ > r + k + b(r + k) = (r + k)(b + 1).

We may assume that h0(σ, (T⊗i
X/P1 ⊗ π∗G ⊗r−i det(E )⊗−1)|σ) 6= 0 since σ is a free rational curve.

But

TX/P1
|σ

≃ Nσ/X ≃ O
P

1(am − a1)⊕ · · · ⊕ O
P

1(am − am−1)

and we obtain

(1) (r + k)(b+ 1) 6 det(E ) · σ 6 ib+ 2(r − i).

By Lemma 1, we must have

(2) r + k 6 i
m

m− 1
.

We obtain

(3) (r + k)(b+ 1) + 2k 6 ib+ 2(r + k)− 2i 6 ib+ 2i
m

m− 1
− 2i = i(b+

2

m− 1
).

It follows that m = 2, b = k = 0 and r = 2i. �
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Lemma 4. Let X be a smooth complex projective variety, E an ample vector bundle on X of rank

r+k with r > 1 and k > 0. Let π : X → B be a surjective morphism onto a smooth connected curve

with integral fibers. Let G be a numerically effective vector bundle on B of rank > 0. Assume that the

geometric generic fiber is isomorphic to a projective space. Then h0(X,T⊗r
X/B⊗det(E )⊗−1⊗π∗G ∗) =

0.

Proof. Let η be the generic point of B. Tsen’s Theorem implies that Xη ≃ Pd
k(η). Thus there

exists a divisor H on X such that OX(H)|Xη
≃ O

P
d
k(η)

(1). Let L := OX(H). Let r′ > r + k

be defined by the formula det(E )|Xη
≃ O

P
d
k(η)

(r′). It follows from the semicontinuity Theorem

that h0(Xb, (det(E )⊗ L ⊗−r′)|Xb
) > 1 and h0(Xb, (L

⊗r′ ⊗ det(E )⊗−1)|Xb
) > 1 for any point b

in B. Thus h0(Xb, (det(E )⊗ L ⊗−r′)|Xb
) = 1 since Xb is integral. By the base change Theorem,

det(E ) ≃ L ⊗r′⊗π∗M for some line bundle M on B. Thus L is ample/B and by [Fuj75, Corollary

5.4], π is a Pd-bundle. By replacing B with a finite cover B̄ → B andX withX×BB̄ we may assume

that g(B) > 1. Let M ′ be a line bundle on B such that M ≃ M ′⊗r′ . Set L ′ := L ⊗ π∗M ′⊗−1.

Then L ′⊗r′ ≃ det(E ) hence L ′ is ample. Let F := π∗(L
′). Then F is an ample vector bundle on

B and X := PB(F ). By [CF90], By replacing B with a finite cover B̄ → B and X with X×B B̄, we

may assume that there exist an ample line bundle M on B, a positive integer m and a surjective

map of OB-modules M⊕m ։ F . Observe that the line bundle L ′ ⊗ π∗M⊗−1 is generated by

its global sections. Let C = D1 ∩ · · · ∩ Ddim(X)−1 be general complete intersection curve with

Di ∈ |L ′ ⊗ π∗M⊗−1| (C is a section of π). Then (TX/B)|C ≃ NC/X ≃ (L ′ ⊗ π∗M⊗−1)
⊕ dim(X)−1
|C .

But

h0(C, (L ′ ⊗ π∗M⊗−1)⊗r ⊗ det(E )⊗−1
|C

) = h0(C,L ′⊗r−r′ ⊗ π∗M⊗−r
|C

) = 0

and the claim follows. �

When dealing with sheaves that are not necessarily locally free, we use square brackets to indicate

taking the reflexive hull.

Notation 5 (Reflexive tensor operations). Let X be a normal variety and Q a coherent sheaf of

OX-modules. For n ∈ N, set Q[⊗n] := (Q⊗n)∗∗, S[n]Q := (SnQ)∗∗ and det(Q) := (∧rank(Q)(Q))∗∗.

Proposition 6. Let X be a normal complex projective variety, E an ample vector bundle on X

of rank r + k with r > 1 and k > 0. Let π : X → B be a surjective morphism onto a smooth

connected curve with integral fibers. Let G be a numerically effective vector bundle on B of rank

> 0. Assume that the geometric generic fiber is isomorphic to a smooth hyperquadric. Then

h0(X,T
[⊗r]
X/B ⊗ det(E )⊗−1 ⊗ π∗G ∗) = 0.

Proof. Let η be the generic point of B and k(η̄) be an algebraic closure of k(η). Let qη̄ be a non

degenerate quadratic form defining Xη̄ ⊂ Pd+1
k(η̄) where d := dim(X) − 1. By Lemma 2, k = 0 and

det(E )|Xη̄
≃ OXη̄(r).

Let us assume to the contrary that h0(X,T
[⊗r]
X/B⊗det(E )⊗−1⊗π∗G ∗) 6= 0 and let s ∈ H0(X,T

[⊗r]
X/B⊗

det(E )⊗−1⊗π∗G ∗) be a nonzero section. Notice that, for any σ ∈ Sr and any non negative integers

i and j such that r = 2i+ dj,

σ · [(S[2]TX/B)
[⊗i] ⊗ det(TX/B)

[⊗j]]⊗ det(E )⊗−1 ⊗ π∗G ∗

is a direct summand of

T
[⊗r]
X/B ⊗ det(E )⊗−1 ⊗ π∗G ∗.
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By Lemma 2, we may assume that

s ∈ H0(X, (S[2]TX/B)
[⊗i] ⊗ det(TX/B)

[⊗j] ⊗ det(E )⊗−1 ⊗ π∗G ∗)

and

s|Xη̄
= q⊗i

η̄ ⊗ detη̄
⊗j ⊗ gη̄

for some non negative integers i and j with r = 2i+dj and some non zero section gη̄ ∈ π∗H0(η̄,G|η̄).

It follows that the induced map

G → π∗((S
[2]TX/B)

[⊗i] ⊗ det(TX/B)
[⊗j] ⊗ det(E )⊗−1)

has rank one and therefore, we may assume that G is a line bundle (with deg(G ) > 0). We obtain

a map

ϕs : Ω
1
X/B

[⊗i]
→ TX/B

[⊗i] ⊗ det(TX/B)
[⊗j] ⊗ det(E )⊗−1 ⊗ π∗G ∗

whose restriction to Xη̄ is an isomorphism. Finally, we obtain a nonzero section

s′ := det(ϕs) ∈ H0(X,det(TX/B
[⊗i])⊗ det(TX/B

[⊗i] ⊗ det(TX/B)
[⊗j] ⊗ det(E )⊗−1 ⊗ π∗G ∗))

≃ H0(X,det(TX/B)
[⊗(2idi−1+dij)] ⊗ det(E )⊗−di ⊗ π∗G⊗−di).

Observe that s′ does not vanish anywhere on a general fiber of π and that any fiber of π is integral.

Thus

−KX/B ≡
di

2idi−1 + dij
c1(det(E )) + π∗∆

for some (integral) effective divisor ∆ > di

2idi−1+dij
c1(G ) and −KX/B is ample. But that contradicts

Lemma 7. �

Lemma 7 ([ADK08, Theorem 3.1]). Let X be a normal projective variety, f : X → C a surjective

morphism onto a smooth curve, and ∆ ⊆ X a Weil divisor such that (X,∆) is log canonical over

the generic point of C. Then −(KX/C +∆) is not ample.

Lemma 8. Let S be a smooth projective surface equipped with a surjective morphism π : S → B

with connected fibers onto a smooth connected curve. Let M be a nef and big line bundle on S.

Assume that, for a general point b in B, M · Sb = 2r for some r > 1 and either g(B) > 1 or

B = P1 and S is a ruled surface over B. Then h0(S, T⊗r
S ⊗ M⊗−1) = 0.

Proof. Let c : S → S̄ be a minimal model. Write M = c∗M̄ (−E) for some divisor E on S supported

on the exceptional locus of c. Observe that E is effective and M̄ is nef since M is nef. Therefore,

the natural map TS → c∗TS̄ induces an inclusion H0(S, T⊗r
S ⊗ M⊗−1) ⊂ H0(S̄, T⊗r

S̄
⊗ M̄⊗−1). If

g(B) > 1 then π induces a morphism S̄ → B and S̄ is a ruled surface over B. We may thus assume

that S → B is smooth. Since M · Sb = 2r and TS/C · Sb = 2 for b ∈ B, we must have

H0(S, T⊗r
S/B ⊗ M

⊗−1) = H0(S, T⊗r
S ⊗ M

⊗−1).

Let us assume to the contrary that h0(S, T⊗r
S ⊗ M⊗−1) 6= 0. Then r(−KS/B) ∼ c1(M ) + π∗∆

where ∆ is an effective divisor on C and KS/B is nef and big. But K2
S/B = 0 for any (geometrically)

ruled surface, a contradiction. �
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2.3. Tools. The proof of the main Theorem will apply rational curves on X. Our notation is

consistent with that of [Kol96].

Let X be a smooth complex projective uniruled variety and H an irreducible component of

RatCurves(X). Recall that only general points in H are in 1:1-correpondence with the associated

curves in X. Let ℓ be a rational curve corresponding to a general point in H, with normalization

morphism f : P1 → ℓ ⊂ X. We denote by [ℓ] or [f ] the point in H corresponding to ℓ.

We say that H is a dominating family of rational curves on X if the corresponding universal

family dominates X. A dominating family H of rational curves on X is called unsplit if it is proper.

It is called minimal if, for a general point x ∈ X, the subfamily of H parametrizing curves through

x is proper.

Let H1, . . . ,Hk be minimal dominating families of rational curves on X. For each i, let H i denote

the closure of Hi in Chow(X). We define the following equivalence relation on X, which we call

(H1, . . . ,Hk)-equivalence. Two points x, y ∈ X are (H1, . . . ,Hk)-equivalent if they can be connected

by a chain of 1-cycles from H1 ∪ · · · ∪Hk. By [Cam92] (see also [Kol96, IV.4.16]), there exists a

proper surjective morphism π0 : X0 → Y0 from a dense open subset of X onto a normal variety

whose fibers are (H1, . . . ,Hk)-equivalence classes. We call this map the (H1, . . . ,Hk)-rationally

connected quotient of X. For more details see [Kol96].

Lemma 9. Let X be a smooth complex projective variety and H1, . . . ,Hk unsplit dominating fam-

ilies of rational curves on X. Let π0 : X0 → Y0 be the (H1, . . . ,Hk)-rationally connected quotient

of X. If the geometric generic fiber is isomorphic to a projective space, then π0 is a Pd-bundle in

codimension one in Y0 with d := dim(X0)− dim(Y0).

Proof. By [ADK08, Lemma 2.2], we may assume that π0 is a proper surjective equidimensional

morphism with integral fibers. Let C0 ⊂ Y0 be a general complete intersection curve. Set XC0 :=

π−1
0 (C0). Then XC0 is a smooth variety. Let η be the generic point of C0 and let LC0 be a line

bundle on XC0 that restricts to O
P

d
k(η)

(1) on XC0η ≃ Pd
k(η) (d > 1) (see the proof of Lemma 4).

Let M be an ample line bundle on X and r a positive integer such that M|XC0η
≃ O

P
d
k(η)

(r).

For each i, denote byHj
i , 1 ≤ j ≤ ni, the unsplit covering families of rational curves onXC0 whose

general members correspond to rational curves on X from the family Hi. Then πC0 := π0|XC0
:

XC0 → C0 is the (H1
1 , . . . ,H

n1
1 , . . . ,H1

k , . . . ,H
nk

k )-rationally connected quotient of XC0 . Let F be a

fiber of πC0 . Let [H
j
i ] denote the class of a member ofHj

i inN1(F ) andH := {[Hj
i ] | i = 1, . . . , k, j =

1, . . . , ni}. Then by [Kol96, Proposition IV 3.13.3], N1(F ) is generated by H. Therefore any curve

contained in any fiber of πC0 is numerically proportional in N1(XC0/C0) to a linear combination of

the [Hj
i ]’s. Hence N1(XC0/C0) is generated by H and c1(MXC0

) = rc1(LC0) ∈ N1(XC0/C0). Thus

LXC0
is ample/C0 and the claim follows from [Fuj75, Corollary 5.4]. �

Notation 10. Let X be a normal variety and Q be a coherent torsion free sheaf of OX -modules.

Say that a curve C ⊂ X is a general complete intersection curve for Q in the sense of Mehta-

Ramanathan if C = H1∩· · ·∩Hdim(X)−1, where Hi ∈ |miH| are general, H is an ample line bundle

on X and the mi ∈ N are large enough so that the Harder-Narasimhan filtration of Q commutes

with restriction to C.

The following result was established in [Par10, Proposition 4.1].
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Lemma 11. Let X and Y be a smooth complex projective varieties with dim(Y ) > 1, X0 an open

subset of X with codimX(X \ X0) ≥ 2, Y0 a dense open subset of Y and π0 : X0 → Y0 a proper

surjective equidimensional morphism. Let C ⊂ X0 be a general complete intersection curve for

π∗0Ω
1
Y0

in the sense of Mehta-Ramanathan. If (π∗0Ω
1
Y0
)|C is not nef then Y is uniruled.

Proof. Let us sketch the proof for the reader’s convenience. Fix an ample line bundle H on X,

and consider general elements Hi ∈ |miH|, for i ∈ {1, . . . ,dim(X) − 1}, where the mi ∈ N

are large enough so that the Harder-Narasimhan filtration of π∗0Ω
1
Y0

commutes with restriction to

C := H1 ∩ · · · ∩ Hdim(X)−1. Setting Z := H1 ∩ · · · ∩ Hdim(X)−dim(Y ) and Z0 := Z ∩ X0, we may

assume that Z is a smooth variety of dimension dim(Y ), and that the restriction ϕ0 := π0|Z0 is a

finite morphism.

By the hypothesis (ϕ∗
0Ω

1
Y0
)|C is not nef, therefore (ϕ∗

0TY0)|C contains a subsheaf with positive

slope. Thus if we denote by i : Z0 →֒ Z the inclusion and by F the reflexive sheaf i∗(ϕ
∗
0TY0), then

the maximally destabilizing subsheaf E of F has positive slope (with respect to H|Z).

Let K be a splitting field of the function field K(Z0) over K(Y0), and let ψ : T → Z be the

normalization of Z in K. Consider T0 := ψ−1(Z0), and let j : T0 →֒ T be the inclusion. If we

denote by ψ0 the restriction of ψ to T0, then the reflexive sheaf F ′ := (ψ∗F )∗∗ = j∗(ψ
∗
0ϕ

∗
0TY0)

contains the sheaf (ψ∗E )∗∗. Notice that (ψ∗E )∗∗ has positive slope. Consequently the maximally

destabilizing subsheaf E ′ of F ′ has positive slope. Hence by replacing Z0 with T0, ϕ0 with ϕ0 ◦ψ0,

and (F ,E ) with (F ′,E ′) if necessary, we may assume that K(Z0) ⊃ K(Y0) is a Galois extension

with Galois group G.

Because of its uniqueness, the maximally destabilizing subsheaf E of F is invariant under the

action of G. Thus by replacing Z0 with another open subset of Z if necessary, we may assume that

there exists a saturated subsheaf G of TY0 such that E = i∗(ϕ
∗
0G ).

As E has positive slope, it follows from [KSCT07, Proposition 29 and Proposition 30] that the

vector bundles E|C and (E ⊗ E ⊗ (F/E )∗)|C are ample. The morphism ϕ0 being finite, this implies

that G|ϕ0(C) and (G ⊗ G ⊗ (TY0/G )∗)|ϕ0(C) are ample vector bundles too. In particular we deduce

from this that Hom(G ⊗G , TY0/G ) = 0, because the deformations of the curve ϕ0(C) dominate the

variety Y0. As a consequence G is a foliation on Y0.

Finally, by extending G to a foliation G̃ on the whole variety Y , we can conclude by using

[KSCT07, Theorem 1]. Indeed it follows from the fact that G̃|ϕ0(C) is ample that the leaf of the

foliation G̃ passing through a general point of ϕ0(C) is rationally connected; in particular Y is

uniruled. �

The proof of our main result is based on the following result wich appears essentially in [Par10].

Corollary 12. Let X be a smooth complex projective variety, X0 an open subset of X with

codimX(X \ X0) ≥ 2, Y0 a smooth variety with dim(Y0) > 1 and π0 : X0 → Y0 a proper sur-

jective equidimensional morphism. Assume that the generic fiber of π0 is isomorphic to a projective

space. Let C be a general complete intersection curve for π∗0Ω
1
Y0

in the sense of Mehta-Ramanathan.

If (π∗0Ω
1
Y0
)|C is not nef then there exists a minimal free morphism f : P1 → Y0.

Proof. Let Y be a smooth projective variety containing Y0 as a dense open subset. By Lemma 11,

Y is uniruled. Let HY be a minimal dominating family of rational curves on Y . Since the generic

fiber of π0 is isomorphic to a projective space, there exists a dominating family HX of rational

curves on X such that for a general member [f ] ∈ HX , [π0 ◦ f ] is a general member of HY . By
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[Kol96, Proposition II 3.7], if [f ] ∈ HX is a general member then f(P1) ⊂ X0. The claim follows

from [Kol96, Corollary IV 2.9]. �

The following Lemma is certainly well known to experts. We include a proof for lack of an

adequate reference.

Lemma 13. Let X be a smooth complex variety and H a minimal dominating family of rational

curves on X. Let x be a general point in X and [ℓ] ∈ H with x ∈ ℓ. If Tℓ,x does not depend on ℓ ∋ x

then there exists a non empty open subset X0 in X and a proper surjective morphism π0 : X0 → Y0
onto a variety Y0 such that any fiber of π0 is a rational curve from the family H.

Proof. Let [f ] ∈ H be a general member. By [Kol96, Corollary IV 2.9], f∗TX ≃ O
P

1(2)⊕O
P

1(1)⊕d⊕

O
⊕(n−d−1)

P
1 with d := −KX · f∗P

1 − 2. Let x be a general point in X with x ∈ ℓ := f(P1). By

[Hwa01, Proposition 2.3], d = 0 using the fact that Tℓ,x does not depend on ℓ ∋ x.

Let H̄ be the normalization of the closure of H in Chow(X) and Ū the normalization of the

universal family. Let us denote by π̄ : Ū → H̄ and ē : Ū → X the universal morphisms. By

shrinking H if necessary, we may assume that H parametrizes free morphisms. Then H is smooth

(see [Kol96, Theorem I 2.16]) and e := ē|U : U → X is étale where U := π̄−1(H) (see [Kol96,

Proposition II 3.4]).

It remains to show that there exists a dense open subset H0 of H such that the restriction of

ē to π̄−1(H0) induces an isomorphism onto the open set ē(π̄−1(H0). By Zariski’s main Theorem,

it is enough to prove that ē is birational. We argue by contradiction. Then there exists a curve

C ⊂ Ū such that dim(π̄(C)) = 1 and ē(C) = ℓ. Let c be a general point in C. Then dcē(TC,c) =

dcē(Tπ̄−1(π̄(c),c) = Tℓ,ē(c). But that contradicts the fact that ē is étale at c. The claim follows. �

2.4. Characterizations of projective spaces and hyperquadrics. The proof of the main

Theorem stated in the introduction is based on the following result whose proof is similar to that

of [ADK08, Theorem 6.3].

Proposition 14. Let X be a smooth complex projective n-dimensional variety with ρ(X) = 1 and

E an ample vector bundle on X of rank r+k with r > 1 and k > 0. If h0(X,T⊗r
X ⊗det(E )⊗−1) 6= 0,

then either X ≃ Pn, or k = 0 and X ≃ Qn (n 6= 2).

Proof. Let us give the proof following [ADK08]. First notice that X is uniruled by [Miy87], and

hence a Fano manifold with ρ(X) = 1. The result is clear if dimX = 1, so we assume that n ≥ 2.

Fix a minimal dominating family H of rational curves on X. Let L be an ample line bundle on X

such that Pic(X) = Z[L ].

Let E ′ ⊂ TX be the maximally destabilizing subsheaf of TX ; E ′ is a reflexive sheaf of rank r′ > 1.

By [ADK08, Lemma 6.2], µ
L
(E ′) ≥

µ
L

(det(E ))

r . Notice that µ
L
(det(E )) > r + k since E is ample.

This implies that deg(f∗E ′)
r′ ≥ deg(f∗ det(E ))

r > r+k
r > 1 for a general member [f ] ∈ H. If r′ = 1,

then E ′ is ample and we are done by Wahl’s Theorem. If f∗E ′ is ample, then X ≃ Pn by [ADK08,

Proposition 2.7], using the fact that ρ(X) = 1.

Otherwise, as f∗E ′ is a subsheaf of f∗TX ≃ O
P

1(2)⊕O
P

1(1)⊕d⊕O
⊕(n−d−1)

P
1 (see [Kol96, Corollary

IV 2.9]), we must have deg(f∗ det(E ′)) = r′, deg(f∗ det(E )) = r, k = 0 and f∗E ′ ≃ O
P

1(2) ⊕

O
P

1(1)⊕r′−2⊕O
P

1 for a general [f ] ∈ H. Then O
P

1(2) ⊂ f∗E ′ for general [f ] ∈ H. Thus by [Hwa01,

Proposition 2.3], (f∗T+
X )p ⊂ (f∗E ′)p for a general p ∈ P1 and a general [f ] ∈ H. Since f∗E ′ is a

subbundle of f∗TX , we have an inclusion of sheaves f∗T+
X →֒ f∗E ′, and thus f∗ det(E ′) = f∗ω−1

X .
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Since ρ(X) = 1, this implies that det E ′ = ω−1
X , and thus 0 6= h0(X,∧r′TX ⊗ ωX) = hn−r′(X,OX ).

The latter is zero unless r′ = n since X is a Fano manifold. Notice that deg(f∗ det(E )) = r. It

follows that, for any [f ] ∈ H, f∗E ≃ O
P

1(1)⊕r. By [AW01, Proposition 1.2] (see also [ROS10,

Theorem 4.3]), E ≃ L ⊕r and deg(f∗L ) = 1. If n = r′, then we must have ω−1
X ≃ det(E ′) ≃ L ⊗n.

Hence X ≃ Qn by [KO73]. �

We will need the following auxiliary result.

Lemma 15. Let X be a smooth complex projective variety and E an ample vector bundle on X of

rank r + k with r > 2 and k > 0. Assume that X is uniruled and fix a minimal dominating family

H of rational curves on X. If h0(X,T⊗r
X ⊗ det(E )⊗−1) 6= 0, then H is unsplit.

Proof. The proof is similar to that of [Par10, Proposition 4.2]. Let [f ] ∈ H be a general member.

Let us assume to the contrary that h0(X,T⊗r
X ⊗det(E )⊗−1) 6= 0 and f∗(P

1) ≡ C1+C2 with C1 and

C2 nonzero integral effective rational 1-cycles. Notice first that det(E ) · C > r + k for all rational

curve C ⊂ X. By [Kol96, Corollary IV 2.9], f∗TX ≃ O
P

1(2) ⊕ O
P

1(1)⊕d ⊕ O
⊕(n−d−1)

P
1 and we

must have deg(f∗ det(E )) 6 2r. Finally, 2(r + k) 6 deg(f∗ det(E )) 6 2r and we must have k = 0,

deg(f∗ det(E )) = 2r and f∗ det(E ) ≃ O
P

1(2r) ⊂ f∗∧r (TX) ≃ ∧r(O
P

1(2)⊕O
P

1(1)⊕d⊕O
⊕(n−d−1)

P
1 ).

Hence T⊗r
ℓ,x = det(E )x ⊂ T⊗r

X,x for a general point x in ℓ and therefore, Tℓ,x does not depend on

ℓ ∋ x. Thus, by Lemma 13, there exists a non empty open subset X0 in X and a proper surjective

morphism π0 : X0 → Y0 onto a variety Y0 such that any fiber of π0 is a rational curve from the family

H and det(E )|X0
≃ T⊗r

X0/Y0
. Let L ⊂ TX be the saturated line bundle such that TX0/Y0

≃ L|X0
.

Notice that det(E ) ⊂ L ⊗r with equality onX0. Let C ⊂ X be a general complete intersection curve

and let S be the normalization of the closure in X of π−1
0 (π0(C ∩X0)). By [Dru04, Lemme 1.2] (or

[ADK08, Proposition 4.5]), the map Ω1
X → L ⊗−1 induces a map Ω1

S → LS
⊗−1 where LS denotes

the pull-back of L to S. Notice that π0 induces a surjective morphism πS : S → B onto a smooth

curve. By Lemma 8, dim(X0) 6= 2. Thus, we may assume g(B) > 1. Let S̃ → S be a minimal

desingularization of S. By [BW74, Proposition 1.2], Ω1
S → LS

⊗−1 extends to Ω1
S̃
→ LS̃

⊗−1. Let

πS̃ : S̃ → B be the induced morphism. By replacing LS̃ with its saturation in TS̃ , we may assume

det(E )S̃ ⊂ L
⊗r
S̃

⊂ T⊗r
S̃

. Observe also that, for a general point b in B, det(E )S̃ · S̃b = 2r. But that

contradicts Lemma 8. �

Now we can prove our main theorems.

Theorem 16. Let X be a smooth complex projective variety and E an ample vector bundle on X

of rank r + k with r > 1 and k > 0 and such that h0(X,T⊗r
X ⊗ det(E )⊗−1) 6= 0.

(1) If k > 1 then X ≃ Pn.

(2) If k = 0 then either X ≃ Pn, or X ≃ Qn.

Proof. We shall proceed by induction on n := dim(X). The result is clear if n = 1, so we assume

that n ≥ 2. If r + k = 1 then we are done by Wahl’s Theorem so we assume that r + k > 2.

Notice that X is uniruled by [Miy87]. Fix a minimal dominating family H of rational curves on X.

By Lemma 15, H is unsplit. Let π0 : X0 → Y0 be the H-rationally connected quotient of X. By

[ADK08, Lemma 2.2], we may assume codimX(X \X0) > 2 and π0 is an equidimensional surjective

morphism with integral fibers. By shrinking Y0 if necessary, we may also assume that Y0 is smooth.

By Proposition 14, we may assume ρ(X) > 2. By [Kol96, Proposition IV 3.13.3], we must have

dim(Y0) > 1.
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Let F be a general fiber of π0. There exist (see [ADK08, Lemma 5.1] or [Par10, Lemme 2.1])

non negative integers i and j with i + j = r such that h0(X,T
[⊗i]
X0/Y0

⊗ det(E )⊗−1
|X0

⊗ π∗0T
⊗j
Y0

) 6= 0

and h0(F, T⊗i
F ⊗ det(E )⊗−1

|F ) 6= 0. Notice that i > 1 since det(E )|F is an ample line bundle and

d := dim(F ) > 1. The induction hypothesis implies that F ≃ Pd if i < r or k > 1 and either

F ≃ Pd or F ≃ Qd if i = r and k = 0.

Let C ⊂ X0 be a general complete intersection curve (with respect to some very ample line

bundle on X). Let XC be the normalization of π−1
0 (π0(C)). Let πC : XC → C be the induced

map. Notice that XC is the normalization of C×Y0X0 and that C×Y0X0 is regular in codimension

one. Hence, we must have h0(XC , T
[⊗i]
XC/C ⊗ det(E )⊗−1

|XC
⊗ π∗C(Ω

1
Y0

⊗−j

|C
)) 6= 0. Let us assume that

either (π∗0Ω
1
Y0
)|C is a nef vector bundle or i = r. If the geometric generic fiber of π0 is isomorphic

to a projective space then π0 is a Pd-bundle by Lemma 9. But that contradicts Lemma 4. Thus

the geometric generic fiber of π0 is isomorphic to a (smooth) hyperquadric. But that contradicts

Proposition 6.

Thus i < r, F ≃ Pd and by Lemma 12, there exists a minimal free morphism f : P1 → Y0.

By generic smoothness, we may assume that Xf := P1 ×Y0 X0 is smooth. We may also assume

that h0(Xf , T
[⊗i]

Xf /P
1 ⊗ det(E )⊗−1

|Xf
⊗ π∗f (TY0

⊗j

|P1)) 6= 0. Let Lf be a line bundle on Xf that restricts

to O
P

d(1) on F ≃ Pd (see the proof of Lemma 4). By [Fuj75, Corollary 5.4], πf : Xf → P1

is a Pd bundle. It follows from Lemma 3 that k = 0, d = 1, (Xf/P
1) ≃ (P1 × P1/P1) and

det(E )|Xf
≃ O

P
1(2) ⊠ O

P
1(2). Since E is ample, X admits an unsplit dominating covering family

H ′ of rational curves whose general member corresponds to a ruling of Xf that is not contracted

by π. Let π1 : X1 → Y1 be the (H,H ′)-rationally connected quotient of X. By [ADK08, Lemma

2.2], we may assume codimX(X \X1) > 2 and π1 is an equidimensional surjective morphism with

integral fibers. By shrinking Y1 if necessary, we may also assume that Y1 is smooth. Replacing

π0 : X0 → Y0 with π1 : X1 → Y1 above, we obtain a contradiction unless X ≃ P1 ×P1. �

Proof of Theorem A. By Theorem 16, X ≃ Pn and by Lemma 1, det(E ) ≃ OP
n(l)) with r + k 6

l 6 r(n+1)
n . �

Proof of Theorem B. By Theorem 16, either X ≃ Pn or X ≃ Qn. If X ≃ Pn, then the claim

follows from Lemma 1. Let us assume X ≃ Qn. By Lemma 2, det(E ) ≃ OQn(r). Thus, for any

line P1 ⊂ Qn ⊂ Pn+1, E|P1 ≃ O
P

1(1)⊕r, and the claim follows from [AW01, Proposition 1.2] (see

also [ROS10, Theorem 4.3]). �
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