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Rational cohomology of R2 (and S2)

Sebastian Krug

In this text we compute the rational cohomology ring of R2, the moduli space of Prym
curves of genus 2, which is, as we also show, isomorphic to the rational Chow ring of this
space. G. Bini and C. Fontanari did the same for S2, the moduli space of spin curves
of genus 2, in [BF09a]. In computing the cohomology of R2 we follow their approach
in large parts, but also have to apply an idea of Orsola Tommasi, explained below, to
compute additional relations in the rational cohomology ring. We also correct some
errors made in [BF09a]. Among other things, some of the relations in the cohmology
rings computed there are not correct, and we apply the idea just mentioned also to
S2 in order to replace those relations. We treat the moduli spaces R2 of genus 2
Prym curves, S

+
2 of even genus 2 spin curves, and S

−
2 of odd spin curves parallely.

One fact we make intensive use of in our calculations is that all three moduli spaces are
isomorphic to different of what we call moduli spaces of genus 0 curves with 6 partitioned
marked points (c.f. Lemma 20). Finite surjective morphisms from M0,6, the moduli
space of stable genus 0 curves with 6 ordered marked points, to all of the three moduli
spaces examined in this text exist, and where introduced in [BF09a]. They factor in
a natural way through the mentioned isomorphisms from moduli spaces of curves with
partitioned marked points. We show more generally that the normalization of the locus
of hyperelliptic curves in every Rg and Sg is isomorphic to a disjoint union of several
moduli spaces of stable genus 0 curves with 2g + 2 partitioned marked points.

I would like to thank Orsola Tommasi, who had the idea of using the morphisms from
M0,6 just mentioned, together with the fact that they factor through the moduli spaces
of curves with partitioned points, to compute relations in the cohomology rings of the
moduli spaces of our interest.
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1 Preliminaries

In this section we give basic definitions and results, needed in our text, and fix notation.

Some notation first:
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1. A curve means a projective one dimensional variety (not necessarily smooth or
irreducible, but necessarily reduced).

2. By the genus of a curve we will always mean the arithmetic genus.

3. For any ring B and any group G acting on B we denote by BG the subring of
invariants under the action of G.

1.1 Spin- and Prym curves and their moduli spaces.

Definition 1 (i) A stable curve C (possibly with marked points) is a connected curve
having only nodes as singularities and having a finite group of automorphisms (re-
specting the marked points, if there are any). Having a finite automorphism group is
equivalent to the following condition: When we consider as “special points” on a irre-
ducible component of C the marked points as well as the points in which the component
meets the rest of C, then every component of genus 0 must carry at least three special
points, and every component of genus 1 must carry at least one special point.

(ii) A semistable curve X is a connected stable curve having only nodes as singularities,
and such that every connected component of genus 1 carries at least one special point,
and every component of genus 0 carries at least two special points.

(iii) A component of genus 0 of a semistable curve X meeting the rest of X in exactly
two points and carrying no marked points is called an exceptional component of X.

(iv) The non-exceptional subcurve X̃ of a semistable curve X is the closure of the
complement of all exceptional components of X.

(v) A semistable curve X is called quasistable, if no two of its exceptional components
intersect each other.

(vi) The stable model of a quasistable curve is the (unique) stable curve C obtained
by contracting every exceptional component of X to a point. The blow down map
β : X → C is also called the stable model of X.

Definition 2 (i) A spin curve resp. Prym curve of genus g is a triple (X;L; b), where
X is a quasistable curve with stable model β : X → C, L is a line bundle on X. For
a spin curve, b is a homomorphism b : L⊗2 → ωX such that the restriction of L to
any exceptional component E is isomorphic to OE(1) and the restriction of b to the
non-exceptional subcurve X̃ induces an isomorphism L⊗2

|X̃
→ ωX̃ . For a Prym curve

replace ωX by OX and ωX̃ by OX̃ in the above definition, and additionally forbid the
case L ∼= OX . The curve X is called the support of the spin- resp. Prym curve, the pair
(L; b) a spin- resp. Prym structure on X. A spin- resp. Prym curve is called smooth if
X is smooth.

(ii) We use the definition of isomorphisms of spin curves resp. Prym curves as for
example given in [Cor89] resp. [FL10]. Thus isomorphisms of spin- resp. Prym curves
are for us isomorphisms of the underlying quasistable curve X compatible with the
extra structure, and do not include a morphism of the extra structure, as for example in
[Cor91] and [Lud10]. I.e. a isomorphism ϕ : (X;L; b) → (X ′;L′; b′) of spin- resp. Prym
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curves is a isomorphism ϕ : X → X ′ such that there is an isomorphism ϕ∗ L′ ∼= L which
is compatible with b. This choice of definition influences the number of automorphisms
of the objects.

(iii) For a given quasistable curve X we call every line bundle (i.e. invertible sheaf) L
that fits into the definition of a spin curve or Prym curve with support X a spin sheaf
resp. a Prym sheaf of X. We also call the trivial sheaf a Prym sheaf, and speak
of nontrivial Prym sheaves if we want to exclude it.

(iv) Let (X;L; b), (X ′;L′; b′) be two spin- or two Prym curves, Let C, C ′ be the stable
models of X resp. X ′, let N , N ′ be the sets of nodes of C resp. C ′, to which ex-
ceptional components are contracted (“exceptional nodes”). Then there is a surjective
homomorphism of isomorphism groups

ψ′ : Isom(X,X ′) → Isom((C;N), (C ′;N ′))

which can of course be restricted to a group homomorphisms

ψ : Isom((X;L; b), (X ′;L′; b′)) → Isom((C;N), (C ′;N ′))

The isomorphisms lying in the kernel of ψ are called inessential isomorphisms. In case
of (X;L; b) = (X ′;L′; b′) we speak of inessential automorphisms.

For every g ≥ 2 there exist coarse moduli spaces Sg and Rg for spin curves resp. Prym
curves of genus g. They are projective algebraic varieties of dimension 3g − 3 and have
only finite quotient singularities. The open subsets parametrizing smooth spin- resp.
Prym curves are denoted by Sg and Rg. Sg consists of two connected components S

+
g

and S
−
g prametricing even resp. odd spin curves.

Definition 3 We denote by πR : R2 −→ M2, π+ : S
+
2 −→ M2 and π− : S

−
2 −→ M2

the “forgetful morphisms”, which corresponds to discarding the additional Prym or spin
structure, and passing from X to its stable model C.

Notation for other moduli spaces used in this text:

Mg,n, Sg,n, S
+
g,n, and so on, denote the moduli spaces of genus g stable curves, spin

curves, even spin curves, and so on, together with n ordered marked points on the
underlying curve.

S
(r1,...,rn)
g,n resp. R

(r1,...,rn)
g,n , for r1, ..., rn ∈ Z, are moduli spaces of twisted spin- resp.

Prym curves with n ordered marked points. Such twisted spin resp. Prym curves are
defined varying the definition of a spin- resp. Prym curve as follows: If (p1, ..., pn) are the
marked points on X, then the line bundle L on X is a square root of ωX(r1p1+ ....rnpn)
resp. OX(r1p1 + ....+ rnpn), instead of ωX resp. OX .

1.2 Cohomology and rational Chow ring for moduli spaces.

We will work with the rational Chow ring as well as with the rational cohomology of
moduli spaces. We denote them by A∗

Q(...) resp. H
∗
Q(...).
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We compile some results by J.H.M Steenbrink from [Ste77] about the cohomology of
what he calls V -manifolds, which are what we would nowadays call the underlying spaces
of orbifolds. All moduli spaces we are concerned with in this text are V -manifolds.

Summary 4 Let X be a projective V -manifold. Then

(i) The hard Lefschetz theorem holds, i.e.: Let L ∈ H2(X,Z) be the cohomology class of
an ample divisor on X. Then for all q ∈ N the map ω 7→ Lq∧ω induces an isomorphism
between Hn−q(X,C) and Hn+q(X,C). ([Ste77] Thm. 1.13)

(ii) The canonical Hodge structure of Hk(X), that would be mixed for an arbitrary
singular variety, is pure of weight k for all k ≥ 0. ([Ste77] Cor. 1.5)

Part (ii) allows us to speak of the pure Hodge structure on our moduli spaces, and
especially to define Hodge numbers.

In [Mum83] D. Mumford introduced the rational Chow ring of Q-varieties and Q-stacks.
Our moduli spaces are Q-stacks (with smooth global covers) so we can use Mumfords
results. We summarize the ones we will use:

Summary 5 Let X be an algebraic variety that is a Q-variety or a Q-stack, with global
Cohen-Macaulay cover. then:

(i) There is a “natural” way to define an intersection product • . • on the rational Chow
group of X, making it into the Chow ring A∗

Q(X) we are going to use in our computa-
tions. (C.f. [Mum83] section § 3.)

(ii) To a closed codimension n subvariety Y of one of our moduli spaces, one can assign
classes in the rational Chow ring in two ways. One is the usual of just taking the
corresponding cycle class [Y ] in the Chow group AnQ(X). The other is to take the Q-
class [Y ]Q of Y as defined in [Mum83] § 3. This corresponds to considering the cycle
of Y on the moduli stack.

(iii) For our moduli spaces, between these two classes the relation [Y ] = n[Y ]Q holds,
where n is the number of automorphisms of an object parametrized by a general point
of Y .

(iv) Intersections of Q-classes in the rational Chow ring, can be computed on smooth
sheets Xα mapping to dense open parts of X (c.f. [Mum83] §3). For our moduli spaces,
like forMg, these sheets can be taken to be certain moduli spaces paremetrizing spin- rep.
Prym curves together with a kind of level structure (c.f. [Mum83] § 3). Locally at any
point, the Xα are isomorphic to the deformation space of the object parametrized by this
point. On the deformation space each two subspaces parametrizing curves of two given
topological types, meet like subvectorspaces of a vectorspace, since local coordinates can
be choosen such that one coordinate each coresponds to smoothing of one of the nodes
of the curve (C.f. [Cor89] § 5). Therefore if one has two cycles Y , Z parametrizing
generically curves of a given topological type (as will usually be the case for the cycles
appearing in this text), and their intersection Y ∩Z = S is proper, then one can treat the
intersection also as transversally in computing the intersection of the Q-classes. Thus
in this case [Y ]Q.[Z]Q = [S]Q.
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(v) A morphism f : X → Y of Q-stacks (with global Cohen-Macauley cover), induces a
pullback f∗ : A∗

Q(Y ) → A∗
Q(X) that is a ring homomorphism. IfW is a closed subvariety

of Y such that codim f−1(W ) = codim W , and if we denote by S the set of components
of f−1(W ) then:

f∗([W ]Q) =
∑

Vk∈S

ik · [Vk]Q

where ik can be calculated as the the ramification index of the map fα : Xα → Yα
belonging to f , in the locus corresponding to Vk on one of the smooth sheets Xα. As
mentioned above, in our cases these sheets locally are local universal deformation spaces.
(C.f. [Mum83] Section §3., especially Prop. 3.8.)

(vi) For the pullback f∗ just introduced and the usual pushforward f∗ the projection
formula (also called push-pull formula) holds:

f∗(a.f
∗b) = f∗a.b

For every a ∈ A∗
Q(X) and b ∈ A∗

Q(Y ).

In section 2 we will show that our moduli spaces are even global quotients of a manifold
by a finite group G, so in our special case Steenbrink’s and Mumford’s results could be
shown more easily:

Lemma 6 Let X be a smooth algebraic variety, let G be a finite group acting alge-
braically on X and let Y = X/G be the quotient. Then

(i) H∗
Q(Y ) =

(

H∗
Q(X)

)G
(C.f. [Bre72] Page 120.)

(ii) A∗
Q(Y ) =

(

A∗
Q(X)

)G
(C.f. [Ful98], Example 1.7.6.)

1.3 Further notation and conventions for this article

1. If we denote a cycle class of a moduli space by 1 we mean by this the Q-Class of
the whole space.

2. We sometimes speak of “the stratification according to topological type (of the

underlying stable curves)” of the spaces R2, S
+
2 or S

−
2 . What is meant by this is

explained in the appendix.

3. We call “closed strata” of these stratifications, the closures of all their strata, not
only the strata that are already closed (i.e. points).

4. If there appears a cycle class in our computations that is not written as a product
of boundary classes, it is usually the class of one of the closed strata just men-
tioned. (For example [C+]Q, [X

−], [E′,′].) The (closed) strata are described in the
appendix, and they will be used in the main body of the article without defining
them there.
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5. If O is an object of the kind parametrized by a moduli space M , then we denote
the point in M prametrizing O as [O]. For example if (X;L; b) is a Prym curve
of genus g, then [(X;L; b)] is the corresponding point in Rg.

6. Usually instead of a.b we write ab for the intersection of cycle classes a, b in the
Chow ring.

1.4 Some lemmata for extending morphisms

We call a morphism of complex analytic spaces finite if it is proper and has finite fibers.
The following lemmata can be proven quite easily using basic theorems form complex
analysis and commutative algebra.

Lemma 7 Let X, Y be complex analytic spaces, X normal, and U a dense open subset
of X. If f : U → Y is a holomorphic map, and f̃ : X → Y is a continous map extending
f , then f̃ is holomorphic.

Lemma 8 (i) Let X, S and M be complex analytic spaces, X normal, U ⊂ X an
open subset. Let π : S −→ M be a finite holomorphic map, and let g : X −→ M and
f : U −→ S be holomorphic maps, such that the following diagram commutes:

X o ?
_

g
''PPPPPPPPPPPPPP U

f
// S

π

��

M

Then f extends to a holomorphic map f̃ : X −→ S, compatible with the diagram.

(ii) If furthermore g is finite, then f̃ is finite too.

Lemma 9 Let X, Y be algebraic varieties, Y normal. Let f : X → Y be a finite
morphism of degree 1, then f is an isomorphism.

1.5 The boundary components of R2

In the following section we quote results from [FL10] we are going to use.

We call the irreducible components of R2 rR2 the boundary components of R2. There
are exactly 5 such components. They have codimension 1, so they are divisors of R2.
The boundary divisors of R2 lie above the two boundary divisors ∆0 and ∆1 of M 2,
with respect to the forgetful map π. We describe the boundary divisors, by explaining
which kind of Prym curves (C;L; b) their general points parametrize.

1. D1: Here C has two irreducible components (of genus 1), meeting in one node,
such that restricting the Prym sheaf L to one of the components yields the trivial
sheaf.
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2. D1:1: Here C has two irreducible components meeting in one node, and restricting
L to either component yields a nontrivial Prym sheaf.

3. D′
0: Here C has one node, the normalization C̃ of C is connected and the pullback

of L to the normalization is a nontrivial Prym sheaf of C̃.

4. D′′
0 : Here C has one node, the normalization C̃ of C is connected and the pullback

of L to the normalization is the trivial sheaf OC̃

5. Dr
0: Here C consists of two irreducible components, one is a smooth genus 1 curve

D, the other an exceptional component E, i.e. a smooth genus 0 curve meeting D
in two points. Restricting L to D yields a Prym sheaf on D. If D̃ and Ẽ are the
two connected components of the normalization C̃ of C, and if p, q are the two
points on D̃ lying over the points of C in which D and E meet, then the Pullback
of L to D̃ is a square root of OD̃(−q − p).

To the boundary components we assign elements of A2,Q(R2) by taking Q-classes:

d1 := [D1]Q, d1:1 := [D1:1]Q, d′0 := [D′
0]Q, d′′0 := [D′′

0 ]Q, dr0 := [Dr
0]Q

we often call these the boundary classes of R2. Equivalently one defines the boundary
classes δ0 and δ1 of M2.

The forgetful map πR : R2 −→ M 2, is ramified in codimension 1 only at Dr
0 (therefore

the r). The boundary classes of M2 pull back to R2 as follows:

π∗(δ0) = d′0 + d′′0 + 2dr0 and π∗(δ1) = d1 + d1:1

The boundary components A+
0 , B

+
0 , A

+
1 , B

+
1 of S

+
2 and A−

0 , B
−
0 , A

−
1 of S

−
2 are described

in [BF09a]. Again we define corresponding classes:

α+
0 := [A+

0 ]Q, β+0 := [B+
0 ]Q, α+

1 := [A+
1 ]Q, β+1 := [B+

1 ]Q,

α−
0 := [A−

0 ]Q, β−0 := [B−
0 ]Q, α−

1 := [A−
1 ]Q

The pullbacks of δ0 and δ1 to these spaces are:

π∗+(δ0) = α+
0 + 2β+0 , π∗+(δ1) = 2α+

1 + 2β+1 ,

π∗−(δ0) = α−
0 + 2β−0 , π∗−(δ1) = 2α−

1

2 Moduli spaces of stable hyperelliptic spin- and Prym

curves

Definition 10 By HMg, HS
+
g , HS

−
g and HRg we denote the loci of hyperelliptic

curves in Mg, S
+
g , ... The closures of these loci in Mg, S

+
g , S

−
g resp. Rg we denote by

HMg, HS
+
g , HS

−
g , resp. HRg. We call those compact spaces moduli spaces of stable

hyperelliptic curves resp. stable hyperelliptic spin/Prym curves.
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In this section we show that the normalizations of these compact moduli spaces, are
isomorphic to disjoint unions of several of what we call moduli spaces of stable genus 0
curves with partitioned marked points (c.f. Definition 11). These moduli spaces can be
described as quotients by finite groups acting on moduli spaces M0,2g+2 of stable genus
0 curves with 2g+2 ordered marked points. The cohomology rings of the latter moduli
spaces are known by work of S. Keel ([Kee92]).

To construct the isomorphisms we will use the fact, that for every set of 2g+2 distinct
points in P1 there is a (unique up to isomorphism) 2 : 1 cover h : C −→ P1 ramified
exactly over the given points, and C is a genus g smooth hyperelliptic curve, and the
fact that every hyperelliptic curve can be obtained in this way. The spin- resp. Prym
sheaves on C can be recovered as the invertible sheafs corresponding to certain divisors
that are linear combinations of the ramification points. Using admissible 2 : 1 covers of
stable genus 0 curves with 2g + 2 marked points, one can extend this correspondence
to the asserted isomorphisms.

Probably everything proven in this section is somehow known.

2.1 Admissible (double) covers

Definition 11 ByMg,(n1,...,nl) we denote the coarse moduli space of the following mod-
uli problem: Stable curves of genus g with n1 + n2 + ... + nl unordered marked points
that are divided into l disjoint sets A1, ..., Al such that #Ai = ni for all i ∈ {1, ..., l}.
Formally the objects are pairs (X; (A1, ..., Al)), where X is a genus g curve such that X
becomes stable if one marks the points on it contained in the Ai. The moduli space one
gets by changing the objects of the moduli problem to (X; {A1, ..., Al}), i.e. by having
a set of sets instead of a tuple of sets in the defining data, we denote by Mg,[n1,...,nl].

We often call moduli spaces of the latter type, moduli spaces of curves of genus g with
partitioned marked points.

By Mg,(n1,...,nl) resp. Mg,[n1,...,nl] we denote the corresponding moduli spaces of smooth
curves.

Remark & Definition 12 (i) For n := n1+n2+ ...+nl one can construct the moduli
space M g,(n1,...,nl) as the quotient of Mg,n. Divide the set of marked points {1, ..., n}
into disjoint subsets A′

1, ..., A
′
l of the appropriate size #A

′
i = ni. Then take the quotient

of M g,n induced by the action of Sn1
× ... × Snl

permuting the indices inside the sets
A′

1, ..., A
′
n. Mg,[n1,...,nl] can be constructed as the quotient of M g,(n1,...,nl) by the action

permuting the indices of those of the sets A1, ..., An having the same cardinality.

(ii) For genus 0 we fix some of the quotient morphisms, we are going to use later. Let

π(n1,...,nl) :M0,n →M0,(n1,...,nl)

be the quotient morphism corresponding to the choice A′
1 := {1, ..., n1}, A

′
2 = {n1 +

1, n1 + 2, ..., n1 + n2}, and so on.

Let
π[n1,...,nl] :M0,n →M0,[n1,...,nl]
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be the composition of π(n1,...,nl) with the quotient morphismM0,(n1,...,nl) →M0,[n1,...,nl].

Definition 13 (i) Let (D; {p1, ..., pn}) be a stable genus 0 curve with n unordered
marked points. For us an admissible d : 1 cover of (D; {p1, ..., pn}) is a regular morphism
f : Y → D such that Y is a connected nodal curve, and:

1. For Dns the nonsingular locus of D, f−1(Dns) = Yns and the restriction of f to
f−1(Dns) is a d : 1 cover simply ramified over the marked points and unramified
everywhere else.

2. For every node q of D, every point in f−1(q) is a node of Y and for every such
node r the two branches of Y in r are mapped to the two branches of D near q,
both with the same ramification index in r.

(ii) An isomorphism between two admissible covers f : Y → D and f ′ : Y ′ → D′ is
an isomorphism ϕ : Y → Y ′ such that there is an isomorphism ψ : D → D′ for which
ψ ◦ f = f ′ ◦ ϕ.

We compile some facts about admissible covers, especially 2 : 1 covers, which we mostly
take from [AL02].

Summary 14 (i) There is a coarse moduli space Hd,g of admissible d : 1-covers of
stable genus 0 curves with 2(g + d)− 2 marked points.

(ii) The covering space Y of an admissible 2 : 1 cover f : Y → D is a semistable curve,
all whose irreducible components are smooth.

(iii) There are isomorphisms M0,[2g+2]
∼= H2,g

∼= HMg. They are explicitly constructed
in [AL02] by describing how to associate to a family of stable genus 0 curves with 2g+2
unordered marked points a unique family of admissible 2 : 1 covers, and how to associate
to a family of such admissible covers a unique family of stable hyperelliptic curves. (The
latter is just by contracting all exceptional components of Y , i.e. stable reduction.)

(iv) Thus, in particular, the 2 : 1 admissible cover f : Y → D of a stable genus 0 curve
with an even number of unordered marked points is defined uniquely up to isomorphism.

Caution: Sometimes we will just mean the Y of f : Y → D when we talk about the
admissible 2 : 1 cover of a stable genus 0 curve with marked points.

2.2 Relation to moduli spaces of stable genus 0 curves with partitioned
marked points.

Lemma 15 For g ≥ 2, let p1, ..., p2g+2 be distinct points in P1, and h : Y −→ P1 the
(unique) 2 : 1 cover of P1 ramified exactly over these points. Then Y is a genus g
hyperelliptic curve. For i = 1, ..., 2g + 2, define qi := h−1(pi). Let Q be the set of all qi
and denote by Pn the set of possible partitions of Q into a set of n elements and a set
of 2g + 2− n elements. I.e.:

Pn := {{A,B} | A,B ⊆ Q, A ⊎B = Q, #A = n, #B = 2g + 2− n}
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Let JR(Y ), JS(Y ), J+(Y ), J−(Y ) be the sets of isomorphism classes of nontrivial Prym
sheaves, resp. spin sheaves, resp. even spin sheaves, resp. odd spin sheaves on Y. (Of
course JS(Y ) = J+(Y ) ⊎ J−(Y ).) Then we have:

For any {A,B} ∈ Pn and r1, ..., rn the points in A.

(i) For all even 2 ≤ n ≤ g + 1:

1. φR,n({A,B}) := OY (r1 + ...+ rn
2
− rn

2
+1 − ...− rn) is a nontrivial Prym sheaf of

Y . Its isomorphism class is independent of the ordering of the points ri, as well
as of the choice of A, necessary in the case n = g + 1. Thus the following map is
well defined.

2. The map φR,n : Pn → JR(Y ), {A,B} 7→ φR,n({A,B}) is injective.

3. The map φR :
⊎

2≤n≤g+1,
n even

Pn → JR(Y ), obtained as union of the maps φR,n is a

bijection.

(ii) Analogously for spin structures:

1. If g is even, then for all 0 ≤ n ≤ g + 1, with n odd:

φS,n({A,B}) := OY ((g− 2) · q1 + r1 + r2 + ...+ rn+1

2

− rn+1

2
+1 − ...− rn) is a spin

sheaf of Y .

2. If g is odd, then for all 0 ≤ n ≤ g + 1, with n even:

φS,n({A,B}) := OY (g · q1 + r1 + r2 + ...+ rn
2
− rn

2
+1 − ...− rn) is a spin sheaf of

Y .

3. In both cases the isomorphism class of φS,n({A,B}) is independent of the ordering
of the points ri and qi, as well as of the choice of A, necessary in the case n = g+1.
Thus the map φS,n : Pn → JS(Y ), {A,B} 7→ φR,n({A,B}) is well defined. It is
injective, and the map φS :

⊎

1≤n≤g+1,
n odd

Pn → JS(Y ), obtained as union of the maps

φS,n, is a bijection.

(iii) For every g ≥ 2 the bijection φS of course splits into two bijections φ+ :
(φS)

−1J+(Y ) → J+(Y ) and φ− : (φS)
−1J−(Y ) → J−(Y ). They can also be written

(by describing (φS)
−1J+(Y ) and (φS)

−1J−(Y ) explicitly) as:

φ+ :
⊎

1≤n≤g+1,
n≡g+1 mod 4

Pn → J+(Y )

and
φ− :

⊎

1≤n≤g+1,
n≡g−1 mod 4

Pn → J−(Y )
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Proof: It is easy to show that, for all i, j ∈ {1, ..., 2g + 2}, 2qi − 2qj ∼ 0. I.e. all 2qi
are equivalent.

Using this, all claims of part (i) follow form what is shown in § 5.2.3. in [Dol10].

All assertions of (ii) follow from the fact that the canonical sheaf of Y is equivalent to
(2g − 2)qi for any i ∈ {1, ..., 2g + 2} and the corresponding assertions of part (i) of the
Lemma.

For (iv): From Lemma 5.2.1. in [Dol10] it follows that h0(φS,n({A,B})) is even if
g − n + 1 ≡ 0 mod 4 and odd if g − n + 1 ≡ 2 mod 4. This proves part (iv) of the
Lemma. �

Lemma 16 If by X∼ we denote the normalization of a variety X then:

(i) For all g ≥ 2 there is an isomorphism:

b :M 0,[2g+2]

∼=
−→ HMg

(ii) For all g ≥ 2 there is an isomorphism:

aR :
⊎

2≤n≤g+1,
n even

M 0,[n,2g+2−n]

∼=
−→ (HRg)

∼

(iii) For all g ≥ 2 there are isomorphisms:

a+ :
⊎

0≤n≤g+1,
n≡g+1 mod 4

M0,[n,2g+2−n]

∼=
−→ (HS

+
g )

∼

and
a− :

⊎

0≤n≤g+1,
n≡g−1 mod 4

M0,[n,2g+2−n]

∼=
−→ (HS

−
g )

∼

All the isomorphism above map boundary points to boundary points (after composing
the isomorphisms with the normalization map).

Proof: (i) The isomorphism of (i) is constructed in [AL02] (also c.f. Summary 14), it
maps boundary points to boundary points, as can easily be checked by looking at the
construction there.

On the interior of the moduli spaces the restricted morphism b′ : M0,[2g+2] −→ HMg

acts in the following way: Let (D; {p1, ..., p2g+2}) be a smooth rational curve with
2g + 2 unordered marked points. Let Y be the unique 2 : 1 cover of D ramified over
exactly the points pi. The morphism b′ assigns to [(D; {p1, ..., p2g+2}] ∈ M0,2g+2 the
point [Y ] ∈ HMg. Every smooth hyperelliptic curve Y of genus g is a 2 : 1 cover of
P1 ramified in 2g + 2 Points, thus b′ is surjective. Since two smooth pointed curves
(D; {p1, ..., p2g+2}) and (D′; {p′1, ..., p

′
2g+2}) are isomorphic if and only if the covers Y

and Y ′ are isomorphic, b′ is of degree 1. Both M0,[2g+2] and Mg are normal varieties,
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thus this implies that b′ is an isomorphism. For the description of the isomorphism b,
extending b′ to the compactified moduli spaces, c.f. [AL02].

Now we prove (ii): A morphism

a′R :
⊎

2≤n≤g+1,
n even

M0,[n,2g+2−n] −→ HRg

can be defined in the following way: For 2 ≤ n ≤ g + 1, n even, a′R assigns to
[(D; {A,B})] ∈ M0,[n,2g+2−n] the point [(Y ;φR,n({A,B}))] ∈ HRg, where Y is de-
fined as above, and φR,n({A,B}) is defined as in Lemma 15 (i). The morphism a′R is
surjective and 1 : 1 by Lemma 15 (i). Let

ψ :
⊎

2≤n≤g+1,
n even

M0,[n,2g+2−n] −→M0,[2g+2]

and
π : HRg −→ HMg

be the forgetful morphisms. Using the abbreviations N :=
⊎

2≤n≤g+1,
n even

M0,[n,2g+2−n] and

N :=
⊎

2≤n≤g+1,
n even

M0,[n,2g+2−n], we get the commutative diagram

N o ?
_

b◦φ
''OOOOOOOOOOOOOOO N

a′R // HRg

π

��

HMg

Thus by Lemma 8 a′R extends to a finite surjective Morphism

aR :
⊎

2≤n≤g+1,
n even

M0,[n,2g+2−n] −→ HRg.

It has degree 1 and must be an isomorphism since both varieties are normal (c.f. Lemma
9).

Part (iii) of our Lemma is proven analogously to part (ii), by using part (ii) and (iii) of
Lemma 15 instead of part (i). The isomorphisms of part (ii) and (iii) of our Lemma map
boundary points to boundary points because they are compatible with the isomorphism
b of Part (i), and this one does. �

Remark: While HMg is a normal variety for all g ≥ 2 (since it is isomorphic to

M0,[2g+2]), the spaces HS
+
g , HS

−
g and HRg in gereral are not. Take for example in S

−
3

a point coresponding to a spin curve (X;L; b) with X consisting of two disjoint smooth
genus 1 curves and two exceptional components, such that each exceptional component
meets each genus 1 component in exactly one point. Now let D′ be the local universal
deformation space of (X;L; b), and let D be the local universal deformation space of C,
the stable model of X. Then the forgetful map ϕ : D′ → D is 4 : 1 and simply ramified
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over each of the two subspaces of D coresponding to the two nodes of C, which are
blown up in X. One can define local coodinates x, y, z1, ..., z4 around the special point
of D, such that the two subspaces just mentioned are the spaces x = 0 and y = 0. Then,
for suitably choosen local coordinates on D, ϕ is described by x′ 7→ (x′)2, y′ 7→ (y′)2

and z′i 7→ z′i for i = 1, ..., n. The hyperelliptic involution on C swaps the two nodes, thus
the hyperelliptic locus in D is invariant under swaping the coordinates x and y. Since
the hyperelliptic locus is also normal, it follows that it can localy be described by x = y
(for a possible choice of coordinates). Thus the hyperelliptic locus in D′ is described
by (x′)2 = (y′)2, thereby having a singularity of codimension 1. As one can check, this
singularity is retained when quotienting D′ by the action of the automorphism group
of (X;L; b), hence the hyperelliptic locus HS

−
3 in S

−
3 is not normal.

2.3 Some properties of M 0,n

The moduli spaces M0,n (n ≥ 3) of stable genus 0 curves with ordered marked points
where examined by S. Keel in [Kee92]. Among other things he computed their coho-
mology ring (and, what is the same for these spaces, the Chow ring) for all n ≥ 3. We
summarize some facts about these spaces we are going to use from [Kee92].

Summary 17 (S. Keel)

For all n ≥ 3:

(i) M0,n is a smooth rational projective variety of dimension n− 3.

(ii) For every S ( {1, ..., n} such that #S ≥ 2 and #({1, ..., n} r S) ≥ 2, there is a
boundary divisor DS of M0,n, a general point of which corresponds to a rational curve
with two smooth irreducible components meeting in one node, such that the marked point
with indices in S lie on one of the components, and the marked points with indices in
Sc := {1, ..., n} r S lie on the other component. (Of course DS and DSc

are the same
divisor.)

The boundary M0,n rM0,n of M0,n is exactly the union of the divisors just described.

(iii) The cohomology ring of M0,n is generated by the boundary components, and is
isomorphic to the chow ring by the cycle map.

(iv) More specific:

H∗(M 0,n) ∼= A∗(M0,n) =
Z[{DS |S ( {1, ..., n}, #S ≥ 2, #Sc ≥ 2}]

{the following relations}

The relations in the Chow ring are:

1. For all S ( {1, ..., n} such that #S ≥ 2 and #Sc ≥ 2: DS = DSc

2. For every for i, j, k, l ∈ {1, ..., n}:
∑

S({1,...,n},
i,j∈S,
k,l /∈S

DS =
∑

S({1,...,n},
i,k∈S,
j,l /∈S

DS =
∑

S({1,...,n},
i,l∈S,
j,k /∈S

DS (1)
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3. For all S, T ( {1, ..., n} such that #S, #T, #Sc, #T c ≥ 2: DSDT = 0 if not one
of the following conditions holds:

S ⊆ T, T ⊆ S, S ⊆ T c, Sc ⊆ T

Definition 18 We use the following short notation for the boundary components of
M0,n: If {a1, ..., al}, 2 ≤ l ≤ n − 2, is a subset of {1, ..., n} we will denote the corre-
sponding boundary divisor D{a1,...,al} by [a1, ..., al].

2.4 Conclusions

Corollary 19 For all g ≥ 2 and every X ∈ {HM g, (HS
+
g )

∼, (HS
−
g )

∼, (HRg)
∼} we

have:

(i) Every connected component of X is unirational.

(ii) A∗
Q(X) ∼= H∗

Q(X), as graded Q-algebras, after adjusting the grading of A∗
Q(X) by a

factor 2. In particular Hn
Q(X) = 0 for all odd n.

(iii) PicQ(X) ∼= A1
Q(X)

(iv) A1
Q(X) is generated by the boundary divisors of X. (Meaning the preimages of the

boundary components of the moduli space on its normalization.)

(v) hp,0(X) = 0 for p > 0.

Proof: For all claims it suffices to show them for every connected component of X.
Let Y be such a component, Y its Interior. Then, by Lemma 16 and the Remark 12,
Y ∼=M0,2g+2/G for some subgroup G of S2g+2 × S2.

(i): Y ∼= M0,2g+2/G is of course covered by M0,2g+2, and all spaces M0,n are rational
(Summary 17 (i)).

(ii): By Summary 17 (iii), A∗
Q(M 0,2g+2) ∼= H∗

Q(M 0,2g+2). Using Lemma 6 we get:

A∗
Q(Y ) ∼= A∗

Q(M 0,2g+2/G) ∼= (A∗
Q(M0,2g+2))

G

∼= (H∗
Q(M0,2g+2))

G ∼= H∗
Q(M 0,2g+2/G) ∼= H∗

Q(Y )

(iii): Y is normal, so the Picard group is in a natural way a subgroup of the divisor
class group, c.f. [Har77] Remark 6.11.2. and Prop. 6.15. Thus there is an injection

PicQ(Y ) −→ A1
Q(Y )

Since Y ∼= M0,2g+2/G has only finite quotient singularities, it is Q-factorial, i.e. every
Weil-divisor is Q-Cartier. Thus the map is also surjective.

(iv): By Summary 17, A1(M0,2g+2) = A(2g−1)−1(M 0,2g+2) is generated by the boundary

classes, i.e. the map A(2g−1)−1(M0,2g+2rM0,2g+2) −→ A(2g−1)−1(M 0,2g+2) is surjective.
The exact sequence

A(2g−1)−1(M0,2g+2 rM0,2g+2) −→ A(2g−1)−1(M 0,2g+2) −→ A(2g−1)−1(M0,2g+2) −→ 0
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then yields AQ,(2g−1)−1(M0,2g+2) = A(2g−1)−1(M0,2g+2) = 0. By Lemma 6, then

AQ,(2g−1)−1(Y ) ∼= AQ,(2g−1)−1(M0,2g+2/G) ∼= (AQ,(2g−1)−1,(M0,2g+2))
G = 0

Again using an exact sequence like the one above we conclude that AQ,(2g−1)−1(Y r

Y ) −→ AQ,(2g−1)−1(Y ) is surjective, i.e. that AQ,(2g−1)−1(Y ) ∼= A1
Q(Y ) is generated by

the boundary classes.

(v): According to [Kee92], every M 0,2g+2, is rational. Thus Hp,0(M 0,2g+2) ∼=
Hp,0(Pn−3) = 0 for all p > 0, since all hp,0 are birational invariants (c.f. [GH94] p.
494). This implies Hp,0(Y ) = (Hp,0(M0,2g+2))

G = 0. �

3 Morphisms to S2 and R2.

In this section we introduce several finite morphisms from other moduli spaces to R2,
S
+
2 and S

−
2 . They will later be used to determine relations between cycle classes on our

moduli spaces, by pushing forward known relations, or by using push-pull formula.

3.1 The morphisms aR, a+ and a− in the case of genus 2

In the case of genus 2, all smooth curves are hyperelliptic, hence HM2 = M2, HR2 =
R2, HS

+
2 = S

+
2 and HS

−
2 = S

−
2 . Thus the conclusions listed in Corollary 19, apply to

the moduli spaces we are interested in. Lemma 16 in this special case reads

Lemma 20 (& Definition)

There are Isomorphisms

b :M0,[6]

∼=
−→M2 resp.

aR :M0,[2,4]

∼=
−→ R2 resp. a+ :M0,[3,3]

∼=
−→ S

+
2 resp. a− :M0,[1,5]

∼=
−→ S

−
2

These isomorphisms map the boundary of M 0,6 onto the boundary of the images.

We define surjective finite morphisms, by composing every one of isomorphisms above
with the appropriate quotient morphism out of, π0,[6]), π0,[2,4], π0,[3,3], and π0,[1,5] from
Definition 12:

g :M0,6
720:1
−→ M2,

fR :M0,6
48:1
−→ R2, f+ :M0,6

72:1
−→ S

+
2 and f− :M 0,6

120:1
−→ S

−
2 .

Proof: Everything except the degrees of the finite surjective morphisms is just a special
case of Lemma 16, since all genus 2 curves are hyperelliptic, and since our moduli spaces
are normal. The degrees equal those of the forgetful morphisms π0,[6]), π0,[2,4], π0,[3,3],
π0,[1,5], which can easily be counted. �

By the Lemma we even know:

H∗
Q(R2) ∼= (H∗

Q(M0,6))
S2×S4 , H∗

Q(S
+
2 )

∼= (H∗
Q(M 0,6))

S3×S3×S2 ,
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H∗
Q(S

−
2 )

∼= (H∗
Q(M0,6))

S1×S5

where the group actions are those of Remark 12. As the cohomology of M0,6 is known
(c.f. Summary 17), probably a computer algebra program could compute these invariant
subrings. In this article we instead compute the rational cohomology of R2 and S2 by
hand. For our computation we need some more information about the isomorphism aR,
a+ and a−, and the finite surjective maps fR, f+, and f− defined from them.

First we examine which boundary components are identified by the isomorphisms b, aR,
a+ and a−. On M0,[6] there are two boundary divisors corresponding to the two types
of smooth curves genus 0 curves with 6 unordered marked points and one node, which
are:

1. Two smooth genus 0 curves meeting in one node, with 4 marked points on one
curve, 2 marked points on the other.

2. Two smooth genus 0 curves meeting in one node, with 3 marked points on each
curve.

From the theory of admissible covers it is clear that the first boundary divisor is mapped
to ∆0 and the second to ∆1 by b. If we describe boundary divisors ofM0,[6] by diagrams
of the objects corresponding to general points, we get the table

Bound. Div. of M0,[6] is mapped to

∆0

∆1

For the isomorphisms aR, a+ and a− we use that there is the following commutative
diagram for aR, and analogous diagrams for a+ and a−.

M0,[2,4]

ψ
��

aR // R2

πR

��

M 0,[6]
b // M2

Here ψ :M0,[2,4] →M0,[6] is the forgetful morphism.

Let C be a boundary component of M0,[2,4] and D the boundary component of R2 it is

mapped to by aR. Take a general point y in the boundary component of M2 underlying
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D, and let x := b−1(x) be its preimage in M0,[6]. Then the number M of elements in
the fiber ψ−1(x) lying in C must be equal to the number N of elements of the fiber
π−1
R (y) lying in D. Knowing the numbers N and M for all boundary components, and

the behavior of b suffices to see which components get identified. The numberM can be
counted if we draw for every boundary component of M0,[2,4] the diagram of the objects
corresponding to a general point. In those diagrams we will always denote a elements of
A by squares and elements of B by dots. (In the case of M0,[3,3] we do not distinguish
between A an B, and only say that squares and dots belong to different sets.)

For example

describes an object (X; {A,B}) where X consists of two smooth genus 0 curves meeting
in one node, A is a set of two points on X, B a set of 4 points on X, A and B disjoint,
such that one of the two smooth curves contains two elements of B and all two elements
of A, while the other curve contains the remaining two elements of B. One can count
that there are M =

(4
2

)

= 6 objects of this type lying over the corresponding object in
M0,[6] described by the diagram

The numbers N can be determined, using the descriptions of the boundary divisors in
section 1.5. For example for D′

0 the number is N = 6. Indeed, if (X;L; b) is a general
object parametrized by D′

0, then L can be obtained by taking a nontrivial Prym sheaf
on the normalization of X, and gluing the sheaves fibers over the points identified by
the normalization map, in one of two possible ways. The Normalization is an elliptic
curve, so there are are 3 nontrivial Prym sheaves on it, and gluing them in the two
possible ways yields 6 nonisomorphic Prym sheaves on X.

After computing M and N for all boundary components one can conclude that the two
boundary components from our examples get identified. The following tables list the
identifications for all boundary components, together with the numbers N and M
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Bound. Div. of M0,[2,4] is mapped to M = N

D′
0 6

D′′
0 1

Dr
0 4

Bound. Div. of M0,[2,4] is mapped to M = N

D1 6

D1:1 9

Bound. Div. of M0,[3,3] is mapped to M = N

A+
0 4

B+
0 3

Bound. Div. of M0,[3,3] is mapped to M = N

A+
1 9

B+
1 1
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Bound. Div. of M0,[1,5] is mapped to M = N

A−
0 4

B−
0 1

A+
1 6

Now we can determine how fR, f+ and f− behave on the boundary components ofM0,6.
Using the notation introduced in Definition 18, all these boundary components are of
the form [i1, i2] or [j1, j2, j3] (i1, i2, j1, j2, j3 ∈ {1, 2, 3, 4, 5, 6}). To which component a
boundary component ofM0,6 is mapped, can be seen using the tables above. The degree
of the map on a given boundary component one gets as in the following example: The
boundary component [3, 4] is mapped to D′

0. A general point of [3, 4] is thus mapped
by fR to a point of D′

0 ⊂ R2 corresponding in M0,[2,4] to a diagram of the form

One gets that the degree of fR on [3, 4] is 4 by counting how many nonisomorphic
possibilities there are to assign indices 1, ..., 6 to the marked points of the diagram,
such that the dots get 3, 4, 5, 6, the squares get 1, 2 and such that 3 and 4 go to the
component with only two marked points. There are 8 possibilities, but swapping 3 and
4 yields isomorphic objects.

Behavior of fR :M0,6
48:1
−→ R2. For arbitrary b1, b2 ∈ {3, 4, 5, 6} we have:

• Boundary components of the form [b1, b2] are mapped 4 : 1 (each) onto D′
0.

• The boundary component [1, 2] is mapped 24 : 1 onto D′′
0 .

• Boundary components of the form [1, b1] or [2, b1] are mapped 6 : 1 (each) onto
Dr

0.

• Boundary components of the form [1, 2, b1] are mapped 12 : 1 (each) onto D1.

• Boundary components of the form [1, b1, b2] (or equivalently [2, b1, b2]) are mapped
8 : 1 (each) onto D1:1.
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Behavior of f+ : M0,6
72:1
−→ S

+
2 . For arbitrary a1, a2 ∈ {1, 2, 3} and b1, b2 ∈ {4, 5, 6} we

have:

• Boundary components of the form [a1, a2] or [b1, b2] are mapped 6 : 1 (each) onto
A+

0 .

• Boundary components of the form [a1, b1] are mapped 8 : 1 (each) onto B+
0 .

• Boundary components of the form [a1, a2, b1] (or equivalently [a1, b1, b2]) are
mapped 8 : 1 (each) onto A+

1 .

• The boundary component [1, 2, 3] is mapped 72 : 1 onto B+
1 .

Behavior of f− :M 0,6
120:1
−→ S

−
2 . For arbitrary b1, b2 ∈ {2, 3, 4, 5, 6}:

• Boundary components of the form [1, b1] are mapped 24 : 1 (each) onto B−
0 .

• Boundary components of the form [b1, b2] are mapped 6 : 1 (each) onto A−
0 .

• Boundary components of the form [1, b1, b2] are mapped 12 : 1 (each) onto A−
1 .

We now use this to compute:

Lemma 21 There are the following relations between cycle classes on our moduli
spaces:

(i) In A2,Q(R2): d
′
0 + 6d′′0 − 3dr0 + 12d1 − 8d1:1 = 0

(ii) In A2,Q(S
+
2 ): 3α+

0 − 4β+0 − 8α+
1 + 72β+1 = 0

Proof: (i): Using equation (1) from Summary 17 with i, j, k, l := 1, 2, 3, 4 we get

[1, 2] + [1, 2, 5] + [1, 2, 6] + [1, 2, 5, 6] = [1, 3] + [1, 3, 5] + [1, 3, 6] + [1, 3, 5, 6]

which is the same as

0 = [1, 2] + [1, 2, 5] + [1, 2, 6] + [3, 4] − [1, 3] − [1, 3, 5] − [1, 3, 6] − [2, 4]

Pushing this relation forward by fR we get:

0 = 24[D′′
0 ] + 12[D1] + 12[D1] + 4[D′

0]− 6[Dr
0]− 8[D1:1]− 8[D1:1]− 6[Dr

0]

= 4[D′
0] + 24[D′′

0 ]− 12[Dr
0] + 24[D1]− 16[D1:1]

Using the automorphism numbers from the tables in the appendix, this can be written
as

0 = 8d′0 + 48d′′0 − 24dr0 + 96d1 − 64d1:1

⇔ 0 = d′0 + 6d′′0 − 3dr0 + 12d1 − 8d1:1

(ii): Using equation (1), this time with i, j, k, l := 1, 2, 4, 5, we get

[1, 2] + [1, 2, 3] + [1, 2, 6] + [1, 2, 3, 6] = [1, 4] + [1, 3, 4] + [1, 4, 6] + [1, 3, 4, 6]
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Pushing this relation forward by f+, and proceeding like in part (i) we get:

0 = 24α+
0 − 32β+0 − 64α+

1 + 576β+1

⇔ 0 = 3α+
0 − 4β+0 − 8α+

1 + 72β+1

�

3.2 Morphisms to the boundary components of R2 and S2

Now we come to several finite surjective morphisms from other moduli spaces to different
boundary components of R2, S

+
2 and S

−
2 . Later they will be used to determine relations

between intersection products of boundary components via push-pull formula.

3.2.1 Morphisms from M0,5

Fist we define a Morphism c : M0,5 × M0,3 → [5, 6] ⊆ M0,6. ([5, 6] is one of the
boundary divisors ofM 0,6, c.f. Definition 18.) To the pair of [(C; (q0, ..., q4))] ∈M0,5 and
[(C ′; (q′0, ..., q

′
2)] ∈M0,3 the morphism c assigns [D; (p1, ..., p6)] ∈ [5, 6] ⊂M0,6, where D

is the curve obtained from C and C ′ by gluing the points q0 and q′0, and where p1, ..., p4
are defined as the images of q1, ..., q4 at D, and p5 resp. p6 are defined as the images of
q′1 resp. q′2. M 0,3 is just a point, so there is an isomorphism i : M0,5 → M0,5 ×M0,3.
The composed map c ◦ i is a finite degree 1 morphism onto [5, 6]. We compose this
morphism with fR and get a finite Morphism:

h′0 :M0,5
4:1
−→ D′

0

h′0 is 4 : 1 because that is the degree of fR on [5, 6] (c.f. section 3.1).

By composing c ◦ i with f− one gets a morphism

hα0 :M 0,5
6:1
−→ A−

0

Similar to what was done in section 2.2 for fR, f+ and f−, one can determine the
behavior of these two morphisms on the boundary of M0,5. We describe the images of
the boundary components in terms of the classes of closed strata of the stratification
by topological type of R2 resp. S

−
2 . These strata are described in the appendix. The

boundary divisors of M0,5 are (for our choice of the indices of the marked points) all of
the form [i1, i2] (i1, i2 ∈ {0, 1, 2, 3, 4}).

Behavior of h′0 :M0,5
4:1
−→ D′

0 ⊂ R2. For arbitrary a ∈ {1, 2} and b ∈ {3, 4}:

• The boundary component [1, 2] is mapped 2 : 1 onto E′,′′ = D′
0 ∩D

′′
0 .

• Boundary components of the form [a, b] are mapped 1 : 1 (each) onto E′,r =
D′

0 ∩D
r
0.

• The boundary component [3, 4] is mapped 2 : 1 onto E′,′.
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• Boundary components of the form [0, a] are mapped 2 : 1 (each) onto F ′
1:1 =

D′
0 ∩D1:1.

• Boundary components of the form [0, b] are mapped 2 : 1 (each) onto F ′
1 = D′

0∩D1.

Behavior of hα0 :M0,5
6:1
−→ A−

0 ⊂ S
−
2 . For arbitrary b1, b2 ∈ {2, 3, 4}:

• Boundary components of the form [b1, b2] are mapped 2 : 1 (each) onto C−.
(2 : 1 because two nonisomorphic diagrams of M0,5 are assigned two different but

isomorphic diagrams of M0,[1,5]
∼= S

−
2 .)

• Boundary components of the form [1, b1] are mapped 2 : 1 (each) onto D− =
A−

0 ∩B−
0 .

• The boundary component [0, 1] is mapped 6 : 1 onto X−.

• Boundary components of the form [0, b1] are mapped 2 : 1 (each) onto Y −.

we use this to compute:

Lemma 22 There are the following relations between classes in the Chow ring of our
moduli spaces:

(i) In A1,Q(R2): 2d′0d
′′
0 + 4d′0d1 − 4d′0d1:1 − d′0d

r
0 = 0

(ii) In A1,Q(S
−
2 ): 16[X−]Q + [C−]Q − 4α−

0 α
−
1 − α−

0 β
−
0 = 0

(iii) In A1,Q(R2): [E′,r]Q = 2[E′,′]Q + [E′,′′]Q

Proof: (i): Using equation 1 with i, j, k, l := 0, 1, 2, 3 we get

[0, 1] + [2, 3] = [0, 3] + [1, 2]

Pushing this relation forward by h′0 we get:

0 = 2[D′
0 ∩D1] + 2[D′

0 ∩D
′′
0 ]− 2[D′

0 ∩D1:1]− [D′
0 ∩D

r
0]

Using the automorphism numbers from the appendix this can be written as

0 = 8d′0d1 + 4d′0d
′′
0 − 8d′0d1:1 − 2d′0d

r
0

⇔ 2d′0d
′′
0 + 4d′0d1 − 4d′0d1:1 − d′0d

r
0 = 0

(ii): We again use the equation

0 = [0, 3] + [1, 2] − [0, 1] − [2, 3]

and now push it forward by hα0 . Then proceeding as above, we arive at

0 = 12[X−]Q + [C−]Q − 4[Y −]Q − α−
0 β

−
0
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Now we use that A−
0 ∩A−

1 = X− ∪ Y − is a proper intersection. We can treat all proper
intersections of Q-classes of closed strata of the stratifications by topological type, as
transversal intersections, as those closed strata meet transversally on the deformation
space (c.f. Summary 5 (iv)). Thus α−

0 α
−
1 = [X−]Q+ [Y −]Q. Using this one can rewrite

the equation as
0 = 16[X−]Q + [C−]Q − 4α−

0 α
−
1 − α−

0 β
−
0

(iii) Using equation 1 with i, j, k, l := 1, 2, 3, 4 we get

[1, 2] + [3, 4] = [1, 3] + [2, 4]

Pushing this relation forward by h′0 and using the automorphism numbers from the
appendix we get:

4[E′,′′]Q + 8[E′,′]Q = 2[E′,r]Q

⇔ [E′,′′]Q + 2[E′,′]Q = [E′,r]Q

�

3.2.2 Other morphisms to the boundary components

For R2 we will use the following morphisms. We describe how they behave on general
points.

τ1 :M1,1 ×R1,1
1:1
−→ D1

For [(X; p)] ∈ M1,1 and [(Y ;L; b; q)] ∈ R1,1 the image of the pair is the point in D1

parametrizing the following Prym curve (X ′;L′): The quasistable curve X ′ is generated
by gluing the points p and q on the curves X and Y . The Prym sheaf L′ is obtained
from the trivial sheaf on X and the Prym sheaf L on Y , by identifying the fibers over
p resp. q. All possible choices of identification yield isomorphic Prym sheaves.

τ1:1 : R1,1 ×R1,1
2:1
−→ D1:1

This morphism is defined analogously to τ1 . It is of degree 2 since a pair
([(X;L; b; p)], [(X ′ ;L′; b′; p′)]) ∈ R1,1 ×R1,1 and the transposed pair are mapped to the
same point in D1:1.

τ ′′0 :M1,2
1:1
−→ D′′

0

A point [(X; p, q)] ∈ M 1,2 is mapped to the point parameterizing the following Prym
curve (X ′;L): The underlying quasistable curve X ′ is obtained by gluing the points p
and q. There are two ways to glue the fibers of the trivial bundle of X over the points
p and q such that a Prym bundle on X ′ is obtained. One way yields the trivial bundle
on X ′, the other one yields the nontrivial Prym bundle L.

τ r0 : R
(−1,−1)
1,2

1:1
−→ Dr

0
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A point [(X;L; p, q)] ∈ R
(−1,−1)
1,2 is mapped to the point parametrizing the following

Prym curve (X ′;L′): The underlying quasistable curve X ′ is obtained by gluing the
points p and q, and then blowing up the node. L′ is the Prym bundle on X, such that if
X̃ is stable subcurve of X and E the exceptional component, L′

|X̃
∼= L and L′

|E
∼= OE(1).

τ ′0 :M0,(2,2,1)
1:1
−→ D′

0

The morphism h′0 factors through M0,(2,2,1), and we use this to define τ ′0.

For S
+
2 we will use the following morphisms.

ρα0 : S
(1,1)
1,2

1:1
−→ A+

0

A point [(X;L; b; p, q)] ∈ S
1,1
1,2 is mapped to the point parametrizing the following spin

curve (X ′;L′): The underlying quasistable curve X ′ is obtained by gluing the points p
and q. There are two ways to glue the fibers of the the bundle L of X over the points
p and q such that a spin bundle on X ′ is obtained. One way yields an odd bundle, the
other one the even bundle L′. (This is implicit in [Cor89], Example 3.2)

ρβ0 : S
+
1,2

1:1
−→ B+

0

Defined analogously to τ r0 .

ρα1 : S
+
1,1 × S

+
1,1

2:1
−→ A+

1

Defined analogously to τ1, but the node is blown up.

ρβ1 : S
−
1,1 × S

−
1,1

2:1
−→ B+

1

Defined analogously to ρα1

For S
−
2 there are the following morphisms.

ηα0 : S
(1,1)
1,2

1:1
−→ A−

0

Defined analogously to ρα0 .

ηβ0 : S
−
1,2

1:1
−→ B−

0

Defined analogously to ρβ0 .

ηα1 : S
+
1,1 × S

−
1,1

1:1
−→ A−

1

Defined analogously to ρα1 .

Now we gather facts about some of the moduli spaces of pointed curves that the domains
of the morphisms just defined consist of. Especially this will be facts about the rational
Chow groups of these spaces.



3 MORPHISMS TO S2 AND R2. 26

1. M1,1 has only one boundary divisor: ∆̃0. It parametrizes curves with one node.
The corresponding Q-class we call δ̃0 := [∆̃0]Q.

2. R1,1 has boundary divisors D̃′′
0 and D̃r

0, defined analogously to D′′
0 and Dr

0. The

corresponding Q-classes we call d̃′′0 and d̃r0. R1,1 is isomorphic to P1, thus d̃′′0 = d̃r0
in the Chow group.

3. M1,2 has boundary divisors ∆̂0 and ∆̂1. A curve parametrized by a general point
of ∆̂0 is irreducible with one node. A general curve parametrized by ∆̂1 consists
of two irreducible components, one smooth elliptic curve and one smooth rational
curve with two marked points. The corresponding Q-classes we call δ̂0 and δ̂1.

4. R1,2 has boundary divisors D̂′′
0 , D̂

r
0 and D̂1. Where D̂′′

0 and D̂r
0 are defined analo-

gously to D′′
0 and Dr

0. For a Prym curve (X;L; b; p, q) parametrized by a general
point of D̂1, X consists of two irreducible components, one smooth elliptic curve
and one smooth rational curve with two marked points. The Prym sheaf L is
nontrivial restricted to the elliptic curve and (necessarily) trivial restricted to the

rational curve. The Q-classes d̂′′0 and d̂r0 are equivalent in the Chow group, because
they are the pullbacks of the corresponding classes on R1,1.

5. S
−
1,1 and S

−
1,2 are justM1,1 respectivelyM1,2 because a odd Prym sheaf on a genus

1 curve is trivial. In later computations, we will usually replace S
−
1,1 and

S
−
1,2 by M 1,1 respectively M1,2 without further mentioning.

6. S
+
1,1: The boundary divisors are Ã+

0 and B̃+
0 . Defined analogously to A+

0 and B+
0 .

The corresponding Q-classes α̃+
0 and β̃+0 are equivalent in the Chow group, since

S
+
1,1

∼= P1.

7. S
+
1,2: The boundary divisors are Â+

0 , B̂
+
0 and Â+

1 . The Q-classes α̂+
0 and β̂+0 are

equivalent in the Chow group, since they are the pullbacks of the corresponding
classes on S1,1.

8. S
(1,1)
1,2 : There are, among others, the boundary divisors Ǎ0 and B̌0 whose general

points parametrize irreducible curves with one node that is blown up in the case
of B̌0. The Q classes α̌0 and β̌0 are not equivalent.

The facts just listed are probably all known (for some of them c.f. [BF09a], Page 8, and
[BF09b]). One way of proving them, is to use that the moduli spaces of curves with one
marked points appearing, are all isomorphic to certain quotients of M0,4. The moduli
spaces of curves with two marked points appearing, are, after forgetting the order of
the two marked points, isomorphic to certain quotients of M0,5. For an example look
at Part (ii) of the following Lemma. Forgetting the order of the two marked points on
the genus 1 curves does not change the coarse moduli spaces.

Lemma 23 (i) Let

π(2,2,1) :M0,5 →M0,(2,2,1), [(X; (p1, ...., p4, p0))] 7→ [(X; ({p1, p2}, {p3, p4}, {p0}))]
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be the quotient morphisms of Definition 12, and let a ∈ {1, 2} and b ∈ {3, 4} be arbitrary.
We define

C ′′ := π(2,2,1)([1, 2]), C ′ := π(2,2,1)([3, 4]), Cr := π(2,2,1)([a, b]),

C1:1 := π(2,2,1)([a, 0]), C1 := π(2,2,1)([b, 0])

These images are independent of the choice of a and b, which implies that the moduli
space M0,(2,2,1) has exactly the five boundary components C ′, C ′′, Cr, C1 and C1:1.

(ii) There is an isomorphism M0,[4,1] → M1,[2]
∼= M1,2. By combining this with

the forgetful morphism M0,(2,2,1) → M0,[4,1] we define a finite surjective morphism

θ :M0,(2,2,1) →M1,2

Proof: (i): Easy to check. (For the notation used, c.f. Definition 18.)

(ii): To a point [(D;A, p)] ∈ M0,[4,1], let f : Y → D be the admissible 2 : 1 cover of
(D;A), and let Q be the set f−1(p). Then [(D;A, p)] 7→ [(Y ;Q)] defines a morphism
θ′ : M0,[4,1] → M1,[2]

∼= M1,2. It is easy to check that it is 1:1 on the locus of smooth
curves. Since both moduli spaces are normal projective varieties this suffices to prove
that θ′ is an isomorphism. �

Lemma 24 The following table shows the pushforwards of several classes by the mor-
phisms defined in this section.

Morphism class Pushforward

τ ′0 1 2d′0
τ ′0 c′ 2[E′,′]Q
τ ′0 c′′ d′0d

′′
0

τ ′0 cr 2d′0d
r
0

τ ′0 c1 4d′0d1
τ ′0 c1:1 4d′0d1:1
τ ′′0 1 2d′′0
τ ′′0 δ̂0 2d′0d

′′
0

τ ′′0 δ̂1 2d′0d1
τ1 d̃′′0 ⊗ 1 d′′0d1
τ1 d̃′′0 ⊗ 1 d′′0d1
τ1 d̃r0 ⊗ 1 dr0d1
τ1 1⊗ δ̃0 d′0d1
τ1:1 d̃′′0 ⊗ 1 d′0d1:1
τ1:1 1⊗ d̃′′0 d′0d1:1
τ1:1 d̃r0 ⊗ 1 dr0d1:1
τ1:1 1⊗ d̃r0 dr0d1:1
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Morphism class Pushforward

ρα0 1 2α+
0

ρα0 α̌0 4[C+]Q
ρα0 β̌0 2α+

0 β
+
0

ρβ0 1 2β+0
ρβ0 α̂+

0 2α+
0 β

+
0

ρβ0 β̂+0 4[E]Q
ρα1 α̃+

0 ⊗ 1 2α+
0 α

+
1

ρα1 1⊗ α̃+
0 2α+

0 α
+
1

ρα1 β̃+0 ⊗ 1 2β+0 α
+
1

ρα1 1⊗ β̃+0 2β+0 α
+
1

ρβ1 δ̃0 ⊗ 1 2α+
0 β

+
1

ρβ1 1⊗ δ̃0 2α+
0 β

+
1

Morphism class Pushforward

ηα0 1 2α−
0

ηα0 α̌0 4[C−]Q
ηα0 β̌0 2α−

0 β
−
0

ηβ0 1 2β−0
ηβ0 δ̂0 2α+

0 β
+
0

ηα1 α̃+
0 ⊗ 1 2[X−]Q

ηα1 β̃+0 ⊗ 1 2β−0 α
−
1

ηα1 1⊗ δ̃0 2[Y −]Q

Proof: By counting the degree of the given morphism on the given cycle, and comparing
the automorphism number of an object parametrized by a general point of the cycle,
with the automorphism number of the object parametrized by the image of such a point,
under the given morphism. �

3.3 Hodge classes

Another type of cycle classes used in our computation, beside classes of closed strata
of the stratifications according to topological type, are first Chern classes of the Hodge
bundles on moduli spaces, and their pullbacks.

Definition 25 Let π̃R : R1,1 −→ M1,1, π̃
+ : S

+
1,1 −→ M1,1, π̂

+ : S
+
1,2 −→ M 1,2, and

π̌ : S
(1,1)
1,2 −→ M1,2 be the usual forgetful morphisms, and let θ : M0,(2,2,1) → M1,2 be

the morphism of Lemma 23 (ii). Let λ, λ̃ resp. λ̂ be the first Chern class of the Hodge
bundle on M2, M1,1 resp. M1,2.

We define classes :

l := (πR)
∗λ, l+ := (π+)

∗λ, l− := (π−)
∗λ, l̃ := (π̃R)

∗λ̃,

l̃+ := (π̃+)∗λ̃, l̂+ := (π̂+)∗λ̂, ľ := (π̌)∗λ̂, l̄ := θ∗λ̂
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Lemma 26 We can describe the pullbacks of l, l+ and l− by the boundary morphisms
in the following way

(i) (τ1)
∗l = λ̃⊗ 1 + 1⊗ l̃

(ii) (τ1:1)
∗l = l̃ ⊗ 1 + 1⊗ l̃

(iii) (τ ′0)
∗l = l̄

(iv) (τ ′′0 )
∗l = λ̂

(v) (ρα0 )
∗l+ = ľ

(vi) (ρβ0 )
∗l+ = l̂+

(vii) (ρα1 )
∗l+ = l̃+ ⊗ 1 + 1⊗ l̃+

(viii) (ρβ1 )
∗l+ = λ̃⊗ 1 + 1⊗ λ̃

(ix) (ηα0 )
∗l− = ľ

(x) (ηβ0 )
∗l− = λ̂

(xi) (ηα1 )
∗l− = λ̃⊗ 1 + 1⊗ l̃+

Proof: First consider the commutative diagram

S
(1,1)
1,2

π̌

��

ρα0 // S
+
2

π+

��

M1,2
f

// M2

where f is the morphism corresponding to gluing the two marked points on a curve.
Because of the way l+ and ľ are defined, it suffices to show λ̂ = f∗λ in order to prove
(v). That this equation indeed is true, is shown in [Mum83], § 10. The assertions (iii),
(iv), (vi), (ix) and (x) can be proved in the same way.

Now we consider the commutative diagram:

R1,1 ×R1,1

π̃R×π̃R
��

τ1:1 // R2

πR

��

M1,1 ×M 1,1
g

// M2

Where g is the morphism corresponding to gluing two genus 1 curves, each with one
marked point, together at those marked points. In [[Mum83], § 10. g∗λ = λ̃⊗ 1+ 1⊗ λ̃
is proven (there the notation is slightly different). From this (i) follows. (ii), (vii), (viii)
and (xi) can be proved analogously.

�

If λ is the fist Chern class of the Hodge bundle on a M1,n, n ≥ 1 arbitrary, then for
δ0 the Q class of the divisor of M1,n parametrizing irreducible curves with one node,
λ = 1

12δ0 (c.f. [BF09a] Page 8). By pulling these relations back one obtains the following
equation:
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Lemma 27

(i) λ̃ = 1
12 δ̃0

(ii) λ̂ = 1
12 δ̂0

(iii) l̄ = 1
12 (2c

′ + 2c′′ + 2cr)

(v) l̃ = 1
12 θ̃

∗δ̃0 =
1
12(d̃

′′
0 + 2d̃r0) =

1
4 d̃
r
0

(vi) ľ = 1
12 (θ̌)

∗δ̂0 =
1
12 (α̌0 + 2β̌0)

(v) l̃+ = 1
12 θ̃

∗δ̃0 =
1
12(α̃

+
0 + 2α̃+

0 ) =
1
4 α̃

+
0

(v) l̂+ = 1
12(α̂

+
0 + 2α̂+

0 ) =
1
4 α̂

+
0

Lemma 28 All the following products are equal to 0 in the rational Chow rings they
are contained in.

l2d′0, l2d′′0, l2dr0, (l+)2α+
0 , (l+)2β+0 , (l−)2α−

0 , (l−)2β−0

Proof: Take for example (l+)2α+
0 . Using the boundary morphism ρα0 : S

(1,1)
1,2

1:1
−→ A+

0

and the fact that α+
0 = 1

2 (ρ
α
0 )∗(1) we can write (l+)2α+

0 by the projection formula as
1
2(ρ

α
0 )∗(ρ

α
0 )

∗(l+)2. According to Lemma 26 (ρα0 )
∗(l+) = ľ, thus (l+)2α+

0 = 1
2(ρ

α
0 )∗(ľ)

2.

By definition ľ = (π̌)∗λ̂. But λ̂ is, as shown in [Mum83] § 10., equal to the pullback of
λ̃ from M1,1 to M1,2. M1,1 is one dimensional, thus (λ̃)2 = 0. This implies (ľ)2 = 0,
which pushed forward by ρα0 yields (l+)2α+

0 = 0. That the other products listed in the
Lemma are equal to 0 can be proved analogously. �

4 Computation of the rational cohomology

4.1 The rational Picard group

Lemma 29 The Chow groups A2,Q(R2), A2,Q(S
+
2 ) and A2,Q(S

−
2 ), are isomorphic to

the rational Picard groups PicQ(R2), PicQ(S
+
2 ) respectively PicQ(S

−
2 ), an they are gen-

erated by the boundary divisors of the moduli spaces. Furthermore the linear relations
of Lemma 21 are the only ones. Thus:

(i) A2,Q(R2) = (d′0Q⊕ d′′0Q⊕ dr0Q⊕ d1Q⊕ d1:1Q)/(d′0 + 6d′′0 − 3dr0 + 12d1 − 8d1:1)Q

(ii) A2,Q(S
+
2 ) = (α+

0 Q⊕ β+0 Q⊕ α+
1 Q⊕ β+1 Q)/(3α+

0 − 4β+0 − 8α+
1 + 72β+1 )Q

(iii) A2,Q(S
−
2 ) = α−

0 Q⊕ β−0 Q⊕ α−
1 Q

Proof: That the second Chow groups are generated by boundary divisors and are
isomorphic to the rational Picard groups is a special case of Corollary 19 (iv) resp. (iii).

It remains to show that there are no linear relations between the boundary classes other
than those of lemma 21.

To do this we compute the intersection numbers of all boundary classes with the Q-
classes of all the 2-dimensional closed strata of the stratifications of our moduli spaces
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according to topological type. These are the cycles lying above the cycles ∆00 and ∆01

ofM2 with respect to the forgetful morphisms. They are described in the appendix. For
a codimension 1 cycle d and a codimension 2 cycle e we take the intersection number
to be the number n such that de = n[x] where x is a general point of the moduli space.
Note that in the definition we use the class [x], not [x]Q, to be consistent with [Mum83].
For R2 we get the intersection numbers:

Underlying stratum of M2 stratum class d′0 d′′0 dr0 d1 d1:1

∆00 [E′,′]Q −1
2

1
4 0 0 1

8

∆00 [E′,′′]Q 0 −1
2 0 1

4 0

∆00 [E′,r]Q −1 0 0 1
4

1
4

∆00 [Er,r]Q
1
4 0 −1

4 0 1
8

∆01 [F ′
1]Q 0 1

4
1
4 − 3

48 0

∆01 [F ′′
1 ]Q

1
4 0 0 − 1

48 0

∆01 [F r1 ]Q
1
4 0 0 − 1

48 0

∆01 [F ′
1:1]Q

1
4 0 1

4 0 − 3
48

∆01 [F r1:1]Q
1
4 0 1

4 0 − 3
48

If we have a linear relation α1d
′
0+α2d

′′
0+α3d

r
0+α4d1+α5d1:1 = 0 between the boundary

components, the vector α = (α1, ..., α5) has to lie in the kernel of the 9×5 matrix formed
by the intersection numbers in the table above. One can check, that this matrix has rank
4 and thus has 1-dimensional kernel, and that the relation d′0 +6d′′0 − 3dr0 +12d1 − 8d1:1
indeed lies in its kernel.

For S
+
the intersection numbers are:

Underlying stratum of M2 stratum class α+
0 β+0 α+

1 β+1
∆00 [C+]Q −1 1

4
1
16

1
16

∆00 [D+]Q 0 −1
4

1
8 0

∆00 [E]Q 0 −1
8

1
16 0

∆01 [X+]Q
1
8

1
8 − 3

192 0

∆01 [Y +]Q
1
8 0 0 − 1

192

∆01 [Z+]Q
1
8

1
8 − 3

192 0

One can check that the 6 × 4 matrix formed by the intersection numbers, has rank 3,
and that 3α+

0 − 4β+0 − 8α+
1 + 72β+1 lies inside the kernel.

For S
−
the intersection numbers are:

Underlying stratum of M2 stratum class α−
0 β−0 α−

1

∆00 [C−]Q −1 1
4

1
8

∆00 [D−]Q 0 −1
4

1
8

∆01 [X−]Q
1
8 0 − 1

192

∆01 [Y −]Q
1
8

1
8 − 3

192

∆01 [Z−]Q
1
8 0 − 1

192
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The 5× 3 matrix formed by the intersection numbers has rank 3.

As examples we will compute some intersection numbers from the tables above. The
other numbers can be computed analogously. From [Mum83], Theorem 10.1, we know
that δ0[∆00]Q = −1

4p, δ1[∆00]Q = 1
8p, δ1[∆01]Q = − 1

48p and δ0[∆01]Q = 1
4p, where p is

the class [y] of a general point of M2.

For X ∈ {R2, S
+
2 , S

−
2 } let S be one of the codimension 2 cycles on X listed in the tables

above. If π : X →M2 is the forgetful morphism, then π∗S = mD for some m ∈ Q, and
for D the Q-class of the reduced image of S under π, thus D = [∆00]Q or D = [∆01]Q.
The number m is listed for all cycles S in the appendix. Thus one can compute the
intersection number n of S with the pullback of δi (i = 0, 1) by using the forgetful map
π and the projection formula:

π∗δiS = n[x] ⇔ δiπ∗S = n[y] = np

⇔ mDδi = np

Where Dδi is one of the four known intersections on M2 mentioned above.

For the example E′,′ we have (πR)∗[E
′,′]Q = [∆00]Q, thus π∗δ0[E

′,′]Q = −1
4 [x] and

π∗δ1[E
′,′]Q = 1

8 [x].

We also have Dr
0 ∩ E′,′ = D1 ∩ E′,′ = ∅ (as one can show using the description of

these strata in the appendix), so the corresponding intersection numbers are 0. Using
(πR)

∗δ0 = d′0 + d′′0 + 2dr0 and (πR)
∗δ1 = d1 + d1:1, we get d1[E

′,′]Q = 1
8 [x] and

(d′0 + d′′0)[E
′,′]Q = −

1

4
[x] (2)

The intersection D′′
0 ∩ E′,′ = G′ (use description in the appendix) is proper, so by

Summary 5 (iv) we can treat the intersection as transversal and we get d′′0[E
′,′]Q = [G′]Q.

G′ consist of one point, and the corresponding Prym curve has 4 automorphisms (c.f.
appendix), thus d′′0 [E

′,′]Q = 1
4 [x]. By plugging this into equation (2) we obtain the last

intersection number d′0[E
′,′]Q = −1

2 [x].

All rows in the above tables can be computed in this way, except for the ones containing
the intersection numbers of E′,′′, E′,r and D−. In computing the first two one has to use
additionally the relation [E′,r]Q = 2[E′,′]Q + [E′,′′]Q. For the intersections with [D−]Q
one uses the relation 12[X−]Q + [C−]Q − 4[Y −]Q = [D−]Q. Both relations are proven
in Lemma 22. �

Remark: In [BF09a], Page 5-6, it is claimed that the boundary components of S+
2 (and

S−
2 ) are independent, which results in wrong Betti (and Hodge) numbers computed for
S+
2 . It is claimed that Cornalba’s proof of independence of the boundary classes for

genus g ≥ 3 in [Cor89], can also be applied to g = 2. Cornalba’s proof works similar to
the proof of the lemma above by computing intersections of the boundary classes with
various test curves. The proof does not extend to genus 2, because some of the families
used do not yield test curves in the genus 2 case but only points. (For example one
family is constructed by attaching a fixed elliptic curve to a moving point on a fixed
g − 1 curve. For genus g = 2 all the curves in the family are isomorphic.).
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4.2 Hodge numbers

Theorem 30 For every X ∈ {R2, S
+
2 , S

−
2 }, the rational cohomology of R2 is algebraic,

i.e. all odd cohomology groups vanish, and for all n ∈ N we have H2n
Q (X) = AnQ(X).

Furthermore:

(i) The boundary classes generate the Q-vectorspace H2
Q(X).

(ii) There is an ample divisor L which is a linear combination of the boundary classes
of X, such that LH2

Q(X) = H4
Q(X). Thus the products of L with the boundary classes

generate the Q-vectorspace H4
Q(X).

Hence the boundary classes generate the Q-algebras H∗
Q(X) and A∗

Q(X).

Proof: All except part (ii) follows as a special case from Corollary 19 (ii) and (iv).

Proof of (ii): S2 being projective, there is an ample divisor on this space. Like every
divisor, according to lemma 29, it is equivalent to a linear combination L of boundary
classes. Of course L is also ample. According to the Hard Lefshetz Theorem, multi-
plication with L induces an isomorphism from H2

Q(X) to H4
Q(X). The Hard Lefshetz

Theorem holds for our moduli spaces according to Summary 4 (i) �

Theorem 31 R2, S
+
2 and S

−
2 all have Hodge diamonds of the following form

1
0 0

0 n 0
0 0 0 0

0 n 0
0 0

1

with n = 4 for R2 and n = 3 for S
+
2 as well as S

−
2 .

Proof: For every X ∈ {R2, S
+
2 , S

−
2 } h

2,0(X) = 0 by Corollary 19 (v) , thus, due to
the symmetries of the Hodge diamond, also h0,2(X) = 0, h1,3(X) = 0 and h3,1(X) = 0.
Theorem 30 then yields h1,1(X) = h2,2(X), and the value for n = h1,1(X) is given by
Lemma 29. �

4.3 The cohomology rings in terms of generators and relations.

By Theorem 30 we know that for our moduli spaces the Chow ring and the rational
cohomology ring coincide, and that they are generated by the boundary classes. Now
we determine the graded ring structures:

Theorem 32 (i) The rational Chow ring A∗
Q(R2) is as a graded Q-Algebra isomorphic

to the quotient Q[d′0, d
′′
0 , d

r
0, d1, d1:1]/I, where I is the homogeneous ideal generated by

the following (independent) elements:
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d′0 + 6d′′0 − 3dr0 + 12d1 − 8d1:1,

d′′0d1:1, d′′0d
r
0, d1d1:1,

d1(d
′′
0 − dr0), d1:1(d

′
0 − dr0), 4(d1:1)

2 + dr0d1:1, 2d′0d
′′
0 +4d′0d1 − 4d′0d1:1 − d′0d

r
0,

d′0(d
r
0)

2, (d′0)
2d′′0

(ii) A∗
Q(S

+
2 )

∼= Q[α+
0 , β

+
0 , α

+
1 , β

+
1 ]/J , where J is the homogeneous ideal generated by the

following (independent) elements:

3α+
0 − 4β+0 − 8α+

1 + 72β+1 ,

α+
1 β

+
1 , β+0 β

+
1 , α+

0 α
+
1 − β+0 α

+
1 ,

(α+
0 )

2β+0 , (α+
0 )

2(α+
1 − β+1 )

(iii) A∗
Q(S

−
2 )

∼= Q[α−
0 , β

−
0 , α

−
1 ]/K, where K is the homogeneous ideal generated by the

following (independent) elements:

24(α−
1 )

2 + α−
0 α

−
1 + 2β−0 α

−
1 , 12(β−0 )2 + 24β−0 α

−
1 + α−

0 β
−
0 ,

3(α−
0 )

2 − 4α−
0 β

−
0 − 8α−

0 α
−
1 + 80β−0 α

−
1

Proof: The general idea of the proof and many of its steps are adopted from [BF09a].

The rational Chow rings of our Moduli spaces are generated by the boundary compo-
nents according to Theorem 30. Thus there is a surjective morphism from the quotient
algebras of our Theorem to these Chow rings, if only the elements listed above as gen-
erators of the ideals of relations I, J and K, indeed equal zero in the rational Chow
ring.

If this is shown, the following fact implies, that the morphisms are even isomor-
phisms: The homogeneous components of the algebra Q[d′0, d

′′
0 , d

r
0, d1, d1:1]/I have

Q-vectorspace dimensions 1, 4, 4, 1, 0, 0, ..., whereas the homogeneous components of
Q[α+

0 , β
+
0 , α

+
1 , β

+
1 ]/J and Q[α−

0 , β
−
0 , α

−
1 ]/K have dimensions 1, 3, 3, 1, 0, 0, ..., as one can

check using a coputer algebra system like Macaulay 2. These are exactly the vectorspace
dimensions of the homogeneous components of the rational Chow rings (according to
theorem 31).

To prove most of the relations, we will use the finite morphisms onto boundary
components described in section 3.2.2. By these morphisms we will push forward
classes and relations. Many of the relations we will push forward are already described
in section 3.2.2. Pushforwards of boundary cycles are listed in the tables of Lemma
24. In the computations we will use these facts without mentioning that we take them
from section 3.2.2.

First we prove the relations for R2.

The linear relation
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d′0 + 6d′′0 − 3dr0 + 12d1 − 8d1:1 = 0 (3)

holds by Lemma 21.

A Prym curve corresponding to a point in D′′
0 can not correspond to a point in D1:1.

The preimage of such a point under τ ′′0 : M 1,2 −→ D′′
0 , would have to correspond to a

reducible curve. Such a curve is of the following form: It consist of a component D of
genus 1, and a component E ∼= P1 with two marked points on it. D and E meet in one
node. The Prym curve generated by gluing the marked points has a genus 1 component
corresponding to D. Restricted to this component its Prym sheaf is trivial. The Prym
curve can thus not correspond to a point in D1:1. So D

′′
0 ∩D1:1 = 0, and:

d′′0d1:1 = 0 (4)

Similarly one can prove

d′′0d
r
0 = 0 (5)

and

d1d1:1 = 0 (6)

Now we use the morphism τ1 : M1,1 × R1,1 −→ D1. In A1
Q(R1,1) the relation d̃′′0 = d̃r0

holds . Thus we also have 1⊗ d̃′′0 = 1⊗ d̃r0 in A1
Q(M1,1 ×R1,1). Pushing this forward by

τ1 one gets:

(τ1)∗(1⊗ d̃′′0) = (τ1)∗(1⊗ d̃r0)

⇔ d1d
′′
0 = d1d

r
0

⇔ d1(d
′′
0 − dr0) = 0 (7)

Similarly, but using the τ1:1 : R1,1 ×R1,1 −→ D1:1, we get:

d1:1(d
′
0 − dr0) = 0 (8)

According to [Mum83], page 321, in A∗
Q(M2) the relation 10λ = δ0 +2δ1 holds. Pulling

this back by πR to R2 one gets:

l =
1

10
(d′0 + d′′0 + 2dr0 + 2d1 + 2d1:1) (9)

Multiplying equation (9) with d1:1 and using equations (6), (4) and (8) yields:

d1:1l =
1

10
(3d1:1d

r
0 + 2(d1:1)

2) (10)



4 COMPUTATION OF THE RATIONAL COHOMOLOGY 36

On the other hand, because of d1:1 =
1
2 (τ1:1)∗(1)) we can write d1:1l =

1
2(τ1:1)∗((τ1:1)

∗l)
by the projection formula. According to the Lemmata 26 and 27

(τ1:1)
∗l = l̃ ⊗ 1 + 1⊗ l̃ =

1

4
(d̃r0 ⊗ 1) +

1

4
(1⊗ d̃r0)

We use d1:1d
r
0 = (τ1:1)∗(d̃r0 ⊗ 1) = (τ1:1)∗(1⊗ d̃r0) and get:

d1:1l =
1

2
(τ1:1)∗((τ1:1)

∗l) =
1

2
(τ1:1)∗(

1

4
(d̃r0 ⊗ 1) +

1

4
(1⊗ d̃r0))

=
1

2

1

4
(d1:1d

r
0 + d1:1d

r
0) =

1

4
d1:1d

r
0

By subtracting the equation d1:1l =
1
4d1:1d

r
0 from equation (10), and multiplying by 20,

one gets:

4(d1:1)
2 + dr0d1:1 = 0 (11)

The last codimension 2 relation

2d′0d
′′
0 + 4d′0d1 − 4d′0d1:1 − d′0d

r
0 (12)

we have proven earlier (Lemma 22).

To obtain the codimension 3 relations we use that l2d′0 = l2d′′0 = l2dr0 = 0 (cf. lemma
28).

Because of d′′0 = 1
2(τ

′′
0 )∗1 we can write d′′0l =

1
2(τ

′′
0 )∗((τ

′′
0 )

∗l). According to Lemma 26
and 27 one has

(τ ′′0 )
∗l = λ̂ =

1

12
δ̂0

By using d′0d
′′
0 = 1

2(τ
′′
0 )∗δ̂0 we get

d′′0l =
1

2
(τ ′′0 )∗(

1

12
δ̂0) =

1

12
d′0d

′′
0

Thus 0 = l2d′′0 = 1
12 ld

′
0d

′′
0 = 1

144 (d
′
0)

2d′′0 , and so

(d′0)
2d′′0 = 0 (13)

Using d′0 = 1
2 (τ

′
0)∗1 we can write d′0l =

1
2 (τ

′
0)∗((τ

′
0)

∗l). According to Lemma 26 and 27
one has

(τ ′0)
∗l = l̄ =

1

6
(c′ + c′′ + cr)

By using the pushforwards of Lemma 24 we get
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d′′0l =
1

2
(τ ′0)∗(

1

6
(c′ + c′′ + cr)) =

1

12
(2[E′,′]Q + d′0d

′′
0 + 2d′0d

r
0)

Together with the relation 2[E′,′]Q + d′0d
′′
0 = d′0d

r
0 of Lemma 22 (iii), this yields

d′0l =
1

4
d′0d

r
0

Thus 0 = l2d′0 =
1
4 ld

′
0d
r
0 =

1
16d

′
0(d

r
0)

2, and so

d′0(d
r
0)

2 = 0 (14)

We have proven that the generators of the ideal I are indeed equal to 0 in the rational
Chow ring of R2.

Now we prove the relations on S
+
2

The linear relation

3α+
0 − 4β+0 − 8α+

1 + 72β+1 = 0 (15)

holds by Lemma 21.

Similar to what was done for R2 above, one can show that A+
1 ∩B

+
1 = ∅ andB+

0 ∩B
+
1 = ∅,

so we have the relations

α+
1 β

+
1 = 0 (16)

and

β+0 β
+
1 = 0 (17)

Proceeding similarly as in the proof of equation 7 and using the morphism ρα1 : S
+
1,1 ×

S
+
1,1 −→ A+

1 we get:

α+
1 (α

+
0 − β+0 ) = 0 (18)

To obtain the codimension 3 relations, similar to the case of R2 we use that α+
0 (l

+)2 =
β+0 (l

+)2 = 0 (c.f. Lemma 28).

Because of β+0 = 1
2(ρ

β
0 )∗1 we can write β+0 l

+ = 1
2(ρ

β
0 )∗((ρ

β
0 )

∗l+). According to Lemma
26 and 27 one has

(ρβ0 )
∗l+ = l̂+ =

1

4
α̂+
0

By using α+
0 β

+
0 = 1

2 (ρ
β
0 )∗α̂

+
0 we get

β+0 l
+ =

1

2
(τ ′0)∗(

1

4
α̂+
0 ) =

1

4
α+
0 β

+
0
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Thus 0 = β+0 (l
+)2 = 1

4α
+
0 β

+
0 l

+ = 1
16 (α

+
0 )

2β+0 , and so

(α+
0 )

2β+0 = 0 (19)

We would also like to make use of α+
0 (l

+)2 = 0, by expressing α+
0 (l

+)2 in a nontrivial way
as a product of boundary classes, but the morphism ρα0 does not help. We instead use
equation (15) to write 3α+

0 as 4β+0 +8α+
1 −72β+1 and to get 0 = (4β+0 +8α+

1 −72β+1 )(l
+)2.

Because of β+0 (l
+)2 = 0 this simplifies to

(α+
1 − 9β+1 )(l

+)2 = 0 (20)

We can write α+
1 l

+ = 1
4(ρ

α
1 )∗((ρ

α
1 )

∗l+), and here the Lemmata 26 and 27 yield

(ρα1 )
∗l+ = l̃+ ⊗ 1 + 1⊗ l̃+ =

1

4
(α̃+

0 ⊗ 1 + 1⊗ α̃+
0 )

By using α+
0 α

+
1 = 1

2(ρ
α
1 )∗(α̃

+
0 ⊗ 1) = 1

2 (ρ
α
1 )∗(1⊗ α̃+

0 ) we get

α+
1 l

+ =
1

4
(ρα1 )∗(

1

4
(α̃+

0 ⊗ 1 + 1⊗ α̃+
0 )) =

1

4
α+
0 α

+
1

Analogously, from β+1 l
+ = 1

4 (ρ
β
1 )∗((ρ

β
1 )

∗l+) we get to

β+1 l
+ =

1

4
(ρβ1 )∗(

1

12
(α̃+

0 ⊗ 1 + 1⊗ α̃+
0 )) =

1

12
α+
0 β

+
1

By using α+
1 l

+ = 1
4α

+
0 α

+
1 and β+1 l

+ = 1
12α

+
0 α

+
1 one can now rewrite equation (20)

0 = (α+
1 − 9β+1 )(l

+)2 = α+
0 (

1

4
α+
1 − 9

1

12
β+1 )l

+ = (α+
0 )

2(
1

16
α+
1 − 9

1

144
β+1 )

Thus

(α+
0 )

2(α+
1 − β+1 ) = 0 (21)

(The codimension 3 relations computed in [BF09a], except of (α+
0 )

2β+0 = 0, are
incompatible with our results.)

Now we come to the relations on S
−
2 .

The relation 12(δ1)
2 + δ0δ1 = 0 holds on M 2 as follows directly from Theorem 10.1. of

[Mum83]. Pulling this relation back by π− yields the first relation

24(α−
1 )

2 + α−
0 α

−
1 + 2β−0 α

−
1 = 0 (22)

Pulling back the relation 10λ = δ0 + 2δ1 by π− one gets:

l− =
1

10
(α−

0 + 2β−0 + 4α−
1 ) (23)



4 COMPUTATION OF THE RATIONAL COHOMOLOGY 39

Multiplication by β−0 yields:

l−β−0 =
1

10
(α−

0 β
−
0 + 2(β−0 )2 + 4β−0 α

−
1 ) (24)

On the other hand, because of β−0 = 1
2(η

β
0 )∗(1)), we can write β−0 l

− = 1
2(η

β
0 )∗((η

β
0 )

∗l).
According to the Lemmata 26 and 27

(ηβ0 )
∗l− = λ̂ =

1

12
δ̂0

We use α−
0 β

−
0 = 1

2 (η
β
0 )∗δ̂0 and get:

l−β−0 =
1

2
(ηβ0 )∗(

1

12
δ̂0) =

1

12
α−
0 β

−
0 (∗)

By subtracting the equation β−0 l
− = 1

12α
−
0 β

−
0 from equation (24), and multiplying by

60, one gets:

12(β−0 )2 + 24β−0 α
−
1 + α−

0 β
−
0 (25)

(In [BF09a] it is claimed that l−β−0 = 1
6α

−
0 β

−
0 instead of (∗), from this then follows

3(β−0 )
2 + 6β−0 α

−
1 − α−

0 β
−
0 instead of equation (25).)

To get the last relation we first compute three relations containing classes that can
not immediately be written as products of boundary classes (for the description of the
closed strata defining these classes, c.f. the appendix). The fist of these relations we
take from Lemma 22:

16[X−]Q + [C−]Q − 4α−
0 α

−
1 − α−

0 β
−
0 = 0 (26)

In A1
Q(S

+
1,1) the relation α̃

+
0 = β̃+0 holds, which implies for A1

Q(S
+
1,1×M1,1) the relation

α̃+
0 ⊗ 1 = β̃+0 ⊗ 1. Pushing this forward by the morphism ηα1 : S

+
1,1×M1,1 −→ A−

0 ⊂ S
−
2

yields:

[X−]Q = β−0 α
−
1 (27)

(In [BF09a] the authors claim, that one can get the equation α−
0 α

−
1 = β−0 α

−
1 instead

of equation (27). Using the projection formula and the morphism ηα1 they obtain the
equation α−

0 α
−
1 − (ηα0 )∗(1⊗ δ0) = β−0 α

−
1 . Then they claim that (ηα1 )∗(1⊗ δ0) =

1
2α

−
0 α

−
1 ,

from which their equation would follow. If I understand them correctly, they assume
that S

+
1,1 ×∆0 is mapped 1 : 1 onto A−

0 ∩ A−
1 by ηα1 . This would be wrong. S

+
1,1 ×∆0

is only mapped onto Y −, which is one of the two irreducible components of A−
0 ∩ A−

1 ,
the other being X−. There is no a priori reason for [Y −]Q and [X−]Q to be equivalent,
so their equation does not follow. As one can check after computing all relations, the
equation does not hold.)

By multiplying equation (23) with α−
0 one gets
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l−α−
0 =

1

10
((α−

0 )
2 + 2α−

0 β
−
0 + 4α−

0 α
−
1 ) (28)

On the other hand, because of α−
0 = 1

2(η
α
0 )∗(1)), we can write α−

0 l
− = 1

2(η
α
0 )∗((η

α
0 )

∗l).
According to the Lemmata 26 and 27

(ηα0 )
∗l− = ľ =

1

12
(α̌0 + 2β̌0)

We use [C−]Q = 1
4 (η

α
0 )∗α̌0 and α−

0 β
−
0 = 1

2(η
α
0 )∗β̌0 to get :

l−α−
0 =

1

2
(ηα0 )∗(

1

12
(α̌0 + 2β̌0)) =

1

6
([C−]Q + α−

0 β
−
0 )

By subtracting the equation l−α−
0 = 1

6([C
−]Q + α−

0 β
−
0 ) from equation (28), and multi-

plying by 30, one gets:

5[C−]Q = 3(α−
0 )

2 + α−
0 β

−
0 + 12α−

0 α
−
1 (29)

Plugging equation (27) into equation (26) yields:

16β−0 α
−
1 + [C−]Q − 4α−

0 α
−
1 − α−

0 β
−
0 = 0

By multiplying this with 5 and plunging in equation (29) we get

3(α−
0 )

2 − 4α−
0 β

−
0 − 8α−

0 α
−
1 + 80β−0 α

−
1 (30)

This is the last relation we had to check. �

Remarks: (i) One can test these relations by pulling the known relations
δ0δ1 + 12(δ0)

2 = 0 and 528(δ1)
3 + (δ0)

3 = 0 (known from [Mum83]) back from
M2 to our moduli spaces and check whether they are fulfilled in the rings that Theorem
32 claims to be to the rational Chow rings.

(ii) While the cohomology rings of S
+
2 and S

−
2 have, according to our computation, the

same Betti numbers, they are still nonisomorphic as is clear by the fact that the relations
in codimension 1 and 2 determine the cohomology ring of S

−
2 completely, whereas for

S
+
2 , codimension 3 relations are needed.

5 Appendix

5.1 Stratifications “by topological type”

We now describe the strata of the stratifications of M 2, S
+
2 , S

−
2 and R2 according to

the topological type of the curves. For one of the moduli spaces beside M2 we mean
by this the irreducible components of the preimages of the strata of M2 under the
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forgetful morphism. In what follows we do rather describe the closures of the strata
than the strata themselves. We call these closures the closed strata of the stratifications
according to topological type.

The description of the stratifications of S
+
2 and S

−
2 can be found in the appendix

of [BF09a]. We use the symbols introduced there for the strata, instead to denote
the closures of the strata, because some of the associated cycle classes appear in our
computations. The stratification of M2 is described in [Mum83] §9., we will use the
notation introduced there for the closed strata.

We now describe the closed strata of R2. We group the strata according to the strata of
M2 they are lying over. For every stratum we will explain how a Prym curve (X;L; b)
parametrized by a general point looks like. We call such a Prym curve a general Prym
curve of the stratum.

Strata over ∆0: For these cycles the underlying stable model C of a generic Prym curve
is irreducible with one node. The cycles are the divisors D′

0, D
′′
0 and Dr

0 described in
section 1.5

Strata over ∆1: For these cycles the underlying stable model C of a generic Prym curve
consist of two smooth irreducible components meeting in one node. Again these divisors
(D1 and D1:1) are described in section 1.5

Strata over ∆00: For these codimension 2 strata the underlying stable model C of a
general Prym curve is an irreducible curve with two nodes.

1. E′,′. General Prym curve: X = C, normalizing either of the two nodes and pulling
back L to this partial normalization yields a nontrivial Prym sheaf.

2. E′,′′. General Prym curve: X = C, normalizing one of the two nodes and pulling
back L to this partial normalization yields in one case a nontrivial Prym sheaf, in
the other case the trivial sheaf, depending on which node was normalized .

3. E′,r. General Prym curve: X is obtained from C by blowing up one of the two
nodes.

4. Er,r. General Prym curve: X is obtained from C by blowing up both nodes.

Strata over ∆01: For these codimension 2 strata the underlying stable model C of a
general Prym curve consists of two irreducible components, one of them, called C1, is
smooth, the other one, C2, has a node.

1. F ′
1. General Prym curve: X = C, L|C1

is nontrivial, L|C2
is trivial.

2. F ′′
1 . General Prym curve: X = C, L|C1

is trivial, L|C2
is nontrivial.

3. F r1 . General Prym curve: X is obtained from C by blowing up the node on C2,
L|C1

is trivial.

4. F ′
1:1. General Prym curve: X = C, both L|C1

and L|C2
are nontrivial.
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5. F r1:1. General Prym curve: X is obtained from C by blowing up the node on C2,
L|C1

is nontrivial.

Strata over C000: For these codimension 3 strata the underlying stable model C of a
general Prym curve consists of two irreducible smooth rational components meeting in
three nodes.

1. G′. General Prym curve: X = C

2. Gr. General Prym curve: X is obtained from C by blowing up one of the nodes.

Strata over C001: For these codimension 3 strata the underlying stable model C of a
general Prym curve consists of two irreducible components C1 and C2 meeting in one
node, each irreducible component having one node.

1. H ′
1. General Prym curve: X = C, restricting L to one of the components yields

a nontrivial Prym sheaf, restricting to the other yields the trivial sheaf.

2. Hr
1 . General Prym curve: X is obtained from C by blowing up the node on one

of the components, L is trivial restricted to the component not blown up.

3. H ′
1:1. General Prym curve: X = C, L is nontrivial on both components.

4. Hr
1:1. General Prym curve: X is obtained from C by blowing up the node on one

of the components, L is nontrivial on both components.

5. Hr,r
1:1. General Prym curve: X is obtained from C by blowing up the nodes on

both components.

5.2 Comparison of automorphisms

As we have shown, there is an isomorphism of coarse moduli spaces aR : M0,[2,4]

∼=
→

R2, and also S
+
2 and S

−
2 are isomorphic to moduli spaces of stable genus 0 curves

with partitioned marked Points. Now, lets say for x ∈ M0,[2,4], one can ask how the
Automorphisms of objects in the class x and objects in the class aR(x) fit together.

The fact that we know aR explicitly only on an open subset ofM 0,[2,4] makes it difficult to
compare the automorphisms on both sides directly. But one can overcome this difficulty
by extending the automorphisms to the local universal deformation spaces of the Prym
curve belonging to aR(x), respectively to the local universal deformation space of the
stable genus 0 curve with marked points belonging to x. This is helpful because on the
loci of smooth curves of these deformation spaces, i.e. almost everywhere, one knows
explicitly how Prym structures and marked points correspond to each other.

(We only spoke about aR in this introduction, but everything also applies to a+ and
a−.)

General notation (part 1): For the rest of the section let M0,• denote one of the
moduli spaces M0,[1,5], M0,[2,4] and M0,[3,3]. We denote by Q2 the one of the moduli
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spaces R2, S
+
2 and S

−
2 the space M0,• is isomorphic to. We call a• : M 0,• → Q2 the

corresponding isomorphism (one out of aR, a+ and a−). (C.f. Lemma 20)

If not specified otherwise (D; {A,B}) is always a genus 0 curve D together with two
disjoint sets A,B of marked points, such that (D; {A,B}) is parametrized by a point
x ∈M0,• . We define y := a•(x).

f : Y → D is always the admissible 2 : 1 cover of (D;A ∪B).

Definition 33 If (D;M) is a stable genus 0 curve with a set M of marked points, then
we call those irreducible components of D the extremities of (D;M) which meet the
rest of D only in one point and which carry only two of the marked points.

Lemma 34 (i) For f : Y → D as in the general assumption, E an extremity of (D;A∪
B), the preimage f−1(E) is an exceptional component of the quasistable curve Y .

(ii) Let Cont1 : Y → C be the contraction of all extremal components of Y , C the stable
model of Y . Let cont1 : D → D̂ be the contraction of all extremities of (D;A∪B). Then
there is a unique finite 2 : 1 morphisms C → D̂ fitting into the following commutative
diagram.

Y
Cont1 //

f

��

C

f̂
��

D
cont1

// D̂

(iii) There is a (not necessarily unique) way to blow up nodes of the curve C such
that the variety X obtained by this can be equipped with a structure (L; b) such that
[(X;L; b)] = y. We pick such a blowup morphism Cont2 : X → C.

Proof: (i): Look at the explicit description of an admissible 2 : 1 cover in the proof of
Cor. 2.5 in [AL02].

(ii): For every exceptional component E contracted to a point by Cont1, cont1 contracts
the extremity f(E) to a point. Considering this, it is obvious how to define f̂ : Y → D̂
to fit the diagram.

(iii): By the construction of a• in the proof of Lemma 16, it is clear that

M 0,•
a• //

π
��

Q2

π′

��

M0,[6] b
// M2

commutes, and thus for any (X;L; b) with [(X;L; b)] = y, X has the same stable model
C as Y . �

General notation (part 2): We will keep the notation of Lemma 34 for the rest of
the section. We fix one Cont2 : X → C as in part (iii).

We will denote by Â resp. B̂ the set of all points of D̂ that come from those marked
points in A resp. B that lie on components of D not contracted by cont1. By H we
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will denote the set of points of D̂ to which extremities of (D;A ∪B) are contracted by
cont1. We set G := Â ∪ B̂. The object (D̂; (G,H)) is then stable and parametrized by
a point of some M 0,(i1,i2) with 3 ≤ i1 + i2 ≤ 6. If we want to retain more information
about the extremities contracted to points of H, we decompose this set into HA, HB,
HAB, where HA contains the points to which extremities carrying only marked points
of A are contracted, HB contains those coming from extremities with marked point
only from B, while to the points of HA,B extremities that carry one point of A and one

point of B are contracted. Note that then (D̂; {(Â,HA), (B̂,HB)},HAB) contains the
full information about the isomorphism class of (D; {A,B}).

Lemma 35 Using the general notation for this section:

(i) For every ϕ ∈ Aut(Y ) and every a, b ∈ Ỹ (Ỹ the non-exceptional subcurve of Y ):

f(a) = f(b) ⇔ f(ϕ(a)) = f(ϕ(b))

Thus for every ϕ ∈ Aut(C) and every a, b ∈ C:

f̂(a) = f̂(b) ⇔ f̂(ϕ(a)) = f̂(ϕ(b))

(ii) There are natural surjective group homomorphisms

Aut(Y )
χ1
−→ Aut(C)

χ2
−→ Aut((D̂; (G,H))

and

Aut(X)
χ′

1−→ Aut(C)

There is also a natural surjective group homomorphism

ψ′
1 : Aut((D;A ∪B)) → Aut((D̂; (G,H)))

(The homomorphisms are defined explicitly in the proof.)

(iii) The kernels Ker χ1 resp. Ker χ
′
1 consist of those automorphisms that are nontrivial

only on the exceptional components of Y resp. X. The kernel Ker ψ′
1 consists of those

ϕ ∈ Aut((D; {A,B}) that are nontrivial only on the extremities of (D;A ∪B).

(iv) Let D̂i be an irreducible component of D̂, Ci := f̂−1(D̂i), and let f̂i : Ci → D̂i be
the restriction of f̂ . There is an automorphism hi on Ci interchanging the two sheets
of f̂i. We call hi the hyperelliptic involution on Ci (although Ci may be reducible and
not a hyperelliptic curve in the usual sense). One can extend hi to an Automorphism
of C, such that it is the identity on all components of C except Ci. We again denote
this extension by hi.

(v) The hi ∈ Aut(C) belonging to the different irreducible components of D̂ generate
the kernel Ker χ2. We call the unique automorphism of Ker χ2 whose restriction to no
component of C is trivial the full hyperelliptic involution of C

Proof: (i): As shown in [AL02], the 2 : 1 admissible cover of a stable genus 0 curve
D with 2g + 2 marked points for g ≥ 2 is unique up to isomorphism. There also an



5 APPENDIX 45

explicit method is given to associate to such a D an admissible 2 : 1 cover. We use this
explicit description in our proof, and one might need to know it in order to understand
the arguments.

Let D̃ be the subcurve of D consisting of all components of D that are no extremities of
(D;A ∪ B), and let D̃1, ..., D̃m be the irreducible components of D̃. For i = 1, ...m, let
Di be the subcurve of D consisting of D̃i and the extremities of D attached to D̃, and
let Yi be the part of Y lying over Di. Define Ỹi := Ỹ ∩ Yi , and denote by f̃i : Ỹi → Di

the restriction of f to Ỹi.

Let each of qi,1, ..., qi,li be a point in which Di meets one other component Dj of
D, let Qi,1, ..., Qi,li be the sets of points in Y lying over qi,1, ..., qi,li . Each Qi,j con-
tains one or two points, an is contained in Ỹi. Let pi,1, ..., pi,ki be the points on D in
which D̃i meets extremities, and let Pi,1, ..., Pi,ki be the sets of points in Y lying over
pi,1, ..., pi,ki . For any ϕ ∈ Aut(Y ), f ◦ ϕ : Y → D is again an admissible 2 : 1 cover of
(D; {A,B}). For any Ỹi, ϕ|Ỹi

is an isomorphism of (Ỹi; {Qi,1, ..., Qi,li}, {Pi,1, ..., Pi,ki})

to some (Ỹj; {Qj,1, ..., Qj,lj}, {Pj,1, ..., Pj,kj}), where j = i is possible.

Now we prove (i) by checking several cases separately.

1. If Ỹi is a smooth connected curve of genus ≥ 2, the assertion of (i) (and (ii)) holds,
since then Ỹi has to be hyperelliptic and every hyperelliptic curve has a unique g12 (C.f.
[Har77], Chapt. IV, Prop. 5.3.)

2. If Ỹi is a smooth connected curve of genus 1, then, for stability reasons, either li > 0
or ki > 0. But knowing one fiber of the induced 2 : 1 cover, determines one g12 on an
elliptic curve uniquely. (C.f. [Har77], Chapt. IV, § 4.)

3. If Ỹi is a smooth connected curve of genus 0, then f̃i : Ỹi → D̃i is ramified in exactly
two points. Thus D̃i carries at most 2 points of A ∪ B. Thus, for reasons of stability
and because D̃i is not an extremity of D, li + ki ≥ 2 has to hold, and one of the P ’s
and Q’s on Ỹi has to contain two elements. So we know that (i) holds for two fibers
of f̃i : Ỹi → D̃i. Because knowing the behavior of an isomorphism of P1’s in 3 points
determines the isomorphism, one can quite easily conclude from this that (i) holds for
all of Ỹi.

4. Otherwise Ỹi consists of two connected components, which both are smooth genus 0
curves. In this case there are no points of A∪B lying on D̃i, for otherwise f̃i : Ỹi → D̃i

was ramified there. Thus, for D̃i to be stable, we must have li + ki ≥ 3. So we know
three fibers of f̃i for which (i) holds. Again it easily follows that (i) holds for all of Ỹi.

(ii): χ1 is defined by ϕ 7→ ϕ∗ for every ϕ ∈ Aut(Y ) where ϕ∗ ∈ Aut(X) is the au-
tomorphism defined by ϕ∗(x) := Cont1(ϕ((Cont

−1
1 (x)))) for all x ∈ X. χ2 is defined

analogously. They are surjective because every automorphism of a curve can obviously
be extended to any curve obtained from it by blowing up nodes. We define χ3 by
ϕ 7→ ϕ∗ for every ϕ ∈ Aut(C) where ϕ∗ ∈ Aut(D̂) is the automorphism defined by
ϕ∗(x) := f̂(ϕ((f̂−1(x)))). The definition of ϕ∗(x) indeed gives a point by (i). We have
to check ϕ∗ ∈ Aut((D̂; (G,H)): ϕ∗ maps points in H to points in H, because they
correspond to the p’s introduced in the proof of (i), and we saw there that ϕ maps the
points lying over them again to such points. The points of C lying over G are exactly
the smooth ramification points of f̂ , and by (i) ϕ has to map such points to such.
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That χ2 is surjective can be proven by again using the decomposition of Y used in the
proof of (i) and again checking it in the four possible cases distinguished there.

The morphism ψ1 obviously exists and is surjective.

(iii): Clear from the definition of χ1 and χ2.

(iv): Obviously hi exists (uniquely). C is of genus 2 and the components Ci are of genus
1 at least, so there can be only two of them, and they can meet only in one point. Thus
one can extend each hi to the other component by the identity.

(v): The Kernel of χ3 consists of all ϕ ∈ Aut(C) such that f̂(ϕ(a)) = f̂(a) for all a ∈ C.
Quite obviously the hi generate this group. �

Lemma 36 Let x ∈M0,• be a point parametrizing (D; {A,B}) and y := a•(y) its image
in Q2. Let (X;L; b) be a object parametrized by y. Then:

(i) Aut((D; {A,B})) is a subgroup of Aut((D;A∪B)) and we call the restriction of the
Morphism ψ′

1 of Lemma 35

ψ1 : Aut((D; {A,B})) → Aut((D̂; (G,H)))

Aut((X;L; b)) is a subgroup of Aut(X). We call the restriction of χ2◦χ
′
1 to this subgroup

ψ2 : Aut((X;L; b)) → Aut((D̂; (G,H)))

From now on we use the abbreviations M := Aut((D; {A,B})) and N := Aut((X;L; b)).

(ii) The group Aut((D̂; {(Â,HA), (B̂,HB)},HAB)), (for the definition of this, c.f. the
general notation (part 2) for this section), is a subgroup of Aut((D̂;G,H)) and:

ψ2(N) = ψ1(M) = Aut((D̂; {(Â,HA), (B̂,HB)},HAB))

(iii) Let r be the number of extremities of (D;A ∪ B), let r′ be the number of those
extremities whose two marked points either lie both in A or lie both in B. Let s be the
number of irreducible components of D. Let I be the group of irrelevant automorphisms
of (X;L; b). We define h := #ψ1(M) = #ψ2(N), i := #I, m := #M and n := #N ,
then:

m = 2r
′

· h, n = 2(s−r) · i · h

and thus
n = 2(s−r−r

′) · i ·m

One can also write i as 2u−1 where u is the number of connected components of X̃ the
non-exceptional subcurve of X.

Proof: The different assertions that one automorphism group is a subgroup of another
one, made in parts (i) and (ii), are all quite obvious.

The first thing we prove is the first equation of part (ii).
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We are in the situation described by the following commutative diagram.

Y

f

��

Cont1

""FF
FF

FF
FF

FF
X

Cont2
����

��
��

��
L, boo o/ o/ o/

{A,B} ///o/o/o/o D

cont1
""EE

EE
EE

EE
EE

C

f̂
��

(G,H) ///o/o/o D̂

Where the curly arrows are meant to symbolize that additional structures are attached
to D, D̂ and X

From now on, we will work in the category of complex analytic spaces.

Let (D → S; {A,B}) be the local universal deformation of (D; {A,B}). Part of the
deformation is a identification ψ of the “central fiber” lying over a special point s0 ∈ S
with (D; {A,B}). A and B are then sets of sections on D meeting the central fibers in
the points of A resp. B. Possibly after making a base change on S we can extend the
2 : 1 admissible cover f : Y → D to a local universal deformation f : Y → D over S. I.e.
f restricted to the fiber over s0 can be identified with f , in a way compatible with ψ. To
see that this is possible, c.f. [HM82], Page 61-62. There the same thing is done for the
local universal deformation of a stable genus 0 curve with ordered marked points, but,
since the elements of A and B are sections (not multi-sections) on our local deformation
space, we can just put an arbitrary ordering on them and by this make (D → S; {A,B})
into a local universal deformation of a curve with ordered marked points.

If we denote the morphism contracting the exceptional components of Y by Cont1 :
X → C and the one contracting the extremities of (D,A∪B) by cont1 : D → D̂, there is,
analogously to Lemma 34 (ii), a morphism of families f̂ : C → D̃ forming a commutative
diagram with Cont1, cont1 and f .

Blowing up the appropriate nodes of C (c.f. Lemma 34 (iii))) and the loci in the
deformation C to which these nodes extend, we arrive at an isomorphism Cont2 : X →
C, such that X → S is a deformation of X. After making a base change we can extend
(L; b) to a Prym- resp. spin structure (L;b) on X . (C.f. [Cor89], Page 570.)

Now we have deformations over (S, s0), forming the diagram

Y

f

��

Cont1

��
>>

>>
>>

>>
X

Cont2
����

��
��

��
L, boo o/ o/ o/

{A,B} ///o/o/o D

cont1
��

>>
>>

>>
>>

C

f̂

��

D̂

And by restricting these families to the fibers over s0 we get back to the diagram above.

We now prove the fist equation of part (ii) of our Lemma. We have to show that for
ϕ ∈ Aut((D̂; (G,H))),



5 APPENDIX 48

ϕ ∈ Im(ψ1) ⇔ ϕ ∈ Im(ψ2) (∗)

In what follows, we use Lemma 35 (ii). First lift an automorphism ϕ ∈ Aut((D̃; (G,H)))
to an element of Aut(f : Y → D), where we denote by Aut(f : Y → D) the automor-
phisms of the admissible 2 : 1 cover, i.e. automorphisms ψ of Y for which there exists an
automorphism ψ of (D;A∪B) such that ψ′ ◦ f = f ◦ψ. We extend this automorphism
to an automorphism ϕ̌ ∈ Aut(f : Y → D), which is possible because f : Y → D is a
local universal deformation of the 2 : 1 admissible cover f : Y → D. By the definition
of Aut(f : Y → D), ϕ̌ induces an automorphism of (D;A∪B) we call ϕ̌1. We restrict ϕ̌
to C and lift it to an automorphism ϕ̌2 ∈ Aut(X ). Restricting ϕ̌1 and ϕ̌2 to the central
fibers, yields automorphism ϕ1 ∈ Aut((D;A ∪B)) and ϕ2 ∈ Aut(X) which are liftings
of ϕ ∈ Aut((D; (G,H))) via the homomorphisms of Lemma 35 (ii).

We have ϕ ∈ Im(ψ1) iff ϕ1 respects the structure {A,B}, and ϕ ∈ Im(ψ2) iff ϕ2 re-
spects the structure (L; b). Respecting the structure here means that {ϕ1(A), ϕ1(B)} =
{A,B}, respectively ϕ∗

2L
∼= L, compatible with b. This in turn is equivalent to ϕ̌1

respecting {A,B}, respectively ϕ̌2 respecting (L;b).

Let S′ be the open dense subset of the base space S over which all fibers of D → S
are smooth. Then over S′ the contraction morphisms Cont1, Cont2 and cont1 are all
isomorphisms, and the diagram of deformations above collapses to :

C′

f ′=f̂ ′

��

L′, b′oo o/ o/ o/

{A′,B′} ///o/o/o D′

(the ′ indicating restriction to the preimages of S′)

On C′ we can also define a spin- resp. Prym structure in the following way: Define a
divisor E as such a linear combination of the preimages under f ′ of the sections in A′

as is described (for points) in Lemma 15 (i)-(iii), and then let L′′ be the line bundle
on C′ coresponding to E. One can show that L′ ∼= L′′ using that restricted to the fiber
over any point of S′, L′′ and L′ are isomorphic, and using that (X ;L;b) is the local
universal deformation of every one of its fibers (c.f. [Cor89] Page 574).

ϕ̌1 and ϕ̌2 can also be restricted to the preimages of S′, where we denote them by ϕ̌′
1

and ϕ̌′
2. Now ϕ̌1 respects {A,B} iff ϕ̌′

1 respects {A′,B′}, while ϕ̌2 respects (L;b) iff ϕ̌′
2

respects (L′;b′).

But L′ as shown above is just the line bundle coresponding to E, and looking at the
definition of the divisor E and at Lemma 15 one sees that its class does not change
under permutations of the sections in A′ ∪B′ wich respect the partition into A′ and B′.
So ϕ̌′

2 respects (L′;b′) iff ϕ̌′
1 respects {A′,B′}.

Going back in our chain of equivalences of “respecting” conditions, the previous sentence
translates to, ϕ2 ∈ Aut((X;L; b) ⇔ ϕ1 ∈ Aut((D; {A,B}, which implies the equivalence
(∗) we wanted to prove.

That also the second equation of Part (ii) holds is easy to check, considering how
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(D̃; {(Ã,HA), (B̃,HB)},HAB) contains the information which kinds of marked points
the contracted extremities of D carried.

(iii): We know Ker ψ1 = Ker ψ′
1 ∩ Aut((D; {A,B})). By Lemma 35 (iii) this means

that Ker ψ1 consists of those Automorphisms of (D; {A,B}) that are nontrivial only on
Extremities of (D;A ∪B). For every such extremity carrying marked points only from
the set A or only from the set B, there is an Automorphism of (D; {A,B}) that swaps
the two marked points and is trivial away form the extremity. These automorphisms
generate Ker ψ1 which consist thus of 2r

′

elements. This together with (ii) implies:

h = m/2r
′

⇔ m = 2r
′

· h

To get the next equation we use

#(Ker ψ2) = #
(

Ker χ′
1 ∩Aut((X;L; b))

)

·#
(

Ker χ2 ∩ χ
′
1

(

Aut((X;L; b))
)

)

Considering Lemma 35 (iii) and the definition of the irrelevant automorphisms of
(X;L; b) (c.f. preliminaries), we see that Ker χ′

1 ∩ Aut((X;L; b)) is just the group
of irrelevant automorphisms. Since the “hyperelliptic involutions” generating Ker χ2

(c.f. Lemma 35 (v)) act trivially on all Prym- or spin sheaves, Ker χ2 is contained in
χ′
1

(

Aut((X;L; b))
)

. By Lemma 35 (iv), #(Ker χ2) = 2s−r. This implies:

h = n/2s−r ⇔ n = 2s−r · i · h

For the last assertion of (iii), c.f. [Lud10] Prop. 2.7., in the case of spin curves. (There
the number of irrelevant automorphisms is 2u instead of 2u−1 due to the different defi-
nition of automorphisms). For Prym curves c.f. [FL10] Remark 6.3. �

5.3 Automorphism numbers

Lemma 37 Let p1, ..., pn be n distinct points of P1 in general position. We describe,
for different n ∈ N, the group A := Aut(P1; {p1, ..., pn}) of automorphisms of P1 that
map points of the set {p1, ..., pn} again to points of this set.

(i) For n ≤ 2, A is an infinite group.

(ii) For n = 3, A has 6 elements corresponding to the permutations of the 3 points.

(iii) For n = 4, A has 4 elements, one is the identity, the others correspond to choosing
two disjoint pairs of the points, and interchanging the points in each pair.

(iv) For n ≥ 5, A consists only of the identity.

Proof: The automorphisms of P1 are the transformations x 7→ Ax+B
Cx+D for A,B,C,D ∈ C.

With this information one can check that the assertions of the Lemma are true. �.

We can use Lemma 37 together with Lemma 36 (iii) to compute the number of auto-
morphisms of a general Prym- or spin curve of one of the strata of the stratifications
by topological type. Lemma 36 allows to reduce to computing the automorphism num-
ber of the corresponding genus 0 curve with 6 sorted marked points. The diagrams of
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these corresponding objects are listed in the table below, and using Lemma 37 their
automorphisms can quite easily be counted.

It may be even easier to draw a diagram for the object (D̃; {(Ã,HA), (B̃,HB)},HAB),
count the number h of automorphisms it allows and compute n using the formula
n = 2(s−r) · i · h. Note that s− r is just the number of irreducible components of D̃.

Example: We take the diagram of the object (D; {A,B}) corresponding to a general
object of a given stratum, and reduce it to a diagram of (D̃; {(Ã,HA), (B̃,HB)},HAB)
in the following way: We keep the markings that do not lie on extremities, and we
introduce for every point to which an extremity is contracted a circle, in the center
of which we insert a dot if the extremity carried two dots, a square if the extremity
carried two squares, and a cross if the extremity carried one square and one dot. A
automorphism must either take all symbols to symbols of the same kind (i.e. dots to
dots, squares to squares, circled dots to circled dots,...) or it it must take all dots to
squares and vice versa, all circled dots to circled squares and vice versa, and take circled
crosses to circled crosses.

For example, in the case of the stratum L+ we get

−→

For M+ we get

−→

Now, using Lemma 37 (ii), it is clear that h = 2 for L+ (it is possible to swap the
square and the dot), and h = 6 for M+. Since both diagrams have only one irreducible
component, s − r = 1 in both cases. The nonexceptional subcurve of a general object
of L+ has one connected components, so here i = 21−1 = 1, while for M+ the nonex-
ceptional subcurve has two connected components, so there i = 22−1 = 2. Putting all
this together we get that the automorphism number n is 4 for L+ and 24 for M+.

The following table contains for each closed stratum of M2 the automorphism numbers
of objects corresponding to general points of the different closed strata of M2, and
the diagram of the object corresponding to the preimage of such a general point under
the isomorphism b : M 0,[6] → M 2, which can be determined easily using the explicit
description of b in [AL02].
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Codim. Stratum Diagram Auto. number

0 S2 2

1 ∆0 2

1 ∆1 4

2 ∆00 4

2 ∆01 4

2 C000 12

2 C001 8

Next, the same for S+
2 , but with an additional column, showing to which class in A∗

Q(M2)
the Q-class of each closed stratum is pushed forward by π+. Concerning the diagram:
Here we of course list the diagram belonging of the preimage of a general point under
a+ : M0,[3,3] → S

+
2 . Which kind of diagram coresponds to the general spin curve of a

stratum can be determined by using that we know such a corespondence already for
M2, that we know the corespondence for all codimension 1 Strata from Section 3.1, and
by considdering how their general spin curves can degenerate, and, when in doubt, by
counting the degree of the strata over M2 and M 0,[6], like in section 3.1.
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Codim. Stratum Diagram Auto’s (π+)∗([...]Q)

0 S
+
2 2 10[M 2]Q

1 A+
0 2 4δ0

1 B+
0 2 3δ0

1 A+
1 8 9

2δ1

1 B+
1 8 1

2δ1

2 C+ 4 2[∆00]Q

2 D+ 2 2[∆00]Q

2 E 4 [∆00]Q
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2 X+ 8 3
2 [∆01]Q

2 Y + 8 1
2 [∆01]Q

2 Z+ 8 3
2 [∆01]Q

3 L+ 4 3[∆000]Q

3 M 24 1
2 [∆000]Q

3 Q+ 16 1
2 [∆001]Q

3 P+ 16 1
2 [∆001]Q

3 U+ 8 [∆001]Q

3 R 16 1
2 [∆001]Q

Next, the same for S
−
2 :
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Codim. Stratum Diagram Auto’s (π−)∗([...]Q)

0 S
−
2 2 6[M2]Q

1 A−
0 2 4δ0

1 B−
0 2 δ0

1 A−
1 8 3δ1

2 C− 2 2[∆00]Q

2 D− 2 2[∆00]Q

2 X− 8 1
2 [∆01]Q

2 Y − 8 3
2 [∆01]Q

2 Z− 8 1
2 [∆01]Q
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3 L− 4 3[∆000]Q

3 P− 8 [∆001]Q

3 U− 8 [∆001]Q

Next, the same for R2:

Codim. Stratum Diagram Auto’s (πR)∗([...]Q)

0 R2 2 15[M 2]Q

1 D′
0 2 6δ0

1 D′′
0 2 δ0

1 Dr
0 2 4δ0

1 D1 4 6δ1

1 D1:1 4 9δ1
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2 E′,′ 4 [∆00]Q

2 E′,′′ 2 2[∆00]Q

2 E′,r 2 4[∆00]Q

2 Er,r 4 [∆00]Q

2 F ′
1 4 3[∆01]Q

2 F ′′
1 4 [∆01]Q

2 F r1 4 [∆01]Q

2 F ′
1:1 4 3[∆01]Q

2 F r1:1 4 [∆01]Q

3 G′ 4 3[∆000]Q

3 Gr 4 3[∆000]Q
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3 H ′
1 4 2[∆001]Q

3 Hr
1 4 2[∆001]Q

3 H ′
1:1 8 [∆001]Q

3 Hr
1:1 4 2[∆001]Q

3 Hr,r
1:1 8 [∆001]Q
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