A Posteriori Error Estimates for Nonconforming Approxinoats
of Evolutionary Convection-Diffusion Problems

S.I1. Repin
V.A. Steklov Institute of Mathematics,
Fontanka 27, 191023 St. Petersburg, Russia
repin@pdmi.ras.ru

SK. Tomar *
RICAM, Austrian Academy of Sciences,
Altenbergerstr. 69, 4040 Linz, Austria
satyendra.tomar@ricam.oeaw.ac.at

Abstract

We derive computable upper bounds for the difference betaeeexact solution of the evolu-
tionary convection-diffusion problem and an approximatid this solution. The estimates are ob-
tained by certain transformations of the integral iderttigt defines the generalized solution. These
estimates depend on neither special properties of the sghdion nor its approximation, and in-
volve only global constants coming from embedding inediesli The estimates are first derived for
functions in the corresponding energy space, and thenlgessttensions to classes of piecewise
continuous approximations are discussed.

Keywords: a posteriori error estimates, time-nonconforming apprations, convection-diffusion
problems

1 Introduction
Letu(z,t) be the generalized solution of the initial-boundary valuebfem
u = Lu in Qr, u(z,0) = ¢(z), (1.1)

whereQr := (0,T) x Q, Q is an open bounded domainRf with the Lipschitz boundary(, £ is a
linear uniformly elliptic operator, ang is a certain function that defines the initial condition. Has
class of evolutionary problems the existence and regyldréory has been deeply elaborated (see, e.g.,
[2,13]). Itis well known that if the boundary conditions & := (0,7 x 02 are defined in a suitable
way (e.g.,u vanishes orbr), then the generalized solution exists and is unique. M@eander some
conditions imposed on the coefficients©f p, andos?, one can establish the so-called first and second
main inequalities that estimate different norms.of

In this paper, we focus on a different problem related towiahary models in mathematical physics.
Assume thab is a given function (e.g., a numerical solution, or a solutid some simplified mathe-
matical model associated with the same phenomenon) whiclvigleto compare with:. In general,
the conditions that we impose anare rather broad: we assume that it can be any function frem th
corresponding energy space. We do not supposevtigasubject to some extra regularity assumptions
or that it must satisfy Galerkin orthogonality property witespect to some finite-dimensional space.
Estimates of such a type are derived by purely functionahods without using specific properties of
approximations and do not involve mesh dependent constaotshis reason, they are sometimes called
functional type a posteriori estimates.
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Finding computable and efficient estimates of a certain oreasfu — v presents a mathematical
problem of high importance for quantitative analysis oflationary problems in mathematical physics.
We note that for linear and nonlinear elliptic problems (iiding stationary reaction-convection-diffusion
problems and variational inequalities) this problem islweldied (cf. a systematic exposition in [7] and
papers cited therein). Inl[6], it was shown that transforomet of the integral identity that defines the
generalized solution of the parabolic heat equation ledit¢ztly computable bounds for some weighted
space-time norms af — v. In [1], such estimates were obtained (and numericallyetdstor a wider
class of linear parabolic problems. Recently,[in [5], sanéstimates were derived for the evolutionary
Stokes problem.

In this paper, we consider the evolutionary convectiofudibn problem. We apply the same method
as in [6], and show that for anyin the energy function space computable and guaranteed bppads
of certain norms of. — v follow from the corresponding integral identity that defrnthe generalized
solution. Moreover, we show thatmay not exactly satisfy the initial boundary conditiondgtmatter
is discussed in the last section of the paper) and it may leulimuous in time.

We consider the initial boundary value problem

ur —divVu+a-Vu=f in Qr, (1.2)
u(z,0) =¢(x) zeq, (1.3)
u=>0 onSr, (1.4)

where( is an open bounded domainltf. We also assume that

a=a(x)e L™ (Q,]Rd) , diva € L (), diva < 0, (1.5)
FeL*Qr), ¢ € Hy(Q). (1.6)

We use standard definitions of function spaces associatidwi; namely, L% (Qr) consists of func-
tions fromL"(Qr), r > 1, with the finite norm

T r 1/r
HqumQT = </0 Hg('vt)Hq,Q dt) < 0.

We denote byH' (Qr) the spacel.? (0,T; H' (Q)), and by H} (Qr) the subspace off' (Qr) that
consists of functions vanishing dy. The subspac® (Qr) consists of functions with the finite norm

2 2 2
[w]ly, = ess sup, lw (- D)llg + [Vl g, -

)

Functions inV (Q7) have bounded.? norms at cross-sections of the time-domain. The space
VI (Qr) = H' (Qr) N C (0,T; L* (Q))

is a subspace af (7). We denote bWé’O (Qr) the subspace a#' that consists of functions vanish-
ingon Sy .

A functionu € Vé’o (Qr) is called the generalized solution of the problémI(1L2%)(.it satisfies
the following relation for alkw € H} (Qr)

Vu-deacdt—/ uwtd:vdt—i—/ a-Vuwdzdt .7

Qr T T

—I—/ (u(z, T)w (z,T) —u(x,0)w(x,0)) de = fwdzxdt.
Q Qr

The existence of the generalized solution follows from Wathwn results (see, e.d./[2, 3]).



2 Guaranteed Error Bounds for Space-conforming Approximations

Letv € H} (Q7). In order to deduce a computable measure-ef), we insert into the integral identity

and represent it as follows:

V(u—v)-dewdt+/ (a-V(u—v))wdwdt—/ (u—v) wy de dt (2.2)

Qr T T

g

%)
+/ (u(z,T)=v(x,T))w(z,T) — (u(x,0) — v (z,0))w(x,0)) dx
Q
(%)
:/ (fw—Vv-Vw—vw— (a-Vv)w) drdt.

—

We note that

t T 1d, ,
= _— ; = t .
]w x,t)] dx (w® (z,t)) ddt wwy dzx dt
=0 Qr 2 dt T

Using [2.2) and settingy = u — v, from the two integrals (*) and (**) of(2]1) we find
t=T
——/|u:vt—vact|‘ d:v+/|u:vt xt)|‘0dac
t=T d
—5/9 |u(z,t) — v (x,t)] ‘t:O x.
Hence, we arrive at the relation
1
/ IV (u—v)|? dxdt+/ (a-V (u—2))(u—v)dedt+ §\|u—v\|g
T T
:/ (flu—v)=Vou-V(u—2v)—v(u—v)—(a-Vv)(u—0)) drdt.
T

Now, forw = w (z, t) we use the identity

div (wa) = wdiva + a - Vw,

2.2)

(2.3)

t=T

(2.4)

t=0

(2.5)

which holds fort € [0, 7] almost everywhere. We integrate it ou@f and take into account that

vanishes over its boundats. We have
/ (a-Vw)wdzdt = / wa - Vwdz dt = —/ div (wa) w dzx dt.
T T T
Then, using[(2]5) in the last term, we find
/ (a-Vw)wdzdt = —/ (w2diva + wa - Vw) da dt.
T T
Hence

1
/ (a-Vw)wdzdt = ——/ w?diva dz dt.
T 2 T

Using [2.6), we rearrangg (2.4) as follows

1 1
/ IV (u—v)|? dadt — —/ diva (u —v)? dzdt + = |Ju — v||3
T 2 T 2

t=T

1
:/ (f —ve—a-Vv)(u—v) dedt — VvV (u—0v) dxdt—i—iHu—vHé
T

Qr

(2.6)

2.7)

t=0



Let us define the errar = u — v. Sincee = 0 on Jf2, we have another relation ferc [0, 7] almost
everywhere

/(edivy—i—y-Ve) dm:/ ey-vydr =0, (2.8)
Q o0

wherey denote the unit outward normal vectordf2, and the vector-valued function= y (x, t) belongs
to the space

Hao(Qr) = {y e 1? <0,T; 2 <Q,Rd)) , divy € L2 (0, T; L2 (Q))} .
Then, using[(218) inN(2]7) we get

1 .. 1
/Q <|Ve|2 — 5diva |e|2) drdt + 2 [le (T (2.9)
T

1
:/ redazdt—{—/ (y — Vv) - Vedzdt + 3 le(-,0)]|3,
T T
where
r=rvy):=f—v—a- Vu+divy. (2.10)

Henceforth, it is convenient to consider two cases; nandély; = 0, anddiva < 0.

2.1 Casediva =0

If diva = 0 (which is typical if convection is defined by a constant vecetpthen the left hand side
(LHS) of (2.9) contains the combined error norm

2 2 1 2
lell® == [ Vellg,. + 5 e (-, T)lg - (2.11)

We use the Holder estimate
redrdt <|rllg, llellg, - (2.12)

Qr

Since the following relation holds fdre (0,7") almost everywhere

lello < Crq [[Vellg

we have
lellg, < Cr I Vellg, (2.13)
whereCTF, is the constant in the Friedrichs inequality. Therefore,
/ redzdt < Crq |7l [Vellg, < CrylIrlg, lell- (2.14)
T
Moreover,
(y = Vv) - Vedzdt <|ly — Voo, [Vellg, < lly = Vullg, llell- (2.15)

Qr

Now (2.9), (2.14), and (2.15) imply
1
el < lly — Vollg, llell + Cry 17l g, llell + 3 lle (-, 0)[I5, -
Setting

M@y (vy) = lly = Vol + Cro Il g, » (2.16)

and using some simple arithmetic-geometric inequalitiesdeduce the simplest form of tjearanteed
upper bound

2llel < M, (v.1) + (M, (0.9) + 2] O3 ) 2.17)
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It is easy to see that if the initial conditions are exactlys$id, i.e.
v(z,0) =@ (2),
then we get a simple form of the estimate
llell < My (v;y) (2.18)

which reflects the fact that the combined error norm is cdietiidoy integral norms of discrepancies in
the basic relations

y—Vuo=0 inQr,
divy+ f—v—a-Vo=0 inQr.

It is also possible to bound the teffa (-, T") ||, alone. Using Young inequality if_(2.114) we get

TC% 2 Ta 2
/ redxdtg/ 2 113 dt+/ ©vel? dt, (2.19)
T 0 2@ 0 2

wherea (t) is some positive bounded function, i.e.
0<a(t)e L>*(0,T).
Using Young inequality in(2.15) with some

0<B(t)eL®(0,T),

we get
T 1 T
/ (y — Vo) - Vedz dt < / % ly — Vol§ dt+/ g |Ve||3, dt. (2.20)
T 0 0
Then, [2.9),[(2.19), and_(Z.20) imply
T a f 2 1 2
| (=5 -5) vl at+ 5 le .1l (2:21)

</Tcﬁnwﬁdw5/T1H Voll2, dt + = [le (-, 0)|12
r — |ly — Vv —le (- .
=), 2a e . 28 0 g et Ylle

Choosinga = 5 = 1 we finally get
le (. Dlig < M- (v,9), (2.22)
where
M3 (v,y) = Chy Irl5, + Iy = Vollg, + lle (0I5 -
2.2 Casediva <0

1 . . . . .
If —§diva = 62 > 0, then we obtain estimates in terms of a different weightethno

llell; == 1Vellg,. + 15ellgy, + lle (- T)llg - (2.23)
By (2.9) we find that
1
IVellg,. + 1elld, + 5 lle 1) (2.24)

T
1
< [ redsat+ [ ly=Vollg Vel dt -+ lle (01
T



For reasons that will become clear later, we introduce atfoma (z, ¢) with values in[0, 1], and rewrite
the first term on the right hand side (RHS) [of (2.24) as follows

/redxdt:/ Aredwdt—k/ (1 =X redzdt.
T T T

Then, for somé® < a (t) € L> (0,T") we have

/ redx dt <
T

T
+a Joelly ) e+ [ 11 =Nl el d (2.25)

T
+a Joely ) e+ Cry [ 10 =X) 7l Vel dt.

Using the Young inequality in the last term 6f (2.25) with som
0<~v(t)e L>(0,T),

we get

To1 I |?
/ redwdtg/ (—H—r
T 0 da || 0 Q

Similarly, for somed < 5 (¢) € L*> (0,T'), we have

T 02
+aH&%Jdﬁ+A (T2 0= Nrlh + F Vel ) . 226)

T T
1
[ =l vellg av< [ Sivelars [C Ly -voan @

By (2.24E2.27), we conclude that

T ﬁ Y 2 T 2 1 9
(1=5 =) IVellg dt+ [ (1= a)dellg dt + 5 lle (- Tllg (2.28)
0 0
TP T C% T 4 1
< —||=r dt—|—/ £ 1—)\r2dt—|—/ — |y = V|3 dt+ = le (-, 0)||% ,
/0 1a |3, 2 I )rli . 25 ly o 5 lle (50l

where«(t), 5(t), and~(t) are some arbitrary positive functions satisfying the ctoads
2—p—v>0, 1—a>0. (2.29)
In particular, if we setv = 8 = v = 1 in (2.28), we can bound the terjp (-, 7') ||, alone as
le (. I <NE (A 0,9), (2.30)

where

2

+CE A= N rlS, + lly = Volly, + e (0I5 -

1A
A@uww%:ﬂ%r
Qr

J

1 . . . . .
fweseta=p08=v= 2 then we obtain the estimate in terms of the weighted spaweftorm

llell; < 2N (A v, ) = lle (- 0)lIg - (2.31)

Remark 1. The function involved in these estimates can be usefui dittains small values at some

points of Q. In this case% is a large penalty of the term(v, y), and the estimate may be too pessimistic
unless the value of (v, y) is very small. In such a case, the functidfiz, t) can be used to compensate
this drawback. Indeed, we a priori knawanddiva. Therefore, we can selegtin such a way tha(}
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remains of ordett. If § is sufficiently large everywhere, then it may be useful toginsetA = 1 and
use the simplified estimate

T T 1
/ (1= ) el de+ / (1= a)[8el? dt -+ fle (T3 (2:32)
0 0

2
- /T 1|1
— ||=r
- 0 40[
Further, when the initial conditions are exactly satisfiea,
?)(.%',O) = Lp(l‘),

)
by choosingy = 1/2, and = 1, we have a simpler estimate

2 T 1 9 1 9
dt+/ — Ny = Vo|% dt+ = |le(-,0)|]3 .
. T [ 1o 5 lle (- 0)llg

2
2
lell? < '

1
s+ ly = Vollg, - (2.33)

Qr

3 Nonconforming approximations

3.1 Method 1

Assume that we have obtained some nonconforming approximat The simplest approach to control
its accuracy is to project it on a certain space of confornaipgroximations (e.g., by using averaging or
other post-processing techniques). For elliptic type lemois this method has been thoroughly discussed
and tested in [4]. LeP be some suitable mapping such that

Pb € HY(Qr).
Then we can apply (2.28) (dr(2J31) to this function. By thartgle inequality we obtain
lu—2lls < [lo — Polls + [lu— Polls, (3.1)

where the first term on the RHS is directly computable andests th@onconformity error, whereas
the second term can be estimated by the estimates derivied previous section. It is worth noting that,
in this approach, we do not exploit any specific structurehefunderlying discretization method, and
therefore, this approach is valid for any nonconformingrapipnation.

3.2 Method 2

We consider a special (but practically valuable) case akimental approximations, in which the cor-
responding functiori is uniformly bounded and piecewise smooth (more preciselg, smooth with
respect to spatial and time variables on each time intettyat; 1)) and may have jumps in time at
pointst,, k = 0,1,...N, wherety = 0 andiy = T. We show that the corresponding error estimate can
be directly derived by a certain limit procedure appliedite main integral relatior (2.7).

Indeed, from[(Z.]7) we see that only the term

_/ v (u — v) d dt

T

involves the time derivative. To outline how the proceduts én the context of time-nonconformity, we
first consider the case whedenas only one jump at a point= 7 € (0,7"). Assume that

d(r—0)=v", o(r+0)=0v", v Fot.
On (0, T") we construct a sequence of functiarige is a small positive number) as follows:

ve(z,t) = 0(x, 1), te (0,7 —¢e)U(r,T),
t te(r—er) '



It is easy to see that‘(z, t) tends toi (z,t) in L?(Qr) ase — 0. Moreover,

Vio(z,T), te (0,7 —e),
€ t —
V(@) { Vi, —e) + (Vor = Vo ) 5D ve(r—e7)

€

and the space gradients also converg¥tgz, 7) in L.
We now apply the relatioh (2.7) t&:

1 1
/ IV (u — v |* dadt — —/ diva (u —v)* dzdt + = |Ju — 0|3,
T 2 T 2

t=T

1
:/ (f —vi —a-Vvo) (u—2°) dedt — Vv -V (u—v) dedt+ iHu—ﬁHé
T

Qr
Note that, ag — 0, the LHS of [3.2) tends to

1 1
/ IV (u— )| dxdt——/ diva (u—)* dedt + = |Ju — 0|3
T 2 T 2

t=T
Moreover,
VoV (u—2°) dedt — Vo -V (u—0) dzdt,
Qr Qr
and

/ (f —a-Vv°) (u—°) dedt — 0 (f—a-V0)(u—0) dzdt.

It remains to consider the term involving the time derivati\We have

/ / viudx dt — / / vpudx dt +/ / viudz dt
QJ0 QJ0 QJr—e
T—€ . T . U+ — v~
— vpu dx dt + Oy + wdz dt
QJo QJr—e €
T ) 1)+ — v T
— vpu dx dt + udx dt
QJo Q € T—¢

—>// @tudmdt+/(v+—v)u(7) dx,
o Jo Q

sinceu (t) is continuous at = 7. Moreover,

// vagdxdt:// vagdacdt—k// viv©dax dt
QJo QJo QJr—€
T—EA . T 1d 5
= 00 dx dt + —— (v)° dxdt
QJO Q ’T—Eth
T 1
—>// ﬁtf)dxdt—i——/ ((v+)2—(v_)2) dx.
aJo 2 Ja

From (3.3) and[{314) it follows that

—/ vy (u— ) dxdt

T

v+
ﬁ_/QTmu—@) dxdt—/ﬂ(v+—v‘><“<7>— )
1

:_/QT@t<u_@)_/Q(v+_v—) (u(7) — o) dw+§/ﬂ(v+_v—)24x,

(3.2)

(3.3)

(3.4)



and we find that

1 1
/ Vel dadt — 5/ diva (¢)? ddt + 5 ||é (- T) 3 (3.5)

T Qr

:/ (f—@t—a-Vf;)édxdt+/ Vo -Veédxdt
T T

—/Q(UJF—U_) (u(r)—v7) dﬂc—l—%/ﬂ(vJ’—v_)Q dx+%Hé(-,0)H?)

<Cry [Pllgp IVellgy + lly = Volig, [[Véllg,
1

1 A
o = g ur) = vl + & [t = o+ 2l o)

wherer = r (9,y), andé = u — 9. Now recall that foru(7) — v~ we can apply the majorarit (2]22) or
(2.30) depending on whethétva = 0 ordiva < 0, respectively. We proceed with both cases separately.

321 Casediva =0
Note thatu(7) — v~ = e (-, 7). Therefore, usind(2.22) far(7) — v~ we get

[u(r) = o[l = le (.7 llg < M- (0,y). (3.6)
To simplify the notations, we introduce
+ o - Lo+ -2 oLy 2
Cj= Hv —v HQMT (0,y) + 3 Hv -0 HQ + 5 lle(-,0)|g - (3.7)
Then, using[(316) and (3.7) ih.(3.5), and thdata = 0, we get
. 1. . N .
Ve, + 5 llé (DG <(Cro 17l gy + ly = Vollg, ) I Véllg, +Ci (3.8)
Since||Vé| g, < [lé]l, we have
Iel” < (Cro I1Fllg, + lly = Véllg, ) 1éll +C.. (3.9)

Using the definition[(2.16) and some simple arithmetic-getim inequalities, we finally obtain
. ) 5 . 1/2
2llel < Moy (0,9) + (M, (5,y) +4¢,) . (3.10)

3.22 Casediva <0
In this case we usé (2.B0) far) — v—, which gives
HU(T) _U_HQ = He(ﬂ—)HQ SNT ()\17{)7:9)7 (311)

where \; (z,t) is a function with values inf0, 1] for ¢ € (0,7). To simplify the notations, we now
introduce

_ . 1 2 1 .
Dy = [[v* —v7[o Nr O, 8,9) + 5 [[oF = o7 [l + 5 lle ¢ 0)llg - (312)
Proceeding in the same way as in the conforming case, weyfiolathin
T B 112 T 112 L. 2
(1=5 =) IVelg di+ [ (1—a)ldellg dt + 5 l1é (-, T)llg (3.13)
0 0
T 2 T (2 T
1 (A Cr, 2 1 2
<D — ||=7|| dt 21 = N) Pl dt — ||y — V||, dt.
<oy [ 5 ae [P SRI0 N [ - v

1 . .
fweseta=p8=v= 2 then we get a simpler estimate

lell§ < 2Dy +2NF (A, 9,9) — 2le (- 0) g (3.14)



Remark 2. If, instead of [2.2B), we introduce a slightly different wkted norm
1
lell} = 1Velld, + lI5ells, + 3 le (TG (3.15)
then, using[(3.11) and (3.12) in (B.5), and th&te|, . < [|é]|;, we get

el < (Cra lIFllgy + lly = Vollg,. ) lell; + Dy, (3.16)

which easily leads to the following estimate similar[fo (8.1

R . . 1/2
2llell; < My (0,9) + (M, (0,y) +4D;) . (3.17)

We see that the estimates in both the cases (through (3. d®)) involve penalty terms depending
on the jump||v™ — v~ | . If the latter quantity is small, then the overall value of thajorant does not
essentially increase. If we wish to introduce more timesaiiinuity points then we can easily extend
these estimates using the techniques discussed to cofffyputé’)||, in Subsections 211 and 2.2.

Remark 3. It may be very convenient to use approximations discontisuio time if the spatial dis-
cretizations are reconstructed during the process of titegiation. In this case, at certain time moment
7, we need to change the structure of the finite-dimensioretesgvhich is used for approximation of
the spatial components of the solution. Then, we may hav¥ewlifes in conforming continuation of
the approximate solution. With the help of nonconformingeasions (which are technically simple)
we can easily obtaim (7 + 0) by interpolatingv (7 — 0). Jumps of discontinuities that arises in such a
procedure can be taken into account due to the penalty terthe iabove estimates.
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