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Abstract

We derive computable upper bounds for the difference between an exact solution of the evolu-
tionary convection-diffusion problem and an approximation of this solution. The estimates are ob-
tained by certain transformations of the integral identitythat defines the generalized solution. These
estimates depend on neither special properties of the exactsolution nor its approximation, and in-
volve only global constants coming from embedding inequalities. The estimates are first derived for
functions in the corresponding energy space, and then possible extensions to classes of piecewise
continuous approximations are discussed.
Keywords: a posteriori error estimates, time-nonconforming approximations, convection-diffusion
problems

1 Introduction

Let u(x, t) be the generalized solution of the initial-boundary value problem

ut = Lu in QT , u(x, 0) = ϕ(x), (1.1)

whereQT := (0, T ) × Ω, Ω is an open bounded domain inRd with the Lipschitz boundary∂Ω, L is a
linear uniformly elliptic operator, andϕ is a certain function that defines the initial condition. Forthis
class of evolutionary problems the existence and regularity theory has been deeply elaborated (see, e.g.,
[2, 3]). It is well known that if the boundary conditions onST := (0, T ) × ∂Ω are defined in a suitable
way (e.g.,u vanishes onST ), then the generalized solution exists and is unique. Moreover, under some
conditions imposed on the coefficients ofL, ϕ, and∂Ω, one can establish the so-called first and second
main inequalities that estimate different norms ofu.

In this paper, we focus on a different problem related to evolutionary models in mathematical physics.
Assume thatv is a given function (e.g., a numerical solution, or a solution of some simplified mathe-
matical model associated with the same phenomenon) which wewish to compare withu. In general,
the conditions that we impose onv are rather broad: we assume that it can be any function from the
corresponding energy space. We do not suppose thatv is subject to some extra regularity assumptions
or that it must satisfy Galerkin orthogonality property with respect to some finite-dimensional space.
Estimates of such a type are derived by purely functional methods without using specific properties of
approximations and do not involve mesh dependent constants. For this reason, they are sometimes called
functional type a posteriori estimates.

∗Corresponding author
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Finding computable and efficient estimates of a certain measure ofu − v presents a mathematical
problem of high importance for quantitative analysis of evolutionary problems in mathematical physics.
We note that for linear and nonlinear elliptic problems (including stationary reaction-convection-diffusion
problems and variational inequalities) this problem is well studied (cf. a systematic exposition in [7] and
papers cited therein). In [6], it was shown that transformations of the integral identity that defines the
generalized solution of the parabolic heat equation lead todirectly computable bounds for some weighted
space-time norms ofu − v. In [1], such estimates were obtained (and numerically tested) for a wider
class of linear parabolic problems. Recently, in [5], similar estimates were derived for the evolutionary
Stokes problem.

In this paper, we consider the evolutionary convection-diffusion problem. We apply the same method
as in [6], and show that for anyv in the energy function space computable and guaranteed upper bounds
of certain norms ofu − v follow from the corresponding integral identity that defines the generalized
solution. Moreover, we show thatv may not exactly satisfy the initial boundary conditions (this matter
is discussed in the last section of the paper) and it may be discontinuous in time.

We consider the initial boundary value problem

ut − div∇u+ a · ∇u = f in QT , (1.2)

u (x, 0) = ϕ (x) x ∈ Ω, (1.3)

u = 0 onST , (1.4)

whereΩ is an open bounded domain inRd. We also assume that

a = a (x) ∈ L∞

(

Ω,Rd
)

, diva ∈ L∞ (Ω) , diva ≤ 0, (1.5)

f ∈ L2,1(QT ), ϕ ∈ H1
0 (Ω). (1.6)

We use standard definitions of function spaces associated with QT ; namely,Lq,r(QT ) consists of func-
tions fromLr(QT ), r ≥ 1, with the finite norm

‖g‖q,r,QT
:=

(∫ T

0
‖g (·, t)‖rq,Ω dt

)1/r
< ∞.

We denote byH1 (QT ) the spaceL2
(
0, T ;H1 (Ω)

)
, and byH1

0 (QT ) the subspace ofH1 (QT ) that
consists of functions vanishing onST . The subspaceV (QT ) consists of functions with the finite norm

‖w‖2
V
:= ess sup

t∈(0,T )
‖w (·, t)‖2Ω + ‖∇w‖22,QT

.

Functions inV (QT ) have boundedL2 norms at cross-sections of the time-domain. The space

V1,0 (QT ) := H1 (QT ) ∩C
(
0, T ;L2 (Ω)

)

is a subspace ofV (QT ). We denote byV1,0
0 (QT ) the subspace ofV1,0 that consists of functions vanish-

ing onST .
A function u ∈ V1,0

0 (QT ) is called the generalized solution of the problem (1.2)-(1.4) if it satisfies
the following relation for allw ∈ H1

0 (QT )

∫

QT

∇u · ∇w dxdt−

∫

QT

uwt dx dt+

∫

QT

a · ∇uw dx dt (1.7)

+

∫

Ω
(u (x, T )w (x, T )− u (x, 0)w (x, 0)) dx =

∫

QT

fw dx dt.

The existence of the generalized solution follows from wellknown results (see, e.g., [2, 3]).
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2 Guaranteed Error Bounds for Space-conforming Approximations

Let v ∈ H1
0 (QT ). In order to deduce a computable measure ofu−v, we insertv into the integral identity

and represent it as follows:
∫

QT

∇ (u− v) · ∇w dxdt+

∫

QT

(a · ∇ (u− v))w dxdt−

∫

QT

(u− v)wt dx dt

︸ ︷︷ ︸

(∗)

(2.1)

+

∫

Ω
((u (x, T )− v (x, T ))w (x, T )− (u (x, 0)− v (x, 0))w (x, 0)) dx

︸ ︷︷ ︸

(∗∗)

=

∫

QT

(fw −∇v · ∇w − vtw − (a · ∇v)w) dx dt.

We note that

1

2

∫

Ω
|w (x, t)|2

∣
∣
∣

t=T

t=0
dx =

∫

QT

1

2

d

dt

(
w2 (x, t)

)
dx dt =

∫

QT

wwt dx dt. (2.2)

Using (2.2) and settingw = u− v, from the two integrals (*) and (**) of (2.1) we find

−
1

2

∫

Ω
|u (x, t)− v (x, t)|2

∣
∣
∣

t=T

t=0
dx+

∫

Ω
|u (x, t)− v (x, t)|2

∣
∣
∣

t=T

t=0
dx (2.3)

=
1

2

∫

Ω
|u (x, t)− v (x, t)|2

∣
∣
∣

t=T

t=0
dx.

Hence, we arrive at the relation
∫

QT

|∇ (u− v)|2 dx dt+

∫

QT

(a · ∇ (u− v)) (u− v) dx dt+
1

2
‖u− v‖2Ω

∣
∣
∣
∣

t=T

t=0

(2.4)

=

∫

QT

(f (u− v)−∇v · ∇ (u− v)− vt (u− v)− (a · ∇v) (u− v)) dx dt.

Now, forw = w (x, t) we use the identity

div (wa) = w diva+ a · ∇w, (2.5)

which holds fort ∈ [0, T ] almost everywhere. We integrate it overQT and take into account thatw
vanishes over its boundaryST . We have

∫

QT

(a · ∇w)w dxdt =

∫

QT

wa · ∇w dxdt = −

∫

QT

div (wa)w dxdt.

Then, using (2.5) in the last term, we find
∫

QT

(a · ∇w)w dxdt = −

∫

QT

(
w2diva+ wa · ∇w

)
dx dt.

Hence
∫

QT

(a · ∇w)w dxdt = −
1

2

∫

QT

w2diva dx dt. (2.6)

Using (2.6), we rearrange (2.4) as follows
∫

QT

|∇ (u− v)|2 dx dt−
1

2

∫

QT

diva (u− v)2 dx dt+
1

2
‖u− v‖2Ω

∣
∣
∣
∣
t=T

(2.7)

=

∫

QT

(f − vt − a · ∇v) (u− v) dx dt−

∫

QT

∇v · ∇ (u− v) dx dt+
1

2
‖u− v‖2Ω

∣
∣
∣
∣
t=0

.
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Let us define the errore = u − v. Sincee = 0 on ∂Ω, we have another relation fort ∈ [0, T ] almost
everywhere ∫

Ω
(edivy + y · ∇e) dx =

∫

∂Ω
e y · γ dx = 0, (2.8)

whereγ denote the unit outward normal vector to∂Ω, and the vector-valued functiony = y (x, t) belongs
to the space

Hdiv(QT ) :=
{

y ∈ L2
(

0, T ;L2
(

Ω,Rd
))

, divy ∈ L2
(
0, T ;L2 (Ω)

)}

.

Then, using (2.8) in (2.7) we get
∫

QT

(

|∇e|2 −
1

2
diva |e|2

)

dx dt+
1

2
‖e (·, T )‖2Ω (2.9)

=

∫

QT

re dx dt+

∫

QT

(y −∇v) · ∇e dx dt+
1

2
‖e (·, 0)‖2Ω ,

where
r = r (v, y) := f − vt − a · ∇v + divy. (2.10)

Henceforth, it is convenient to consider two cases; namely,diva = 0, anddiva < 0.

2.1 Case diva = 0

If diva = 0 (which is typical if convection is defined by a constant vector a) then the left hand side
(LHS) of (2.9) contains the combined error norm

|||e|||2 := ‖∇e‖2QT
+

1

2
‖e (·, T )‖2Ω . (2.11)

We use the Hölder estimate ∫

QT

re dx dt ≤ ‖r‖QT
‖e‖QT

. (2.12)

Since the following relation holds fort ∈ (0, T ) almost everywhere

‖e‖Ω ≤ CFΩ
‖∇e‖Ω ,

we have
‖e‖QT

≤ CFΩ
‖∇e‖QT

, (2.13)

whereCFΩ
is the constant in the Friedrichs inequality. Therefore,

∫

QT

re dx dt ≤ CFΩ
‖r‖QT

‖∇e‖QT
≤ CFΩ

‖r‖QT
|||e||| . (2.14)

Moreover, ∫

QT

(y −∇v) · ∇e dx dt ≤ ‖y −∇v‖QT
‖∇e‖QT

≤ ‖y −∇v‖QT
|||e||| . (2.15)

Now (2.9), (2.14), and (2.15) imply

|||e|||2 ≤ ‖y −∇v‖QT
|||e|||+ CFΩ

‖r‖QT
|||e|||+

1

2
‖e (·, 0)‖2Ω .

Setting
MQT

(v, y) := ‖y −∇v‖QT
+ CFΩ

‖r‖QT
, (2.16)

and using some simple arithmetic-geometric inequalities,we deduce the simplest form of theguaranteed
upper bound

2 |||e||| ≤ MQT
(v, y) +

(

M2
QT

(v, y) + 2 ‖e (·, 0)‖2Ω

)1/2
. (2.17)
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It is easy to see that if the initial conditions are exactly satisfied, i.e.

v (x, 0) = ϕ (x) ,

then we get a simple form of the estimate

|||e||| ≤ MQT
(v, y) , (2.18)

which reflects the fact that the combined error norm is controlled by integral norms of discrepancies in
the basic relations

y −∇v = 0 in QT ,

divy + f − vt − a · ∇v = 0 in QT .

It is also possible to bound the term‖e (·, T )‖Ω alone. Using Young inequality in (2.14) we get

∫

QT

re dx dt ≤

∫ T

0

C2
FΩ

2α
‖r‖2Ω dt+

∫ T

0

α

2
‖∇e‖2Ω dt, (2.19)

whereα (t) is some positive bounded function, i.e.

0 < α (t) ∈ L∞ (0, T ) .

Using Young inequality in (2.15) with some

0 < β (t) ∈ L∞ (0, T ) ,

we get
∫

QT

(y −∇v) · ∇e dx dt ≤

∫ T

0

1

2β
‖y −∇v‖2Ω dt+

∫ T

0

β

2
‖∇e‖2Ω dt. (2.20)

Then, (2.9), (2.19), and (2.20) imply

∫ T

0

(

1−
α

2
−

β

2

)

‖∇e‖2Ω dt+
1

2
‖e (·, T )‖2Ω (2.21)

≤

∫ T

0

C2
FΩ

2α
‖r‖2Ω dt+

∫ T

0

1

2β
‖y −∇v‖2Ω dt+

1

2
‖e (·, 0)‖2Ω .

Choosingα = β = 1 we finally get

‖e (·, T )‖2Ω ≤ M2
T (v, y) , (2.22)

where

M2
T (v, y) := C2

FΩ
‖r‖2QT

+ ‖y −∇v‖2QT
+ ‖e (·, 0)‖2Ω .

2.2 Case diva < 0

If −
1

2
diva = δ2 > 0, then we obtain estimates in terms of a different weighted norm

|||e|||2δ := ‖∇e‖2QT
+ ‖δe‖2QT

+ ‖e (·, T )‖2Ω . (2.23)

By (2.9) we find that

‖∇e‖2QT
+ ‖δe‖2QT

+
1

2
‖e (·, T )‖2Ω (2.24)

≤

∫

QT

re dx dt+

∫ T

0
‖y −∇v‖Ω ‖∇e‖Ω dt+

1

2
‖e (·, 0)‖2Ω .
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For reasons that will become clear later, we introduce a function λ (x, t) with values in[0, 1], and rewrite
the first term on the right hand side (RHS) of (2.24) as follows

∫

QT

re dx dt =

∫

QT

λ re dx dt+

∫

QT

(1− λ) re dx dt.

Then, for some0 < α (t) ∈ L∞ (0, T ) we have

∫

QT

re dx dt ≤

∫ T

0

( 1

4α

∥
∥
∥
∥

λ

δ
r

∥
∥
∥
∥

2

Ω

+ α ‖δe‖2Ω

)

dt+

∫ T

0
‖(1− λ) r‖Ω ‖e‖Ω dt (2.25)

≤

∫ T

0

( 1

4α

∥
∥
∥
∥

λ

δ
r

∥
∥
∥
∥

2

Ω

+ α ‖δe‖2Ω

)

dt+ CFΩ

∫ T

0
‖(1− λ) r‖Ω ‖∇e‖Ω dt.

Using the Young inequality in the last term of (2.25) with some

0 < γ (t) ∈ L∞ (0, T ) ,

we get

∫

QT

re dx dt ≤

∫ T

0

( 1

4α

∥
∥
∥
∥

λ

δ
r

∥
∥
∥
∥

2

Ω

+ α ‖δe‖2Ω

)

dt+

∫ T

0

(C2
FΩ

2γ
‖(1− λ) r‖2Ω +

γ

2
‖∇e‖2Ω

)

dt. (2.26)

Similarly, for some0 < β (t) ∈ L∞ (0, T ), we have

∫ T

0
‖y −∇v‖Ω ‖∇e‖Ω dt ≤

∫ T

0

β

2
‖∇e‖2Ω dt+

∫ T

0

1

2β
‖y −∇v‖2Ω dt. (2.27)

By (2.24-2.27), we conclude that

∫ T

0

(
1−

β

2
−

γ

2

)
‖∇e‖2Ω dt+

∫ T

0
(1− α) ‖δe‖2Ω dt+

1

2
‖e (·, T )‖2Ω (2.28)

≤

∫ T

0

1

4α

∥
∥
∥
∥

λ

δ
r

∥
∥
∥
∥

2

Ω

dt+

∫ T

0

C2
FΩ

2γ
‖(1− λ) r‖2Ω dt+

∫ T

0

1

2β
‖y −∇v‖2Ω dt+

1

2
‖e (·, 0)‖2Ω ,

whereα(t), β(t), andγ(t) are some arbitrary positive functions satisfying the conditions

2− β − γ > 0, 1− α > 0. (2.29)

In particular, if we setα = β = γ = 1 in (2.28), we can bound the term‖e (·, T )‖Ω alone as

‖e (·, T )‖2Ω ≤N 2
T (λ, v, y) , (2.30)

where

N 2
T (λ, v, y) :=

1

2

∥
∥
∥
∥

λ

δ
r

∥
∥
∥
∥

2

QT

+ C2
FΩ

‖(1− λ) r‖2QT
+ ‖y −∇v‖2QT

+ ‖e (·, 0)‖2Ω .

If we setα = β = γ =
1

2
, then we obtain the estimate in terms of the weighted space-time norm

|||e|||2δ ≤ 2N 2
T (λ, v, y) − ‖e (·, 0)‖2Ω . (2.31)

Remark 1. The functionλ involved in these estimates can be useful ifδ attains small values at some
points ofQT . In this case,1δ is a large penalty of the termr (v, y), and the estimate may be too pessimistic
unless the value ofr (v, y) is very small. In such a case, the functionλ (x, t) can be used to compensate
this drawback. Indeed, we a priori knowa anddiva. Therefore, we can selectλ in such a way thatλδ
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remains of order1. If δ is sufficiently large everywhere, then it may be useful to simply setλ = 1 and
use the simplified estimate

∫ T

0

(

1−
β

2

)

‖∇e‖2Ω dt+

∫ T

0
(1− α) ‖δe‖2Ω dt+

1

2
‖e (·, T )‖2Ω (2.32)

≤

∫ T

0

1

4α

∥
∥
∥
∥

1

δ
r

∥
∥
∥
∥

2

Ω

dt+

∫ T

0

1

2β
‖y −∇v‖2Ω dt+

1

2
‖e (·, 0)‖2Ω .

Further, when the initial conditions are exactly satisfied,i.e.

v (x, 0) = ϕ (x) ,

by choosingα = 1/2, andβ = 1, we have a simpler estimate

|||e|||2δ ≤

∥
∥
∥
∥

1

δ
r

∥
∥
∥
∥

2

QT

+ ‖y −∇v‖2QT
. (2.33)

3 Nonconforming approximations

3.1 Method 1

Assume that we have obtained some nonconforming approximation v̂. The simplest approach to control
its accuracy is to project it on a certain space of conformingapproximations (e.g., by using averaging or
other post-processing techniques). For elliptic type problems this method has been thoroughly discussed
and tested in [4]. LetP be some suitable mapping such that

P v̂ ∈ H1
0 (QT ).

Then we can apply (2.28) (or (2.31) to this function. By the triangle inequality we obtain

|||u− v̂|||δ ≤ |||v̂ − P v̂|||δ + |||u− P v̂|||δ , (3.1)

where the first term on the RHS is directly computable and represents thenonconformity error, whereas
the second term can be estimated by the estimates derived in the previous section. It is worth noting that,
in this approach, we do not exploit any specific structure of the underlying discretization method, and
therefore, this approach is valid for any nonconforming approximation.

3.2 Method 2

We consider a special (but practically valuable) case of incremental approximations, in which the cor-
responding function̂v is uniformly bounded and piecewise smooth (more precisely,it is smooth with
respect to spatial and time variables on each time interval(tk, tk+1)) and may have jumps in time at
pointstk, k = 0, 1, ...N , wheret0 = 0 andtN = T . We show that the corresponding error estimate can
be directly derived by a certain limit procedure applied to the main integral relation (2.7).

Indeed, from (2.7) we see that only the term

−

∫

QT

vt (u− v) dx dt

involves the time derivative. To outline how the procedure acts in the context of time-nonconformity, we
first consider the case wherev̂ has only one jump at a pointt = τ ∈ (0, T ). Assume that

v̂(τ − 0) = v−, v̂(τ + 0) = v+, v− 6= v+ .

On (0, T ) we construct a sequence of functionsvǫ (ǫ is a small positive number) as follows:
{

vǫ(x, t) = v̂(x, t), t ∈ (0, τ − ǫ) ∪ (τ, T ),

vǫ(x, t) = v̂(x, τ − ǫ) + (v+ − v−) (t−τ+ǫ)
ǫ , t ∈ (τ − ǫ, τ)

.

7



It is easy to see thatvǫ(x, t) tends tôv (x, t) in L2(QT ) asǫ → 0. Moreover,

∇vǫ(x, t) =

{
∇v̂(x, τ), t ∈ (0, τ − ǫ),

∇v̂(x, τ − ǫ) + (∇v+ −∇v−) (t−τ+ǫ)
ǫ , t ∈ (τ − ǫ, τ)

,

and the space gradients also converge to∇v̂(x, τ) in L2.
We now apply the relation (2.7) tovǫ:

∫

QT

|∇ (u− vǫ)|2 dx dt−
1

2

∫

QT

diva (u− vǫ)2 dx dt+
1

2
‖u− v̂‖2Ω

∣
∣
∣
∣
t=T

(3.2)

=

∫

QT

(f − vǫt − a · ∇vǫ) (u− vǫ) dx dt−

∫

QT

∇vǫ · ∇ (u− vǫ) dx dt+
1

2
‖u− v̂‖2Ω

∣
∣
∣
∣
t=0

.

Note that, asǫ → 0, the LHS of (3.2) tends to
∫

QT

|∇ (u− v̂)|2 dx dt−
1

2

∫

QT

diva (u− v̂)2 dx dt+
1

2
‖u− v̂‖2Ω

∣
∣
∣
∣
t=T

.

Moreover,
∫

QT

∇vǫ · ∇ (u− vǫ) dx dt →

∫

QT

∇v̂ · ∇ (u− v̂) dx dt,

and
∫

QT

(f − a · ∇vǫ) (u− vǫ) dx dt →

∫

QT

(f − a · ∇v̂) (u− v̂) dx dt.

It remains to consider the term involving the time derivative. We have
∫

Ω

∫ τ

0
vǫtu dx dt →

∫

Ω

∫ τ−ǫ

0
v̂tu dx dt+

∫

Ω

∫ τ

τ−ǫ
vǫtu dx dt (3.3)

→

∫

Ω

∫ τ−ǫ

0
v̂tu dx dt+

∫

Ω

∫ τ

τ−ǫ

(

v̂t +
v+ − v−

ǫ

)

u dx dt

→

∫

Ω

∫ τ

0
v̂tu dx dt+

∫

Ω

v+ − v−

ǫ

∫ τ

τ−ǫ
u dx dt

→

∫

Ω

∫ τ

0
v̂tu dx dt+

∫

Ω

(
v+ − v−

)
u (τ) dx,

sinceu (t) is continuous att = τ . Moreover,
∫

Ω

∫ τ

0
vǫtv

ǫ dx dt =

∫

Ω

∫ τ−ǫ

0
vǫtv

ǫ dx dt+

∫

Ω

∫ τ

τ−ǫ
vǫtv

ǫ dx dt (3.4)

=

∫

Ω

∫ τ−ǫ

0
v̂tv̂ dx dt+

∫

Ω

∫ τ

τ−ǫ

1

2

d

dt
(vǫ)2 dx dt

→

∫

Ω

∫ τ

0
v̂tv̂ dx dt+

1

2

∫

Ω

((
v+

)2
−

(
v−

)2
)

dx.

From (3.3) and (3.4) it follows that

−

∫

QT

vǫt (u− vǫ) dx dt

→−

∫

QT

v̂t (u− v̂) dx dt−

∫

Ω

(
v+ − v−

)(

u(τ)−
v+ + v−

2

)

dx

=−

∫

QT

v̂t (u− v̂)−

∫

Ω

(
v+ − v−

) (
u (τ)− v−

)
dx+

1

2

∫

Ω

(
v+ − v−

)2
dx,
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and we find that
∫

QT

|∇ê|2 dx dt−
1

2

∫

QT

diva (ê)2 dx dt+
1

2
‖ê (·, T )‖2Ω (3.5)

=

∫

QT

(f − v̂t − a · ∇v̂) ê dx dt+

∫

QT

∇v̂ · ∇ê dx dt

−

∫

Ω

(
v+ − v−

) (
u (τ)− v−

)
dx+

1

2

∫

Ω

(
v+ − v−

)2
dx+

1

2
‖ê (·, 0)‖2Ω

≤CFΩ
‖r̂‖QT

‖∇ê‖QT
+ ‖y −∇v̂‖QT

‖∇ê‖QT

+
∥
∥v+ − v−

∥
∥
Ω

∥
∥u(τ)− v−

∥
∥
Ω
+

1

2

∥
∥v+ − v−

∥
∥2

Ω
+

1

2
‖ê (·, 0)‖2Ω ,

wherer̂ = r (v̂, y), andê = u − v̂. Now recall that foru(τ) − v− we can apply the majorant (2.22) or
(2.30) depending on whetherdiva = 0 ordiva < 0, respectively. We proceed with both cases separately.

3.2.1 Case diva = 0

Note thatu(τ)− v− = e (·, τ). Therefore, using (2.22) foru(τ)− v− we get
∥
∥u(τ)− v−

∥
∥
Ω
= ‖e (·, τ)‖Ω ≤ Mτ (v̂, y) . (3.6)

To simplify the notations, we introduce

CJ =
∥
∥v+ − v−

∥
∥
Ω
Mτ (v̂, y) +

1

2

∥
∥v+ − v−

∥
∥2

Ω
+

1

2
‖ê (·, 0)‖2Ω . (3.7)

Then, using (3.6) and (3.7) in (3.5), and thatdiva = 0, we get

‖∇ê‖2QT
+

1

2
‖ê (·, T )‖2Ω ≤

(
CFΩ

‖r̂‖QT
+ ‖y −∇v̂‖QT

)
‖∇ê‖QT

+ CJ . (3.8)

Since‖∇ê‖QT
≤ |||ê|||, we have

|||ê|||2 ≤
(
CFΩ

‖r̂‖QT
+ ‖y −∇v̂‖QT

)
|||ê|||+ CJ . (3.9)

Using the definition (2.16) and some simple arithmetic-geometric inequalities, we finally obtain

2 |||ê||| ≤ MQT
(v̂, y) +

(

M2
QT

(v̂, y) + 4CJ
)1/2

. (3.10)

3.2.2 Case diva < 0

In this case we use (2.30) foru(τ)− v−, which gives
∥
∥u(τ)− v−

∥
∥
Ω
= ‖e (·, τ)‖Ω ≤ Nτ (λ1, v̂, y) , (3.11)

whereλ1 (x, t) is a function with values in[0, 1] for t ∈ (0, τ). To simplify the notations, we now
introduce

DJ =
∥
∥v+ − v−

∥
∥
Ω
Nτ (λ1, v̂, y) +

1

2

∥
∥v+ − v−

∥
∥2

Ω
+

1

2
‖ê (·, 0)‖2Ω . (3.12)

Proceeding in the same way as in the conforming case, we finally obtain
∫ T

0

(
1−

β

2
−

γ

2

)
‖∇ê‖2Ω dt+

∫ T

0
(1− α) ‖δê‖2Ω dt+

1

2
‖ê (·, T )‖2Ω (3.13)

≤ DJ +

∫ T

0

1

4α

∥
∥
∥
∥

λ

δ
r̂

∥
∥
∥
∥

2

Ω

dt+

∫ T

0

C2
FΩ

2γ
‖(1− λ) r̂‖2Ω dt+

∫ T

0

1

2β
‖y −∇v̂‖2Ω dt.

If we setα = β = γ =
1

2
, then we get a simpler estimate

|||ê|||2δ ≤ 2DJ + 2N 2
T (λ, v̂, y)− 2 ‖e (·, 0)‖2Ω . (3.14)
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Remark 2. If, instead of (2.23), we introduce a slightly different weighted norm

|||e|||2
δ̂
:= ‖∇e‖2QT

+ ‖δe‖2QT
+

1

2
‖e (·, T )‖2Ω , (3.15)

then, using (3.11) and (3.12) in (3.5), and that‖∇ê‖QT
≤ |||ê|||δ̂, we get

|||ê|||2
δ̂
≤

(
CFΩ

‖r̂‖QT
+ ‖y −∇v̂‖QT

)
|||ê|||δ̂ +DJ , (3.16)

which easily leads to the following estimate similar to (3.10)

2 |||ê|||δ̂ ≤ MQT
(v̂, y) +

(

M2
QT

(v̂, y) + 4DJ

)1/2
. (3.17)

We see that the estimates in both the cases (through (3.7) and(3.12)) involve penalty terms depending
on the jump‖v+ − v−‖Ω. If the latter quantity is small, then the overall value of the majorant does not
essentially increase. If we wish to introduce more time-discontinuity points then we can easily extend
these estimates using the techniques discussed to compute‖e (·, T )‖Ω in Subsections 2.1 and 2.2.

Remark 3. It may be very convenient to use approximations discontinuous in time if the spatial dis-
cretizations are reconstructed during the process of time integration. In this case, at certain time moment
τ , we need to change the structure of the finite-dimensional space which is used for approximation of
the spatial components of the solution. Then, we may have difficulties in conforming continuation of
the approximate solution. With the help of nonconforming extensions (which are technically simple)
we can easily obtainv (τ + 0) by interpolatingv (τ − 0). Jumps of discontinuities that arises in such a
procedure can be taken into account due to the penalty terms in the above estimates.
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