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Abstract

This work studies the local well-posedness of the initial-value problem for the nonlinear sixth-
order Boussinesq equation utt = uxx + βuxxxx + uxxxxxx + (u2)xx, where β = ±1. We prove local
well-posedness with initial data in non-homogeneous Sobolev spaces Hs(R) for negative indices of
s ∈ R.
Mathematical subject classification: 35B30, 35Q55, 35Q72.

1 Introduction

The study of wave propagation on the surface of water has been a subject of considerable theoretical
and practical importance during the past decades. In 1872, Joseph Boussinesq [6] derived a model
equation for propagation of water waves from Euler’s equations of motion for two-dimensional potential
flow beneath a free surface by introducing appropriate approximations for small amplitude long waves.
Later the Boussinesq equation

utt = uxx + βuxxxx + (f(u))xx, β = ±1, (1.1)

appeared not only in the study of the dynamics of thin inviscid layers with free surface but also in the
study of the nonlinear string, the shape-memory alloys, the propagation of waves in elastic rods and
in the continuum limit of lattice dynamics or coupled electrical circuits (see [11] and the references
therein).

Our principal aim here is to study the local well-posedness for the initial value problem associated
to the sixth-order Boussinesq equation with quadratic nonlinearity [7, 8]:

{
utt = uxx + βuxxxx + uxxxxxx + (u2)xx, x ∈ R, t ≥ 0,
u(0, x) = ϕ(x); ut(0, x) = ψx(x),

(1.2)

where β = ±1. It is worth noting that the stationary propagating localized solutions of equation (1.2)
have been investigated numerically and the two classes of subsonic solutions corresponding to the sign
of β have been obtained, more precisely, the monotone shapes and the shapes with oscillatory tails [7].
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Natural spaces to study the initial value problem above are the classical Sobolev spaces Hs(R),
s ∈ R, which are defined via the spacial Fourier transform

ĝ(ξ) =

∫

R

e−ixξg(x) dx,

as the completion of the Schwarz class S(R) with respect to the norm

‖g‖Hs(R) = ‖〈ξ〉s ĝ(ξ)‖L2(R),

where 〈ξ〉 = 1 + |ξ|.
Given initial data (φ, (ψ)x) ∈ Hs(R)×Hs−1(R) and a positive time T > 0, we say that a function

u : R× [0, T ] → R is a real solution of (1.2) if u ∈ C([0, T ];Hs(R)) and u satisfies the integral equation

u(t) = Vc(t)ϕ + Vs(t)ψx +

∫ t

0

Vs(t− t′)(u2)xx(t
′)dt′. (1.3)

where the two operators that constitute the free evolution are defined via Fourier transform by the
formulas

Vc(t)ϕ =

(
eit
√
ξ2−βξ4+ξ6 + e−it

√
ξ2−βξ4+ξ6

2
ϕ̂(ξ)

)∨

(1.4)

Vs(t)ψx =

(
eit
√
ξ2−βξ4+ξ6 − e−it

√
ξ2−βξ4+ξ6

2i
√
ξ2 − βξ4 + ξ6

ψ̂x(ξ)

)∨

. (1.5)

In the case that T can be taken arbitrarily large, we shall say the solution is global-in-time. Here,
we focus our attention only in local solutions.

Concerning the local well-posedness question, when β = −1, several results are obtained for equa-
tion (1.1) (so-called “good” Boussinesq equation) [3, 12, 13, 18, 23].

On the other hand while equation (1.1) with β = 1 (so-called the “bad” Boussinesq equation) only
soliton type solutions are known. Moreover, taking Fourier transform, we can see that the solution of
the linearized equation û grows as e±ξ

2t. The same occurs for the nonlinear problem. Therefore, to
study well-posedness the component proportional to eξ

2t has to be vanished. We refer the reader to
[9] for results concerning this “bad” version using the inverse scattering approach.

The local well-posedness for dispersive equations with quadratic nonlinearities has been extensively
studied in Sobolev spaces with negative indices. The proof of these results are based on the Fourier
restriction norm approach introduced by Bourgain [4, 5] in his study of the nonlinear Schrödinger
(NLS) equation iut+ uxx+ |u|pu = 0 and the Korteweg-de Vries (KdV) equation ut+ uxxx+ uux = 0.
This method was further developed by Kenig et al. [16] for the KdV Equation and [17] for the
quadratics nonlinear Schrödinger equations. The original Bourgain method makes extensive use of the
Strichartz inequalities in order to derive the bilinear estimates corresponding to the nonlinearity. On
the other hand, Kenig et al. simplified Bourgain’s proof and improved the bilinear estimates using
only elementary techniques, such as Cauchy-Schwartz inequality and simple calculus inequalities (see
also [15, 22]).

In this paper, we prove local well-posedness in Hs(R) with s > −1/2 for (1.2) using the idea
introduced in [13]. Indeed, we modify the Bourgain-type space observing that the dispersion for this

equation, given by the symbol
√
ξ2 − βξ4 + ξ6, is in some sense related with the symbol of the KdV-

type equation. This modification allow us to obtain bilinear estimates using the same techniques as in
[16, 17].

To describe our results we define next the Xs,b spaces related to our problem.

Definition 1.1 For s, b ∈ R, Xs,b denotes the completion of the Schwartz class S (R2) with respect
to the norm

‖u‖Xs,b =
∥∥〈|τ | − γ(ξ)〉b〈ξ〉sû(τ, ξ)

∥∥
L2

τ,ξ
(R2)

(1.6)

2



where γ(ξ) ≡
√
ξ2 − βξ4 + ξ6 and “∧” denotes the time-space Fourier transform.

As a consequence of this definition, we immediately have for b > 1/2, that Xs,b is embedded in
C(R;Hs(R)).

We will also need the localized Xs,b spaces defined as follows.

Definition 1.2 For s, b ∈ R and T ≥ 0, Xs,b
T denotes the space endowed with the norm

‖u‖Xs,b
T

= inf
w∈Xs,b

{‖w‖Xs,b : w(t) = u(t) on [0, T ]} .

The main result of this paper reads as follows.

Theorem 1.1 Let s > −1/2, then for all ϕ ∈ Hs(R) and ψ ∈ Hs−1(R), there exist

T = T (‖ϕ‖Hs(R), ‖ψ‖Hs−1(R))

and a unique solution u of the initial value problem associated to equation (1.2) with initial data
u(0) = ϕ and ut(0) = ψx such that

u ∈ C([0, T ];Hs(R)) ∩Xs,b
T .

Moreover, given T ′ ∈ (0, T ) there exists R = R(T ′) > 0 such that giving the set

W = {(ϕ̃, ψ̃) ∈ Hs(R)×Hs−1(R) : ‖ϕ̃− ϕ‖2Hs(R) + ‖ψ̃ − ψ‖2Hs−1(R) < R}

the map solution
S :W −→ C([0, T ′] : Hs(R)) ∩Xs,b

T , (ϕ̃, ψ̃) 7−→ u(t)

is Lipschitz. In addition, if (ϕ, ψ) ∈ Hs′(R) ×Hs′−1(R) with s′ > s, then the above results hold with
s′ instead of s in the same interval [0, T ] with

T = T (‖ϕ‖Hs(R), ‖ψ‖Hs−1(R)).

In some sense the previous theorem is quite surprising. There is no difference in the local theory
when one considers the signs ± in front of the forth derivative term in equation (1.2). However,
despising the sixth order term in (1.2), we obtain the Boussinesq equation (1.1), where the “good” and
“bad” models are very distinct.

We should remark that because of lack of a scaling argument for the Boussinesq-type equations, it
is not clear what is the lower index s where one has local well-posedness for equation (1.2) with initial
data u(0) = ϕ and ut(0) = ψx, where (ϕ, ψ) ∈ Hs(R) × Hs−1(R). Here we answer, partially, this
question. In fact, our main result is a negative one; it concerns in particular a kind of ill-posedness.
We prove that the flow map for the Cauchy problem associated to equation (1.2) is not smooth (more
precisely C2) at the origin for initial data in Hs(R) ×Hs−1(R), with s < −3 (cf. Theorems 4.1 and
4.2). Therefore any iterative method applied to the integral formulation of the Boussinesq equation
(1.2) always fails in this functional setting. In other words, if one can apply the contraction mapping
principle to solve the integral equation corresponding to (1.2) thus, by the implicit function Theorem,
the flow-map data solution is smooth, which is a contradiction (cf. Theorem 4.2).

Indeed our ideas are based on an argument similar to Tzvetkov [24] (see also Bourgain [5]) who
established a similar result for the KdV equation. The same question was studied by Molinet, Saut
and Tzvetkov [19, 20], for the Benjamin-Ono (BO) equation

ut +Huxx + uux = 0 (1.7)

and for the Kadomtsev-Petviashvili-I (KPI) equation

(ut + uux + uxxx)x − uyy = 0, (1.8)
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respectively (see also [10]).
In all the mentioned ill-posedness results it is, in fact, proved that for a fixed t > 0 the flow map

ϕ 7→ u(t) is not C2 differentiable at zero. This, of course, implies that the flow map is not smooth
(C2) at the origin.

Unfortunately, in our case we cannot fix t > 0 since we do not have good cancelations on the
symbol

√
ξ2 − βξ4 + ξ6. To overcome this difficulty, we allow the variable t to move. Therefore,

choosing suitable characteristics functions and sending t to zero to obtain our results (cf. Theorems
4.1 and 4.2). We should remark that this kind of argument also appears in the ill-posed result of
Bejenaru and Tao [1].

The plan of this paper is as follows: in Section 2, we state some linear estimates for the integral
equation in the Xs,b space introduced above. Bilinear estimates and the relevant counterexamples are
proved in Section 3. Finally, the ill-posedness question is treated in Section 4.

2 The Cauchy Problem

Let us start this section by introducing the notation used throughout the paper. We use c to denote
various constants that may vary line by line. Given any positive numbers a and b, the notation a . b
means that there exists a positive constant c such that a ≤ cb. Also, we denote a ∼ b when, a . b and
b . a.

Given θ be a cutoff function satisfying θ ∈ C∞
0 (R), 0 ≤ θ ≤ 1, θ ≡ 1 in [−1, 1], supp(θ) ⊆ [−2, 2]

and for 0 < T < 1 define θT (t) = θ(t/T ). In fact, to work in the Xs,b spaces we consider another
version of (1.3), that is

u(t) = θ(t) (Vc(t)ϕ + Vs(t)ψx) + θT (t)

∫ t

0

Vs(t− t′)(u2)xx(t
′)dt′. (2.1)

Note that the integral equation (2.1) is defined for all (t, x) ∈ R2. Moreover if u is a solution of
(2.1) than ũ = u|[0,T ] will be a solution of (1.3) in [0, T ].

In the next two lemmas, we estimate the linear and integral part of (2.1). We refer the reader to
[13] for the proofs (see also [14] and [15]).

Lemma 2.1 Let u(t) the solution of the linear equation
{
utt = uxx + βuxxxx + uxxxxxx,
u(0, x) = ϕ(x); ut(0, x) = ψx(x)

with ϕ ∈ Hs(R) and ψ ∈ Hs−1(R). Then there exists c > 0 depending only on θ, s, b such that

‖θu‖Xs,b ≤ c
(
‖ϕ‖Hs(R) + ‖ψ‖Hs−1(R)

)
. (2.2)

Lemma 2.2 Let − 1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1 and 0 < T ≤ 1 then

(i)
∥∥∥θT (t)

∫ t
0
g(t′)dt′

∥∥∥
Hb

t

≤ T 1−(b−b′)‖g‖Hb′

t
;

(ii)
∥∥∥θT (t)

∫ t
0
Vs(t− t′)f(u)(t′)dt′

∥∥∥
Xs,b

≤ T 1−(b−b′)

∥∥∥∥∥

(
f̂(u)(τ, ξ)

2iγ(ξ)

)∨∥∥∥∥∥
Xs,b′

.

3 Bilinear Estimates

As it is standard in the Fourier restriction method, the linear estimates given in Lemmas 2.1-2.2
immediately yields Theorem 1.1 (see [13] for details) once we prove the following crucial nonlinear
estimate.
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Theorem 3.1 Let s > −1/2 and u, v ∈ Xs,−a. Then, there exists c > 0 such that

∥∥∥∥∥

( |ξ|2ûv(τ, ξ)
2iγ(ξ)

)∨
∥∥∥∥∥
Xs,−a

≤ c ‖u‖Xs,b ‖v‖Xs,b , (3.1)

where ∨ denotes the inverse time-space Fourier transform, holds in the following cases

(i) s ≥ 0, b > 1/2 and 1/6 < a < 1/2,

(ii) −1/2 < s < 0, b > 1/2 and 1/6 < a < 1/2 such that |s| < a.

Moreover, the constant c > 0 that appears in (3.1) depends only on a, b, s.

Before proceed to the proof of Theorem 3.1, we state some elementary calculus inequalities that will
be useful later.

Lemma 3.1 For λ, µ ∈ R, p, q > 0 and r = min{p, q, p+ q − 1} with p+ q > 1, we have

∫

R

dx

〈x− λ〉p〈x− µ〉q .
1

〈λ − µ〉r . (3.2)

Moreover, for ai ∈ R, i = 0, 1, 2, 3, and q > 1/3

∫

R

dx

〈a0 + a1|x|+ a2x2 + a3|x|3〉q
. 1. (3.3)

Proof. See Lemma 4.2 in [15] and Lemma 2.5 in [2]. �

Lemma 3.2 There exists c > 0 such that

1

c
≤ sup
x,y≥0

1 +
∣∣∣x−

√
y3 + β

2

√
y
∣∣∣

1 +
∣∣∣x−

√
y − βy2 + y3

∣∣∣
≤ c. (3.4)

Proof. Since √
y3 − β

2

√
y ≤

√
y − βy2 + y3 ≤

√
y3 − β

2

√
y +

1

2
,

for all y ≥ 0 a simple computation shows the desired inequalities. �

Remark 3.1 We should note that by using the previous lemma, we have an equivalent way to compute
the Xs,b-norm, that is

‖u‖Xs,b ∼
∥∥∥∥〈|τ | − |ξ|3 + β

2
|ξ|〉b〈ξ〉sû(τ, ξ)

∥∥∥∥
L2

τ,ξ
(R2)

. (3.5)

This equivalence will be important in the proof of Theorem 3.1, because the symbol
√
ξ2 − βξ4 + ξ6 of

equation (1.2) does not have good cancelations to make use of Lemma 3.1. Therefore, we modify the
symbols as above and work only with the algebraic relations for the KdV-type equation.
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Proof of Theorem 3.1. First of all observe that

|ξ|2√
ξ2 − βξ4 + ξ6

≤ 1, for all ξ 6= 0. (3.6)

We will prove the theorem for the case β = 1, the case β = −1 can be analogously proved.
Let u, v ∈ Xs,b and define

f(τ, ξ) = 〈|τ | − |ξ|3 + |ξ|/2〉b〈ξ〉sû(τ, ξ) and g(τ, ξ) = 〈|τ | − |ξ|3 + |ξ|/2〉b〈ξ〉sv̂(τ, ξ).

Using Remark 3.1, inequity (3.6) and a duality argument the desired inequality is equivalent to

|W(f, g, ϕ)| ≤ c‖f‖L2

ξ,τ
‖g‖L2

ξ,τ
‖h‖L2

ξ,τ
, (3.7)

where

W(f, g, h) =

∫

R4

〈ξ〉sg(τ1, ξ1)f(τ2, ξ2)h̄(τ, ξ)
〈ξ1〉s〈ξ2〉s〈|τ | − |ξ|3 + |ξ|/2〉a〈|τ1| − |ξ1|3 + |ξ1|/2〉b〈|τ2| − |ξ2|3 + |ξ2|/2〉b

dξdτdξ1dτ1,

where τ2 = τ − τ1 and ξ2 = ξ − ξ1. Therefore to perform the desired estimate we need to analyze all
the possible cases for the sign of τ , τ1 and τ2. To do this we split R4 into the following regions:

Γ1 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : τ1, τ2 < 0
}
,

Γ2 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : τ1, τ ≥ 0, τ2 < 0
}
,

Γ3 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : τ1 ≥ 0, τ2, τ < 0
}
,

Γ4 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : τ1 < 0, τ2, τ ≥ 0
}
,

Γ5 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : τ1, τ < 0, τ2 ≥ 0
}
,

Γ6 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : τ1, τ2 ≥ 0
}
.

Thus, it is suffices to prove inequality (3.7) with D(f, g, h) instead of W(f, g, h), where

D(f, g, h) =

∫

R4

〈ξ〉s
〈ξ1〉s〈ξ2〉s

g(τ1, ξ1)f(τ2, ξ2)h̄(τ, ξ)

〈σ〉a〈σ1〉b〈σ2〉b
dξdτdξ1dτ1,

with ξ2, τ2 and σ, σ1, σ2 belonging to one of the following cases

(I) σ = τ + |ξ|3 − 1
2 |ξ|, σ1 = τ1 + |ξ1|3 − 1

2 |ξ1|, σ2 = τ2 + |ξ2|3 − 1
2 |ξ2|,

(II) σ = τ − |ξ|3 + 1
2 |ξ|, σ1 = τ1 − |ξ1|3 + 1

2 |ξ1|, σ2 = τ2 + |ξ2|3 − 1
2 |ξ2|,

(III) σ = τ + |ξ|3 − 1
2 |ξ|, σ1 = τ1 − |ξ1|3 + 1

2 |ξ1|, σ2 = τ2 + |ξ2|3 − 1
2 |ξ2|,

(IV) σ = τ − |ξ|3 + 1
2 |ξ|, σ1 = τ1 + |ξ1|3 − 1

2 |ξ1|, σ2 = τ2 − |ξ2|3 + 1
2 |ξ2|,

(V) σ = τ + |ξ|3 − 1
2 |ξ|, σ1 = τ1 + |ξ1|3 − 1

2 |ξ1|, σ2 = τ2 − |ξ2|3 + 1
2 |ξ2|,

(VI) σ = τ − |ξ|3 + 1
2 |ξ|, σ1 = τ1 − |ξ1|3 + 1

2 |ξ1|, σ2 = τ2 − |ξ2|3 + 1
2 |ξ2|.

First we note that the cases σ = τ + |ξ|3 − |ξ|/2, σ1 = τ1 − |ξ1|3 + |ξ2|/2, σ2 = τ2 − |ξ2|3 + |ξ2|/2 and
σ = τ − |ξ|3 + |ξ|/2, σ1 = τ1 + |ξ1|3 − |ξ1|/2, σ2 = τ2 + |ξ2|3 − |ξ2|/2 cannot occur, since τ1 < 0, τ2 < 0
implies τ < 0, and τ1 ≥ 0, τ2 ≥ 0 implies τ ≥ 0. On the other hand, by applying the change of
variables (ξ, τ, ξ1, τ1) 7→ −(ξ, τ, ξ1, τ1) and observing that the L2-norm is preserved under the reflection
operation, the cases (IV), (V), (VI) can be easily reduced, respectively, to (III), (II), (I). Moreover,
making the change of variables τ2 = τ − τ1, ξ2 = ξ − ξ1 and then (ξ, τ, ξ2, τ2) 7→ −(ξ, τ, ξ2, τ2) the case
(II) can be reduced (III). Therefore we need only establish cases (I) and (III).
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Now we first treat the inequality (3.7) with D(f, g, h) in the case (I). By symmetry we can restrict
ourselves to the set

A =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |σ2| ≤ |σ1|
}
.

We divide A into the following four subregions:

A1 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≤ 10},

A2 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10, |2ξ1 − ξ| ≥ |ξ1|/2},
A3 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10, |ξ1 − ξ| ≥ |ξ1|/2, |σ1| ≤ |σ|},
A4 = {(ξ, τ, ξ1, τ1) ∈ A : |ξ1| ≥ 10, |ξ1 − ξ| ≥ |ξ1|/2, |σ1| ≥ |σ|}.

We have A = A1 ∪ A2 ∪ A3 ∪ A4. Indeed

|ξ1| > |2ξ1 − ξ|+ |ξ1 − ξ| ≥ |(2ξ1 − ξ)− (ξ1 − ξ)| = |ξ1|.

Using the Cauchy-Schwarz and Hölder inequalities it is easy to see that

|Z| ≤ ‖f‖L2

ξ,τ
(R2)‖g‖L2

ξ,τ
(R2)‖h‖L2

ξ,τ
(R2)

∥∥∥∥
〈ξ〉2s
〈σ〉2a

∫

R2

χA1∪A2∪A3
dξ1dτ1

〈ξ1〉2s〈ξ2〉2s〈σ1〉2b〈σ2〉2b
∥∥∥∥

1

2

L∞

ξ,τ
(R2)

+ ‖f‖L2

ξ,τ
(R2)‖g‖L2

ξ,τ
(R2)‖h‖L2

ξ,τ
(R2)

∥∥∥∥
1

〈ξ1〉2s〈σ1〉2b
∫

R2

χA4
〈ξ〉2s dξdτ

〈ξ2〉2s〈σ〉2a〈σ2〉2b
∥∥∥∥

1

2

L∞

ξ1,τ1
(R2)

.

(3.8)

Noting that 〈ξ〉2s ≤ 〈ξ1〉2|s|〈ξ2〉2s, for s ≥ 0, and 〈ξ2〉−2s ≤ 〈ξ1〉2|s|〈ξ〉−2s, for s < 0 we have

〈ξ〉2s
〈ξ1〉2s〈ξ2〉2s

≤ 〈ξ1〉ϑ(s) (3.9)

where

ϑ(s) =

{
0, if s ≥ 0
4|s|, if s ≤ 0

.

By employing Lemma 3.1, it sufficient to get bounds for

J1(ξ1, τ1) =
1

〈σ〉2a
∫

A1∪A2∪A3

〈ξ1〉ϑ(s)
〈τ + |ξ2|3 − |ξ2|/2 + |ξ1|3 − |ξ1|/2〉2b

dξ1

and

J2(ξ, τ) =
〈ξ1〉ϑ(s)
〈σ1〉2b

∫

A4

dξ

〈τ1 − |ξ2|3 + |ξ2|/2 + |ξ|3 − |ξ|/2〉2a .

Case 1. Contribution of A1 to J1. In region A1 we have 〈ξ1〉ϑ(s) . 1. Therefore for a > 0 and b > 1/2
we obtain

J1(ξ, τ) .

∫

|ξ1|≤10

dξ1 . 1.

Case 2. Contribution of A2 to J1. In this region, we use a change of variable

η = τ + |ξ − ξ1|3 − |ξ − ξ1|/2 + |ξ1|3 − |ξ1|/2.

If ξ1ξ2 ≥ 0, and without loss of generality ξ1, ξ2 ≥ 0, then since ξ ≥ ξ1 ≥ 10,

J1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)

|ξ||ξ − 2ξ1|〈η〉2b
dξ1 .

1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)−2

〈η〉2b dη . 1.

7



If ξ1ξ2 ≤ 0, and without loss of generality ξ1 ≥ 0 and ξ2 ≤ 0. Therefore ξ1 ≥ ξ and moreover

ξ2 + 2ξ1(ξ1 − ξ)− 1

3
= ξ21 + (ξ1 − ξ)2 − 1

3
≥ 1

2
ξ21 . (3.10)

Using this relation, we obtain

J1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)

|ξ2 + 2ξ1(ξ1 − ξ)− 1/3|〈η〉2b dξ1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)−2

〈η〉2b dη . 1,

for a > 0, b > 1/2 and ϑ(s) ≤ 2.
Case 3. Contribution of A3 to J1. If ξ1ξ2 ≥ 0, and without loss of generality ξ1, ξ2 ≥ 0, then
σ − σ1 − σ2 = −3ξξ1ξ2. Moreover, since ξ ≥ ξ1 ≥ 10, we conclude

〈σ〉 & |ξξ1ξ2| & |ξ1|3 & 〈ξ31〉,

so that Lemma 3.1 implies that

J1 .

∫ ∞

0

〈ξ1〉ϑ(s)−6a

〈τ + (ξ − ξ1)3 − (ξ − ξ1)/2 + ξ31 − ξ1/2〉2b
dξ1 . 1,

for b > 1/2 and ϑ(s) ≤ 6a.

If ξ1 ≥ 0 and ξ2 ≤ 0, then ξ1 ≥ ξ. Therefore, by a change of variable η = τ − ξ32 + ξ2/2+ ξ31 − ξ1/2
and using (3.10), we have

J1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)

|ξ2 + 2ξ1(ξ1 − ξ)− 1/3|〈η〉2b dη .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)−2

〈η〉2b dη . 1,

for a > 0, b > 1/2 and ϑ(s) ≤ 2.
Case 4. Now we estimate J2(ξ1, τ1). We use a change of variable η = τ1+|ξ|3−|ξ|/2−|ξ−ξ1|3+|ξ−ξ1|/2.
Hence we have |η| . |σ1|+ |σ| . 〈σ1〉. If ξ, ξ2 ≥ 0, then

|2ξ − ξ1| = 2ξ − ξ1 ≥ ξ − ξ1 = |ξ − ξ1| ≥ |ξ1|/2

so that

J2 .
〈ξ1〉ϑ(s)
〈σ1〉2b

∫

|η|.〈σ1〉

dη

|ξ1||2ξ − ξ1|〈η〉2a
.

〈ξ1〉ϑ(s)−2

〈σ1〉2b+2a−1
. 1,

for b > 1/2, 0 < a < 1/2 and ϑ(s) ≤ 2.

If ξ ≥ 0 and ξ − ξ1 ≤ 0, then one has

ξ2 + (ξ − ξ1)
2 − 1/3 = ξ21/2 + (2ξ − ξ1)

2/2− 1/3 ≥ ξ21/2− 1/3 ≥ ξ21/4,

so that

J2 .
〈ξ1〉ϑ(s)
〈σ1〉2b

∫

|η|.〈σ1〉

dη

|ξ2 + (ξ − ξ1)2 − 1/3|〈η〉2a .
〈ξ1〉ϑ(s)−2

〈σ1〉2b+2a−1
. 1,

for b > 1/2, 0 < a < 1/2 and ϑ(s) ≤ 2.

Now we are going to prove the case (III). First we split R4 into the following six regions:

B1 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |ξ1| ≤ 10
}
,

B2 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |ξ1| ≥ 10, |ξ| ≤ 1
}
,
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B3 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |ξ1| ≥ 10, |ξ| ≥ 1, ; |ξ| ≥ |ξ1|/4
}
,

B4 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |ξ1| ≥ 10, |ξ| ≥ 1, |ξ| ≤ |ξ1|/4, max{|σ1|, |σ2|, |σ|} = |σ|
}
,

B5 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |ξ1| ≥ 10, |ξ| ≥ 1, |ξ| ≤ |ξ1|/4, max{|σ1|, |σ2|, |σ|} = |σ1|
}
,

B6 =
{
(ξ, τ, ξ1, τ1) ∈ R

4 : |ξ1| ≥ 10, |ξ| ≥ 1, |ξ| ≤ |ξ1|/4, max{|σ1|, |σ2|, |σ|} = |σ2|
}
.

Using the Cauchy-Schwarz and Hölder inequalities and duality it is easy to see that

|Z| ≤ ‖f‖L2

ξ,τ
(R2)‖g‖L2

ξ,τ
(R2)‖h‖L2

ξ,τ
(R2)

∥∥∥∥
〈ξ〉2s
〈σ〉2a

∫

R2

χB1∪B3∪B4
dξ1dτ1

〈ξ1〉2s〈ξ2〉2s〈σ1〉2b〈σ2〉2b
∥∥∥∥

1

2

L∞

ξ,τ
(R2)

+ ‖f‖L2

ξ,τ
(R2)‖g‖L2

ξ,τ
(R2)‖h‖L2

ξ,τ
(R2)

∥∥∥∥
1

〈ξ1〉2s〈σ1〉2b
∫

R2

χB2∪B5
〈ξ〉2sdξdτ

〈ξ2〉2s〈σ〉2a〈σ2〉2b
∥∥∥∥

1

2

L∞

ξ1,τ1
(R2)

+ ‖f‖L2

ξ,τ
(R2)‖g‖L2

ξ,τ
(R2)‖h‖L2

ξ,τ
(R2)

∥∥∥∥∥
1

〈ξ2〉2s〈σ2〉2b
∫

R2

χB̃6
〈ξ1 + ξ2〉2sdξ1dτ1

〈ξ1〉2s〈σ1〉2a〈σ〉2b

∥∥∥∥∥

1

2

L∞

ξ2,τ2
(R2)

.

where σ, σ1, σ2 were given in the condition (III) and

B̃6 ⊂
{
(ξ2, τ2, ξ1, τ1) ∈ R

4 : |ξ1| ≥ 10, |ξ1 + ξ2| ≥ 1 |ξ1 + ξ2| ≤ |ξ1|/4, max{|σ1|, |σ2|, |σ|} = |σ2|
}
.

Therefore from Lemma 3.1, it sufficient to get bounds for

K1(ξ, τ) =
1

〈σ〉2a
∫

B1∪B3∪B4

〈ξ1〉ϑ(s)
〈τ + |ξ2|3 − |ξ2|/2− |ξ1|3 + |ξ1|/2〉2b

dξ1,

K2(ξ1, τ) =
〈ξ1〉ϑ(s)
〈σ1〉2b

∫

B2∪B5

dξ

〈τ1 − |ξ2|3 + |ξ2|/2 + |ξ|3 − |ξ|/2〉2a ,

K3(ξ2, τ2) =
1

〈σ2〉2b
∫

B̃6

〈ξ1〉ϑ(s)
〈τ2 + |ξ1 + ξ2|3 − |ξ1 + ξ2|/2 + |ξ1|3 − |ξ1|/2〉2a

dξ1,

Case 1. Contribution of B1 to K1. In region B1 we have 〈ξ1〉ϑ(s) . 1. Therefore for a > 0 and b > 1/2
we obtain

K1(ξ, τ) .

∫

|ξ1|≤10

dξ1 . 1.

Case 2. Contribution of B3 to K1. In region B3, we use a change of variable

η = τ + |ξ2|3 − |ξ2|/2− |ξ1|3 + |ξ1|/2.

In the case ξ1, ξ − ξ1 ≥ 0, by (3.10), we have

K1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)dη

|ξ2 + 2ξ1(ξ1 − ξ)− 1/3|〈η〉2b dη .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)−2

〈η〉2b dη . 1,

for a > 0, b > 1/2 and ϑ(s) ≤ 2.

If ξ1 ≥ 0 and ξ − ξ1 ≤ 0, then one has |ξ − 2ξ1| = 2ξ1 − ξ ≥ ξ1, so that

K1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)

|ξ(ξ − 2ξ1)|〈η〉2b
dη .

1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)−2

〈η〉2b dη . 1,

for a > 0, b > 1/2 and ϑ(s) ≤ 2.

9



Case 3. Contribution of B4 to K1. In this region, if ξ1, ξ − ξ1 ≥ 0, then by definition of the set B4,
we have

0 ≤ ξ1 ≤ ξ ≤ ξ1/4,

which is a contradiction. Therefore, this case can not happen.
Now if ξ1 ≥ 0 and ξ − ξ1 ≤ 0, then one has |ξ − 2ξ1| = 2ξ1 − ξ ≥ ξ1. We consider two cases. If

ξ ≤ 0, then
σ1 + σ2 − σ = 3ξξ1(ξ − ξ1).

If ξ ≥ 0, then
σ1 + σ2 − σ = −2ξ3 + ξ + 3ξξ1(ξ − ξ1).

Since |ξ − ξ1| ≥ 3|ξ1|/4, we have |ξ| ≤ |ξξ1ξ2| and

2|ξ3| ≤ |ξξ1(ξ − ξ1)|/6.

Therefore in both cases, we have
〈σ〉 & |ξξ1(ξ − ξ1)| & |ξξ21 |.

Thus, by a change of variable η = τ − ξ3 + 3ξξ1(ξ − ξ1) + ξ/2, one gets

K1 .
1

〈σ〉2a
∫ 〈ξ1〉ϑ(s)

|ξ(ξ − 2ξ1)|〈η〉2b
dη .

1

|ξξ21 |2a
∫ 〈ξ1〉ϑ(s)

|ξ(ξ − 2ξ1)|〈η〉2b
ddη .

〈ξ1〉ϑ(s)−4a−1

|ξ|2a+1

∫
dη

〈η〉2b . 1,

for a > 1/4, b > 1/2 and ϑ(s) ≤ 2.
Case 4. Contribution of B2 to K2. First if ξ ≥ 0 and ξ2 ≤ 0, we use a change of variable

η = τ1 + ξ3 + ξ32 + ξ1/2

and we get
|η| . |τ1 − ξ31 + ξ1/2|+ |2ξ3 − 3ξξ1ξ2| . 〈σ1〉+ |ξ1||ξ2| . 〈σ1〉+ ξ21 .

Since |ξ1| ≥ 10 and |ξ| ≤ 1 we have |2ξ2 − ξ1(2ξ − ξ1)| & |ξ1|2. Thus we derive

K2 .
〈ξ1〉ϑ(s)
〈σ1〉2b

∫

|η|.〈σ1〉+|ξ1ξ2|

dη

|2ξ2 − ξ1(2ξ − ξ1)|〈η〉2a

.
〈ξ1〉ϑ(s)−2

〈σ1〉2b
∫

|η|.〈σ1〉+|ξ1|2

dη

〈η〉2a .
〈ξ1〉ϑ(s)−2

〈σ1〉2b+2a−1
+

〈ξ1〉ϑ(s)−4a

〈σ1〉2b
. 1,

for ϑ(s) ≤ min{2, 4a}, 0 < a < 1/2, b > 1/2 and 2a+ 2b− 1 > 0.

If ξ ≥ 0 and ξ − ξ1 ≥ 0, we consider two cases. If ξ1 ≥ 0, then

0 ≤ ξ ≤ ξ1/10,

which is a contradiction with ξ − ξ1 ≥ 0.
So the only possible case is ξ1 ≤ 0. We use a change of variable η = τ1−(ξ−ξ1)3+(ξ−ξ1)/2+ξ3−ξ/2

to get
|η| . |τ1 + ξ31 |+ |3ξξ1(ξ − ξ1)| . 〈σ1〉+ |ξ1||ξ2| . 〈σ1〉+ ξ21 .

Since |ξ1(2ξ − ξ1)| & |ξ1|2, we conclude

K2 .
〈ξ1〉ϑ(s)
〈σ1〉2b

∫

|η|.〈σ1〉+|ξ1|2

dη

|ξ1(2ξ − ξ1)|〈η〉2a

.
〈ξ1〉ϑ(s)−2

〈σ1〉2b
∫

|η|.〈σ1〉+|ξ1|2

dη

〈η〉2a .
〈ξ1〉ϑ(s)−2

〈σ1〉2b+2a−1
+

〈ξ1〉ϑ(s)−4a

〈σ1〉2b
. 1,
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for ϑ(s) ≤ min{2, 4a}, 0 < a < 1/2, b > 1/2 and 2a+ 2b− 1 > 0.
Case 5. Contribution of B5 to K2. In this region, we use a change of variable

η = τ1 + |ξ|3 − |ξ|/2− |ξ2|3 + |ξ2|/2.

If ξ, ξ2 ≥ 0, then we consider two cases. If ξ1 ≥ 0, then

0 < ξ1 ≤ ξ ≤ ξ1/4,

which is a contradiction. Therefore, this case can not happen. If ξ1 ≤ 0, then

3|ξξ1ξ2| = |σ1 + σ2 − σ| . 〈σ1〉

and
|η| . |τ1 + ξ31 + ξ1/2|+ |ξξ1ξ2| . 〈σ1〉.

Thus, since |ξ1(2ξ − ξ1)| & |ξ1|2, we have

K2 .
〈ξ1〉ϑ(s)
〈σ1〉2b

∫
dη

|ξ1(2ξ − ξ1)|〈η〉2a
.

〈ξ1〉ϑ(s)−2

〈σ1〉2b
∫

|η|.〈σ1〉

dη

〈η〉2a .
|ξ1|ϑ(s)−2

〈σ1〉2a+2b−1
. 1,

for ϑ(s) ≤ 2, 0 < a < 1/2, b > 1/2 and 2a+ 2b− 1 ≥ 0.

If ξ ≥ 0 and ξ2 ≤ 0, then ξ1 ≥ 0, ξ21 . |ξ1(ξ1 − 2ξ)| and

〈σ1〉 & |σ1 + σ2 − σ| = | − 2ξ3 + 3ξξ1ξ2 + ξ| & |ξξ1ξ2|.

Hence we have
|η| . |τ1 − ξ31 + ξ1/2|+ |ξ + 3ξξ1ξ2| . 〈σ1〉;

and thus

K2 .
〈ξ1〉ϑ(s)
〈σ1〉2b

∫
dη

|ξ1(ξ1 − 2ξ)− 1/3|〈η〉2a .
〈ξ1〉ϑ(s)−2

〈σ1〉2b
∫

|η|.〈σ1〉

dη

〈η〉2a .
|ξ1|ϑ(s)−2

〈σ1〉2a+2b−1
. 1,

for ϑ(s) ≤ 2, 0 < a < 1/2, b > 1/2 and 2a+ 2b− 1 ≥ 0.

Case 6. Contribution of B̃6 to K3. Finally in the region B̃6, we have |ξ2| & |ξ1|, therefore

|ξ1|2 . |ξξ1ξ2| . 〈σ2〉,

hence

K3 .
1

〈σ2〉2b
∫ 〈ξ1〉ϑ(s)

〈|τ2|+ |ξ|3 − |ξ|/2 + |ξ31 | − |ξ1|/2〉2a
dξ1

. 〈σ2〉ϑ(s)/2−2b

∫
dξ1

〈|τ2|+ |ξ|3 − |ξ|/2 + |ξ31 | − |ξ1|/2〉2a
. 1,

for a > 1/6, b > 1/2 and ϑ(s) ≤ 4b. �

Next we show that the bilinear estimate (3.1) does not hold if s ≤ −1/2. More precisely,

Theorem 3.2 For any s < −1/2 and any a, b ∈ R, with a < 1/2 the estimate (3.1) fails.

The above theorem has an important consequence. It shows that our local result stated in Theorem
1.1 is sharp, in the sense that it cannot be improved by means of the Xs,b-spaces given in Definition 1.1.
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Proof of Theorem 3.2. Recall that γ(ξ) =
√
ξ2 − βξ4 + ξ6 and let ̺(ξ) = ξ3 − βξ/2, N ≫ 1 and

define
AN = {(ξ, τ) ∈ R

2|N ≤ ξ ≤ N +N−α, |τ − ̺(ξ)| ≤ 1},
where 0 < α < 1 will be choose later.

It is easy to see that AN contains a rectangle with (N, 3N2 − β/2) as a vertex, with dimensions
cN−2 ×N2−α and longest side pointing in the (1, 3N2 − β/2) direction.

Define fN (τ, ξ) = χAN
and gN(τ, ξ) = χ−AN

, then

‖fN‖L2

τ,ξ
∼ N−α/2, and ‖gN‖L2

τ,ξ
∼ N−α/2.

Let uN , vN ∈ Xs,b such that
fN (τ, ξ) ≡ 〈|τ | − ̺(ξ)〉b〈ξ〉sûN (τ, ξ)

and
gN (τ, ξ) ≡ 〈|τ | − ̺(ξ)〉b〈ξ〉sv̂N (τ, ξ).

Therefore, from Lemma 3.2-(3.4) and the fact that

||τ | − ̺(ξ)| ≤ min{|τ − ̺(ξ)|, |τ + ̺(ξ)|},

we obtain
∥∥∥∥∥

(
ξ2ûNvN (τ, ξ)

2iγ(ξ)

)∨
∥∥∥∥∥
Xs,−a

&

∥∥∥∥
ξ2〈ξ〉s

γ(ξ)〈|τ | − γ(ξ)〉a
∫

R2

fN (τ1, ξ1)g(τ2, ξ2)〈ξ1〉−s〈ξ2〉−sdτ1dξ1
〈|τ2| − γ(ξ2)〉b〈|τ1| − γ(ξ1)〉b

∥∥∥∥
L2

τ,ξ
(R2)

& BN ,

where

BN ≡
∥∥∥∥

ξ2〈ξ〉s
γ(ξ)〈τ − ̺(ξ)〉a

∫

R2

fN (τ1, ξ1)g(τ2, ξ2)〈ξ1〉−s〈ξ2〉−sdτ1dξ1
〈τ2 − ̺(ξ2)〉b〈τ1 − ̺(ξ1)〉b

∥∥∥∥
L2

τ,ξ
(R2)

.

From the definition of AN we have

(i) If (τ1, ξ1) ∈ supp(fN ) and (τ2, ξ2) ∈ supp(gN ) then

|τ1 − ̺(ξ1)| ≤ 1 and |τ2 − ̺(ξ2)| ≤ 1.

(ii) f ∗ g(τ, ξ) ≥ χRN
(τ, ξ), where RN is the rectangle of dimensions cN−2 ×N2−α with one of the

vertices at the origin and the longest side pointing in the (1, 3N2 − β/2) direction.

(iii) |ξ1| ∼ N , |ξ2| ∼ N and |ξ| ≤ N−α.

Moreover, combining (i) and (iii) we obtain

|τ − ̺(ξ)| . N2−α, for all |ξ| ≥ N−α/2. (3.11)

Therefore (i), (ii), (iii), (3.11) and the inequality ξ2/γ(ξ) ≥ ξ yields

N−α & BN &
N−(2+α)s

N (2−α)a

∥∥∥∥
|ξ|2
γ(ξ)

χRN

∥∥∥∥
L2

τ,ξ
(R2)

&
N−(2+α)s

N (2−α)a
N−α

(∫

R

∫

{|ξ|≥N−α/2}

χ2
RN

(τ, ξ)dξdτ

)1/2

&
N−(2+α)s

N (2−α)a
N−αN−αN−α/2.
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Taking N ≫ 1, this inequality is possible only when

s ≥ −3α/2 + (2− α)a

α+ 2
. (3.12)

Now fix a < 1/2 and choose α =
1− 2a

1− a
. Then α ∈ (0, 1) and plug it into (3.12) we conclude that

the estimate (3.1) must fail for s < −1/2. �

4 Ill-posedness

Before stating the main results let us define the flow-map data solution as

S : Hs(R)×Hs−1(R) −→ C([0, T ] : Hs(R))
(ϕ, ψ) 7−→ u(t)

(4.1)

where u(t) is given in (1.3) below. Our ill-posedness results read as follows.

Theorem 4.1 Let s < −3 and any T > 0. Then there does not exist any space XT such that

‖u‖C([0,T ]:Hs(R)) ≤ c ‖u‖XT , (4.2)

for all u ∈ XT

‖Vc(t)ϕ+ Vs(t)ψx‖XT ≤ c
(
‖ϕ‖Hs(R) + ‖ψ‖Hs−1(R)

)
, (4.3)

for all ϕ ∈ Hs(R), ψ ∈ Hs−1(R) and

∥∥∥∥
∫ t

0

Vs(t− t′)(uv)xx(t
′)dt′

∥∥∥∥
XT

≤ c ‖u‖XT
‖v‖XT , (4.4)

for all u, v ∈ XT .

Theorem 4.2 Let s < −3. If there exists some T > 0 such that the initial value problem associated to
(1.2) with initial data u(0) = ϕ and ut(0) = ψx is locally well-posed, then the flow-map data solution
S defined in (4.1) is not C2 at zero.

Proof of Theorem 4.1 Suppose that there exists a space XT satisfying the conditions of the theorem
for s < −3 and T > 0. Let ϕ, ψ ∈ Hs(R) and define u(t) = Vc(t)ϕ, v(t) = Vc(t)ρ. In view of (4.2),
(4.3), (4.4) it is easy to see that the following inequality must hold

sup
1≤t≤T

∥∥∥∥
∫ t

0

Vs(t− t′)(Vc(t
′)ϕVc(t

′)ψ)xx(t
′)dt′

∥∥∥∥
Hs(R)

≤ c ‖ϕ‖Hs(R) ‖ψ‖Hs(R) . (4.5)

We will see that (4.5) fails for an appropriate choice of ϕ, ρ, which would lead to a contradiction.
Define

ϕ̂(ξ) = N−sχ[−N,−N+1] and ψ̂(ξ) = N−sχ[N+1,N+2],

where χA(·) denotes the characteristic function of the set A. We have ‖ϕ‖Hs(R) ∼ 1 and ‖ψ‖Hs(R) ∼ 1.
By the definitions of Vc, Vs and Fubini’s Theorem, we have

(∫ t

0

Vs(t− t′)(Vc(t
′)ϕVc(t

′)ψ)xx(t
′)dt′

)∧x

(ξ) =

∫

R

− |ξ|2
8iγ(ξ)

ϕ̂(ξ2)ψ̂(ξ1)K(t, ξ, ξ1) dξ1

=

∫

Aξ

− |ξ|2
8iγ(ξ)

N−2sK(t, ξ, ξ1) dξ1
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where
Aξ =

{
ξ1 : ξ1 ∈ supp(ψ̂) and ξ2 ∈ supp(ϕ̂)

}

and

K(t, ξ, ξ1) ≡
∫ t

0

sin((t− t′)γ(ξ)) cos(t′γ(ξ2)) cos(t
′γ(ξ1)) dt

′.

Note that for all ξ1 ∈ supp(ψ̂) and ξ2 ∈ supp(ϕ̂) we have

γ(ξ2), γ(ξ1) ∼ N3 and 1 ≤ ξ ≤ 3.

On the other hand, since s < −3, we can choose ε > 0 such that

− 2s− 6− 2ε > 0. (4.6)

Let t =
1

N3+ε
, then for N sufficiently large we have

cos(t′γ(ξ2)), cos(t
′γ(ξ1)) ≥ 1/2

and
sin((t− t′)γ(ξ)) ≥ c(t− t′)γ(ξ),

for all 0 ≤ t′ ≤ t, 1 ≤ ξ ≤ 3 and ξ1 ∈ supp(η̂).

Therefore

K(t, ξ, ξ1) &

∫ t

0

(t− t′)γ(ξ)dt′ & γ(ξ)
1

N6+2ε
.

For 3/2 ≤ ξ ≤ 5/2 we have that mes(Aξ) & 1. Thus, from (4.5) we obtain

1 & sup
1≤t≤T

∥∥∥∥
∫ t

0

Vs(t− t′)(Vc(t
′)ϕVc(t

′)ψ)xx(t
′)dt′

∥∥∥∥
Hs(R)

& sup
1≤t≤T



∫ 5/2

3/2

(
1 + |ξ|2

)s
∣∣∣∣∣

∫

Aξ

|ξ|2
8iγ(ξ)

N−2sK(t, ξ, ξ1)dξ1

∣∣∣∣∣

2

dξ




1/2

& N−2s−6−2ε, for all N ≫ 1

which is in contradiction with (4.6). �

Proof of Theorem 4.2 Let s < −3 and suppose that there exists T > 0 such that the flow-map
S defined in (4.1) is C2. When (ϕ, ψ) ∈ Hs(R)×Hs−1(R), we denote by u(ϕ,ψ) ≡ S(ϕ, ψ) the solution
of the IVP (1.2) with initial data u(0) = ϕ and ut(0) = ψx, that is

u(ϕ,ψ)(t) = Vc(t)ϕ+ Vs(t)ψx +

∫ t

0

Vs(t− t′)(u2(ϕ,ψ))xx(t
′)dt′.

The Fréchet derivative of S at (ω, ζ) in the direction (ϕ, ϕ̄) is given by

d(ϕ,ϕ̄)S(ω, ζ) = Vc(t)ϕ + Vs(t)ϕ̄x + 2

∫ t

0

Vs(t− t′)(u(ϕ,ψ)(t
′)d(ϕ,ϕ̄)S(ω, ζ)(t

′))xxdt
′. (4.7)

Using the well-posedness assumption we know that the only solution for initial data (0, 0) is u(0,0) ≡
S(0, 0) = 0. Therefore, (4.7) yields

d(ϕ,ϕ̄)S(0, 0) = Vc(t)ϕ+ Vs(t)ϕ̄x.

14



Computing the second Fréchet derivative at the origin in the direction ((ϕ, ϕ̄), (ν, ν̄)), we obtain

d2(ϕ,ϕ̄),(ν,ν̄)S(0, 0) = 2

∫ t

0

Vs(t− t′) [(Vc(t
′)ϕ+ Vs(t

′)ϕ̄x)(Vc(t
′)ν + Vs(t

′)ν̄x)]xx dt
′.

Taking ϕ̄, ν̄ = 0, the assumption of C2 regularity of S yields

sup
1≤t≤T

∥∥∥∥
∫ t

0

Vs(t− t′)(Vc(t
′)ϕVc(t

′)ν)xx(t
′)dt′

∥∥∥∥
Hs(R)

≤ c ‖ϕ‖Hs(R) ‖ν‖Hs(R)

which has been shown to fail in the proof of Theorem 4.1. �
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