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HOMOMORPHISMS OF ABELIAN VARIETIES OVER

GEOMETRIC FIELDS OF FINITE CHARACTERISTIC

YURI G. ZARHIN

Abstract. We study analogues of Tate’s conjecture on homomorphisms for
abelian varieties when the ground field is finitely generated over an algebraic
closure of a finite field. Our results cover the case of abelian varieties without
nontrivial endomorphisms.

1. Introduction

Let K be a field, K̄ its algebraic closure, K̄s ⊂ K the separable algebraic clo-
sure of K, Gal(K) = Gal(K̄s/K) = Aut(K̄s/K) the absolute Galois group of K.
Let X be an abelian variety over K. Then we write EndK(X) for its ring of K-
endomorphisms and put End0K(X) := EndK(X) ⊗ Q. We write End(X) for the

endomorphism ring of X × K̄ and write End0(X) for the corresponding finite-
dimensional semisimple Q-algebra End(X) ⊗ Q. If n is a positive integer that is
not divisible by char(K) then we write Xn for the kernel of multiplication by n in
X(K̄); it is well known that Xn is free Z/nZ-module of rank 2dim(X) [8], which is
a Galois submodule of X(K̄s). We write ρ̄n,X for the corresponding (continuous)
structure homomorphism

ρ̄n,X : Gal(K) → AutZ/nZ(Xn) ∼= GL(2dim(X),Z/nZ).

In particular, if n = ℓ is a prime then Xℓ is a 2dim(X)-dimensional Fℓ-vector space
provided with

ρ̄ℓ,X : Gal(K) → AutFℓ
(Xℓ) ∼= GL(2dim(X),Fℓ).

If ℓ is a prime that is different from char(K) then we write Tℓ(X) for the Zℓ-Tate
module of X and Vℓ(X) for the corresponding Qℓ-vector space

Vℓ(X) = Tℓ(X)⊗Zℓ
Qℓ

provided with the natural continuous Galois action [11]

ρℓ,X : Gal(K) → AutZℓ
(Tℓ(X)) ⊂ AutQℓ

(Vℓ(X)).

Recall [8] that Tℓ(X) is a free Zℓ-module of rank 2dim(X) and Vℓ(X) is a Qℓ-
vector space of dimension 2dim(X). Notice that there are canonical isomorphisms
of Gal(K)-modules

Xℓ = Tℓ(X)/ℓTℓ(X) (0).

There are natural algebra injections

End(X)⊗ Z/n →֒ EndGalK(Xn) (1),

End(X)⊗ Zℓ →֒ EndGalK(Tℓ(X)) (2),

End(X)⊗Qℓ →֒ EndGalK(Vℓ(X)) (3).
1
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It is known [13, Sect. 1] that for given ℓ,K,X, Y the map in (2) is bijective if and
only if the map in (3) is bijective.

The Tate conjecture on homomorphisms of abelian varieties [13] asserts that if K
is finitely generated over its prime subfield then the last two injections are bijective.
This conjecture was proven by J. Tate himself over finite fields [13], the author when
char(K) > 2 [14, 15], G. Faltings when char(K) = 0 [4, 5] and by S. Mori when
char(K) = 2 [7]. They also proved (in the corresponding characteristics) that the
Galois module Vℓ(X) is semisimple. (In the case of finite fields the semisimplicity
result is due to A. Weil. See also [19].) Let us state explicitly the following two
well known corollaries of the Tate conjecture. (Here we assume that K is finitely
generated over its prime subfield.)

(i) The isogeny theorem. If for some ℓ 6= char(K) the Gal(K)-modules
Vℓ(X) and Vℓ(Y ) are isomorphic then X and Y are isogenous over K. (See
[13, Sect. 3, Th. 1(b) and its proof] and [9, Proof of Cor. 1.3 on p. 118].)

(ii) If EndK(X) = Z then the Gal(K)-module Vℓ(X) is absolutely simple.

In addition, if K is finitely generated over its prime subfield and char(K) 6= 2
then for all but finitely many primes ℓ the Gal(K)-module Xℓ is semisimple and
the injection

Hom(X,Y )⊗ Z/ℓ →֒ HomGal(K)(Xℓ, Yℓ)

in (1) is bijective ([16, Th. 1.1],[18, Cor. 5.4.3 and Cor. 5.4.5], [12, Prop. 3.4],
[23, Th.4.4]). (See [22, Cor. 10.1] for a discussion of the case of finite fields.) It
follows immediately that if EndK(X) = Z then for all but finitely many primes ℓ
the Galois module Xℓ is absolutely simple. We discuss an analogue of the isogeny
theorem with “finite coefficients” in Section 2.

Let p be a prime, F a finite field of characteristic p and F̄ an algebraic closure
of F. The aim of this note is to discuss the situation when the ground field L is a
field of characteristic p that contains F̄ and is finitely generated over it. We call
such a field a geometric field of characteristic p. Geometric fields are precisely the
fields of rational functions of irreducible algebraic varieties over F̄.

Our main results are the following three theorems.

Theorem 1.1. Let p > 2 be a prime, L a geometric field of characteristic p and

X an abelian variety of positive dimension over L. Suppose that EndL(X) = Z.

Then:

(i) For all primes ℓ 6= char(L) the Galois module Vℓ(X) is absolutely simple.

(ii) For all but finitely many primes ℓ the Galois module Xℓ is absolutely simple.

Remark 1.2. In the case of End(X) = Z the assertion (i) of Theorem 1.1 follows
from [17, Cor. 1.4].

Remark 1.3. Theorem 1.1 gives a positive answer to a question of W. Gajda that
was asked in connection with [1].

Theorem 1.4. Let p be a prime, L a geometric field of characteristic p and X and

Y are abelian varieties of positive dimension over L. Suppose that EndL(X) = Z

and one of the following two conditions holds:

(i) There exists a prime ℓ such that the Gal(L)-modules Vℓ(X) and Vℓ(Y ) are
isomorphic.

(ii) The Gal(L)-modules Xℓ and Yℓ are isomorphic for infinitely many primes

ℓ.
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Then X and Y are isogenous over L.

Remark 1.5. There are plenty of explicit examples in characteristic p > 2 of
abelian varieties X with End(X) = Z [20, 21].

Theorem 1.6. Let p > 2 be a prime, L a geometric field of characteristic p and X
an abelian variety of positive dimension over L. Let Z be the center of EndL(X).
Then:

(i) For all primes ℓ 6= char(L) the center Zℓ,X of EndGal(L)(Vℓ(X)) lies in

Z ⊗Qℓ ⊂ EndL(X)⊗Qℓ.

(ii) For all but finitely many primes ℓ the center Z̄ℓ,X of EndGal(L)(Xℓ) lies in

Z/ℓ ⊂ EndL(X)⊗ Z/ℓ.

Remark 1.7. Clearly, for all ℓ the commutative Qℓ-algebra Z ⊗Qℓ coincides with
the center of EndL(X) ⊗Qℓ. It is also clear that for all but finitely many primes
ℓ the commutative Fℓ-algebra Z/ℓ coincides with the center of EndL(X) ⊗ Z/ℓZ.
Notice also that

EndL(X)⊗Qℓ ⊂ EndGal(L)(Vℓ(X)), EndL(X)⊗ Z/ℓZ ⊂ EndGal(L)(Xℓ).

This implies that for all ℓ

Zℓ,X

⋂
[EndL(X)⊗Qℓ] ⊂ Z ⊗Qℓ

and for all but finitely many ℓ

Z̄ℓ,X

⋂
[EndL(X)⊗ Z/ℓ] ⊂ Z/ℓ.

It follows that in order to prove Theorem 1.6, it suffices to check that for all ℓ

Zℓ,X ⊂ EndL(X)⊗Qℓ

and for all but finitely many ℓ

Z̄ℓ,X ⊂ EndL(X)⊗ Z/ℓ.

Remark 1.8. Compare Theorem 1.6 with [3, Cor. 4.2.8(ii)].

The paper is organized as follows. In Section 2 we discuss a variant of the
isogeny theorem with finite coefficients. Section 3 contains auxiliary results from
representation theory of groups with procyclic quotients. We prove the main results
in Section 4.

2. Isogeny theorem with finite coefficients

Theorem 2.1. Let K be a finitely generated over its prime subfield and char(K) 6=
2. Let X and Y be abelian varieties over K. Suppose that for infinitely many primes

ℓ the Gal(K)-modules Xℓ and Yℓ are isomorphic. Then X and Y are isomorphic.

Proof. We may assume that dim(X) > 0 and dim(Y ) > 0. Since for all primes
ℓ 6= char(K)

2dim(X) = dimFℓ
(Xℓ), 2dim(Y ) = dimFℓ

(Yℓ),

and therefore dim(X) = dim(Y ). Since for all but finitely many primes ℓ

HomK(X,Y )⊗ Z/ℓZ = HomGal(K)(Xℓ, Yℓ),

there exist a prime ℓ 6= char(K) and a K-homomorphism u : X → Y such that u
induces an isomorphism between Xℓ and Yℓ. In particular, ker(u) does not contain
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points of order ℓ on X while the image u(X) contains all points of order ℓ on
Y . This implies that ker(u) has dimension zero while irreducible closed u(Y ) has
dimension dim(Y ). In other words, u : X → Y is a surjective homomorphism with
finite kernel, i.e., is an isogeny. �

Remark 2.2. It would be interesting to get an analogue of Theorem 2.1 where say,
a number field K is replaced by its infinite ℓ-cyclotomic extension K(µℓ∞). Some
important special cases of this analogue are done in [6].

3. Representation theory

Throughout this Section, G is a profinite group H a closed normal subgroup of
G such that the quotient Γ = G/H is a procyclic group. We call G a procyclic

extension of H .
We write down the group operation in G (and H) multiplicatively and in Γ ad-

ditively. We write π : G → Γ for the natural continuous surjective homomorphism
from G to Γ. If n is a positive integer then nΓ is the closed subgroup (as the image

of compact Γ under Γ
n
→ Γ) in Γ, whose index divides n; since the index in finite,

nΓ is open in Γ. Notice that nΓ is also a procyclic group.
Let us put Gn = π−1(nΓ); clearly, Gn is an open normal subgroup in G, whose

index divides n. In addition, each Gn contains H and the quotient G/Gn is canon-
ically isomorphic to Γ/nΓ while Gn/H ∼= nΓ. In particular, H is closed normal
subgroup of Gn and the quotient Gn/H is procyclic, i.e. Gn is also a procyclic
extension of H . In particular, for each positive integer m we may define the open
normal subgroup (Gn)m of Gn; clearly,

(Gn)m = Gmn,

because m(nΓ) = (mn)Γ.

Remark 3.1. Let c : G → k∗ be a continuous group homomorphism (character)
of G with values in the multiplicative group of a locally compact field k that enjoys
the following properties:

(i) c kills H , i.e., c factors through G/H = Γ.
(i) cn is the trivial character, i.e., cn kills the whole G.

Then obviously c kills π−1(nΓ) = Gn, i.e., c factors through the finite cyclic quotient
G/Gn = Γ/nΓ.

Let k be a a locally compact field (e.g., k is finite or Qℓ.) Let d be a positive
number and V a d=dimensional k-vector space provided with discrete topology.
Let

ρ : G → Autk(V ) ∼= GL(d, k)

be a continuous semisimple linear representation of G. As usual, det(V ) stands for
the one-dimensional G-module Λd

k(V ).

Lemma 3.2. Suppose that

EndGd
(V ) = k.

Then the H-module V is absolutely simple. In particular,

EndH(V ) = k.

Remark 3.3. Lemma 3.2 asserts that if W is an absolutely simple Gd-module then
it remains absolutely simple, being viewed as a H-module.
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Proof. We have

k ⊂ EndG(V ) ⊂ EndGd
(V ) ⊂ EndH(V ).

Since EndGd
(V ) = k, we conclude that k = EndG(V ).

By Clifford’s Lemma [2, Theorem (49.2)], the H-module V is semisimple. Let
us split V into a direct sum V = ⊕r

i=1Vi of isotypic H-modules. Clearly G per-
mutes Vi’s; the simplicity of the G-module V implies that G acts on {V1, . . . , Vr}
transitively. In particular, all Vi’s have the same dimension and therefore

dim(Vi) =
dim(V )

r
=

d

r
;

in particular, r | d. Clearly, the action of G on {V1, . . . , Vr} factors through G/H .
Since this action is transitive and G/H is procyclic, this action factors through finite
cyclic G/Gr and therefore through G/Gn, i.e,, each Vi is a Gn-submodule. Since
the Gn-module V is (absolutely) simple, V = Vi. In other words, the H-nodule V
is isotypic.Then the centralizer

D = EndH(V )

is a simple k-algebra. Let k′ be the center of D: it is an overfield of k. Clearly,
V becomes a k′-vector space; in particular, k′/k is a finite algebraic extension and
[k′ : k] | d. On the other hand, since H is normal in G,

ρ(g)Dρ(g)−1 = D ∀g ∈ G.

Clearly, the center k′ is also stable under the conjugations by elements of ρ(G) and
{k′}G = k. This gives us a continuous group homomorphism G/H → Aut(k′/k

such that {k′}G/H = k. It follows that k′/k is a finite cyclic Galois extension and

G/H → Aut(k′/k) = Gal(k′/k)

is a surjective homomorphism. Since #(Gal(k′/k)) = [k′ : k] divides d, the surjec-
tion Gal(k′/k) ։ Gal(k′/k) factors through G/Gn and therefore

k′ ⊂ EndGn
(V );

since EndGn
(V ) = k, we conclude that k′ ⊂ k and therefore k′ = k. This means

that D is a central simple k-algebra and let t := dimk(D). We need to prove that
t = 1. Suppose that t > 1, pick a generator in Γ and denote by g its preimage in
G. Then the map

u 7→ ρ(g)uρ(g)−1

is an automorphism of D, whose set of fixed points coincides with k. By Skolem-
Noether theorem, there exists an element z ∈ A∗ such that

ρ(g)uρ(g)−1 = zuz−1 ∀u ∈ D.

Clearly, z itself is a fixed point of this automorphism and therefore z ∈ k, which
implies that the automorphism is the identity map and therefore its set of fixed
points must be the whole D, which is not the case, because t > 1. The obtained
contradiction proves that t = 1, i.e.,

EndH(V ) = D = k

and we are done. �
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Lemma 3.4. Let ρ1 : G → Autk(W1) be a continuous linear d-dimensional rep-

resentation of G over k. Let ρ2 : G → Autk(W2) be a linear finite-dimensional

continuous representation of G over k. Suppose that EndH(W1) = k and the H-

modules W1 and W2 are isomorphic. Then there exists a continuous character

χ : G/H = Γ → k∗

such that the G-module W2 is isomorphic to the twist V1(χ). In particular, the

one-dimensional G-modules det(W2) and [det(W1)](χ
d) are isomorphic.

Proof. It is well known that the vector space Homk(W1,W2) carries the natural
structure of a G-module defined by

g, u 7→ ρ2(g)uρ1(g)
−1 ∀g ∈ G, u ∈ Homk(W1,W2).

Since H is normal in G, the subspace HomH(W1,W2) of H-invariants is a G-
invariant subspace in Homk(W1,W2). Our conditions on the H-module W1 and
W2 imply that the k-vector space HomH(W1,W2) is one-dimensional (and its every
nonzero element W1 → W2 is an isomorphism of H-modules). Therefore the action
of G on one-dimensional Homk(W1,W2) is defined by a certain continuous character
χ : G → k∗, which obviously kills H , so we may view χ a a continuous character

Γ = G/H → k∗.

This means thai if u : W1
∼= W2 is an isomorphism of H-modules then

ρ2(g)uρ1(g)
−1 = χ(g)u ∀g ∈ G.

Multiplying this equality from the right by ρ1(g), we obtain that

ρ2(g)u = χ(g)uρ1(g) = u[χ(g)ρ1(g)] ∀g ∈ G,

which means that u is an isomorphism of G-modules W1(χ) and W2. It remains to
notice that det(W1(χ)) = [det(W1)](χ

d). �

Corollary 3.5. We keep the notation and assumptions of Lemma 3.4. If for some

positive integer N the G-modules det(W1)
⊗N and det(W2)

⊗N are isomorphic then

the character χNd is trivial.

Theorem 3.6. Suppose that the G-module V is semisimple. Then there exists a

positive integer n that is bounded by a constant depending only on d and such that

the center of EndH(V ) lies in EndGn
(V ).

Proof. By a variant of Clifford’s Lemma [23, Lemma 3.4], the H-module V is
semisimple. In particular, the centralizer D = EndH(V ) is a (finite-dimensional)
semisimple k-algebra. Since H is normal in G

ρ(g)Dρ(g)−1 = D ∀g ∈ G.

Let Z be the center of D. Since D is semisimple, Z is isomorphic to a direct sum
⊕r

i=1ki of finitely many overfields ki ⊃ k where each ki/k is a finite algebraic field
extension. Clearly,

[ki : k] ≤ dimk(Z) ≤ dimk(V ) = d, r ≤ d

and the k-algebra Z has exactly r minimal idempotents (the identity elements ei’s
of ki’s. Clearly, group Autk(Z) of k-linear automorphisms of Z permutes ei’s,
which gives us the homomorphism from Autk(Z) to the full symmetric group Sr,
whose kernel leaves invariant each summand ki and therefore sits in the product∏r

i=1 Aut(ki/k), whose order does not exceed
∏r

i=1[ki : k] ≤ dd. It follows that
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Autk(Z) is a finite group, whose order n does not exceed d!dd. On the other hand,
clearly,

ρ(g)Zρ(g)−1 = Z ∀g ∈ G,

because every automorphism of D respects its center. This gives us the group
homomorphism

φ : G → Autk(Z), φ(g)(z) = ρ(g)zρ(g)−1 ∀z ∈ Z, g ∈ G,

which kills H , because

Z ⊂ D = EndH(V ).

Clearly, φ kills Gn and we are done. �

4. Proofs of main results

There is a subfield K ⊂ L such that K is finitely generated over Fp and the
compositum KF̄ = L while given abelian varieties X and Y , their group laws and
zeros are defined over K. We also require that

EndK(X) = EndL(X), EndK(Y ) = EndL(Y ) (4).

Let us put

G = Gal(K), H = Gal(L),Γ = Gal(L/K).

Since F̄/F is a Galois extension and KF̄ = L, the Galois group Γ = Gal(L/K)
is canonically isomorphic to a closed subgroup of Gal(F/Fp); since the latter is
procyclic, Γ is also procyclic.

Let n be a positive integer and let us consider the open normal subgroup Gn of
G. Since Gn contains H , the subfield Kn = K̄Gn

s of Gn-invariants is a finite (cyclic)
Galois extension of K that lies in L. In particular, Kn is finitely generated over Fp

and Gal(Kn) = Gn. Since K ⊂ Kn ⊂ L, it follows from (4) that

EndKn
(X) = EndL(X), EndKn

(Y ) = EndL(Y ) (5).

If ℓ is a prime different from p we write

χ̄ℓ : Gal(K) → (Z/ℓZ)∗ = F∗

ℓ , χℓ : Gal(K) → Z∗

ℓ ⊂ Q∗

ℓ

for the cyclotomic characters that define the Galois action on all ℓth roots of unity
(resp. all ℓ-power roots of unity). Clearly,

χ̄ℓ = χℓ mod ℓ (4).

Since K is finitely generated over Fp, the cyclotomic characters enjoy the fol-
lowing properties:

(i) The character χℓ has infinite multiplicative order.
(ii) IfN is a positive integer then for all but finitely many primes ℓ the character

χ̄N
ℓ is nontrivial.

Since every Kn is finitely generated over Fp, the abelian variety X overK enjoys
the following properties.

(a) For all primes ℓ 6= char(K) the Gn-module Vℓ(X) is semisimple and

EndGn
(Vℓ(X)) = EndKn

(X)⊗Qℓ = EndL(X)⊗Qℓ.

In particular, if EndL(X) = Z then Gn-module Vℓ(X) is absolutely simple.
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(b) For all but finitely many primes ℓ the Gn-module Xℓ is semisimple and

EndGn
(Xℓ) = EndKn

(X)⊗ Z/ℓ = EndL(X)⊗ Z/ℓ.

In particular, if EndL(X) = Z then Gn-module Xℓ is absolutely simple for
all but finitely many primes ℓ.

Proof of Theorem 1.1. Let d = dim(X). Let us consider the open normal subgroup
G2d of G.

Since EndL(X) = Z, (a) tells us that the G2d-module Vℓ(X) is absolutely simple
for each ℓ 6= p; in particular,

Qℓ = EndG2d
(Vℓ(X)) = EndG(Vℓ(X)).

On the other hand, (b) tells us that for all but finitely many ℓ the G2d-module Xℓ

is absolutely simple; in particular,

Fℓ = EndG2d
(Xℓ) = EndG(Xℓ).

Now, in order to finish the proof of Theorem 1.1(i) it suffices to apply Lemma
3.2 in the following situations (taking into account that 2d = dimQℓ

(Vℓ(X)) =
dimFℓ

(Xℓ)).

(i) k = Qℓ, V = Vℓ(X).
(ii) k = Fℓ, V = Xℓ.

�

Proof of Theorem 1.4. Clearly, d := dim(X) = dim(Y ). It is well known that the
existence of Galois-equivariant nondegenerate alternating bilinear (Weil–Riemann)
forms on Tate modules [10, Sect. 1.3], [23, Proof of Prop. 2.2] implies that
det(Vℓ(X)) and det(Vℓ(Y )) are one-dimensionalG-modules defined by the character
χd
ℓ . Now applying Lemma 3.4, we conclude the G-module Vℓ(Y ) is isomorphic to the

twist Vℓ(X)(χ) for a certain continuous character χ : G/H = Γ → Q∗

ℓ . It follows
from Corollary to Lemma 3.4 that χ2d is trivial. This implies that χ kills G2d

and therefore the G2d-modules Vℓ(X) and Vℓ(Y ) are isomorphic. Now the isogeny
theorem over K2d implies that X and Y are isogenous over K2d and therefore over
L. This proves (i).

Similar arguments work in the case (ii). Clearly, d := dim(X) = dim(Y ) and
the structure of Gal(K)-modules on the rank 1 free Zℓ-modules Λ2d

Zℓ
Tℓ(X) and

Λ2d
Zℓ
Tℓ(Y ) is defined by χd

ℓ , because

Λ2d
Zℓ
Tℓ(X) ⊂ Λ2d

Qℓ
Vℓ(X) = det(Vℓ(X)), Λ2d

Zℓ
Tℓ(Y ) ⊂ Λ2d

Qℓ
Vℓ(Y ) = det(Vℓ(Y )).

It follows from (0) that

det(Xℓ) = Λ2d
Zℓ
Xℓ = Λ2d

Zℓ
(Tℓ(X)/ℓ) = [Λ2d

Zℓ
(Tℓ(X)]/ℓ

and therefore the structure of the Galois module on det(Xℓ) is defined by the
character χd

ℓ mod ℓ = χ̄d
ℓ . By the same token, the structure of the Galois module

on the one-dimensional det(Yℓ) is also defined by χ̄d
ℓ . Now applying Lemma 3.4, we

conclude the G-module Yℓ is isomorphic to the twist Yℓ(χ̄) for a certain continuous
character χ̄ : G/H = Γ → F∗

ℓ . It follows from Corollary to Lemma 3.4 that χ̄2d is
trivial. As above, this implies that χ̄ kills G2d and therefore the G2d-modules Xℓ

and Yℓ are isomorphic for infinitely many ℓ. Now Theorem 2.1 implies that X and
Y are isogenous over K2d and therefore over L. This proves (ii). �
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Proof of Theorem 1.6. As above, G = Gal(K), H = Gal(L).
(i) Let us put k = Qℓ, V = Vℓ(X) and apply Theorem 3.6. We obtain that

there exists a positive integer n such that the center of EndGal(L)(Vℓ(X)) lies in
EndGn

(Vℓ(X))⊗Qℓ. By (a),

EndGn
(Vℓ(X)) = EndKn

(X)⊗Qℓ = EndL(X)⊗Qℓ

and we are done.
(ii) Let us put k = Fℓ, V = Xℓ and apply Theorem 3.6. We obtain that there

exists a universal positive integer n such that for all but finitely many primes ℓ the
center of EndGal(L)(Xℓ) lies in EndGn

(Xℓ). By (b),

EndGn
(Xℓ) = EndKn

(X)⊗ Z/ℓ = EndL(X)⊗ Z/ℓ

and we are done, taking into account Remark 1.7.
�
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