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POLYNOMIAL INVARIANTS OF GRAPHS ON SURFACES

R. ASKANAZI, S. CHMUTOV, C.ESTILL, J. MICHEL, P. STOLLENWERK

ABSTRACT. For a graph embedded into a surface, we relate many combinatorial parameters of
the cycle matroid of the graph and the bond matroid of the dual graph with the topological
parameters of the embedding. This will give an expression of the polynomial, defined by M. Las
Vergnas in a combinatorial way using matroids as a specialization of the Krushkal polynomial,
defined using the symplectic structure in the first homology group of the surface.

INTRODUCTION

Since Hassler Whitney’s introduction of matroids in 1935, the theory of matroids has developed
mostly in two major directions. The development of matroids as a tool to be applied to graphs
was mostly fostered in the area of combinatorics while matroids of collections of vectors in a vector
space found a strong application to topologies of arrangements of hyperplanes in a vector space
and was developed jointly in combinatorics and topology. It has been shown that the matroidal
properties of such a hyperplane arrangement are very closely related to the topological properties
of the arrangement. In this paper we demonstrate that the first direction of matroids associated
to a graph is also tightly related to topology.

We consider graphs on surfaces. Suppose that a graph G is embedded into a surface ¥ in
a cellular manner, that is each connected component (face) of the complement to the graph is
homeomorphic to a disc. Then we can define a dual graph G* embedded into the same surface
Y in a natural way. With the graph G we associate its cycle matroid C(G), and with the dual
graph G* we associate its bond matroid B(G*), the dual matroid of its cycle matroid C(G*). In
the planar case, when X is a sphere, B(G*) is a dual matroid of the dual graph, so it is isomorphic
to C(G) = B(G*). Thus the difference between C(G) and B(G*) can be considered as a measure
of non-planarity of the embedding and should reflect the topology of the pair (X,G). Various
combinatorial parameters of the matroids C(G) and B(G*) can be assembled into the Las Vergnas
polynomial of a matroid perspective B(G*) — C(G) introduced in [LVI1] [LV2] [LV3].

On the other hand, the topological parameters of the embedding of G into ¥ can be assembled
into the Krushkal polynomial introduced in . In this paper we show that the Las Vergnas
polynomial is a specialization of the Krushkal polynomial. In the process, we relate many com-
binatorial parameters of the matroids C(G) and B(G*) with the topological parameters of the
embedding.

In Section [[l we briefly review matroids and their combinatorial parameters, and introduce the
Las Vergnas polynomial. We introduce the Krushkal polynomial in Section[2l The main theorem
is formulated in Section Bl wherein we also get the duality property of the Las Vergnas polynomial
as a simple consequence of our main theorem. We begin to prove the main theorem in this section
and complete it in Section [4] which consists of three lemmas relating the topological parameters
of the embedding G — ¥ with the combinatorial parameters of its matroids. We conclude in
Section Bl with a discussion on the relation of the Krushkal polynomial with the Bollobas-Riordan
polynomial of ribbon graphs.
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1. MATROIDS AND THE LAS VERGNAS POLYNOMIAL

Besides the classical paper of H. Whitney [Whil, for general background on matroids we refer
to a remarkable book [Wel].

Definition 1.1. A matroid is a finite set M and a function r, rank, assigning a number to a
subset of M and satisfying the axioms:

(R1) The rank of an empty subset is zero.
(R2) For any subset H and any element y & H,

o ={ 15,

(R3) For any subset H and two elements y,z not in H, if r(HUy) =r(HUz) =r(H), then
r(H Uiy, z}) = r(H).

There are two major examples of matroids that we will be focusing on, although these examples
do not exhaust the collection of matroids. That is to say, there are matroids that do not represent
either of the following situations.

The first example is the cycle matroid C(G) of a graph G. The underlying set M is the set of
edges E(G) and the rank function is given by r(H) := v(G) — ¢(H), where v(G) is the number
of vertices of G and ¢(H) is the number of connected components of the spanning subgraph of G
consisting of all the vertices of G and edges of H.

The second example is a finite set of vectors in a vector space. We may think about them as
column vectors of a matrix. The rank function is the dimension of the subspace spanned by the
subset of vectors, or the rank of the corresponding submatrix.

A subset H C M is called independent if r(H) = |H|. In the first example, the independent
subsets are those subsets of edges which do not contain cycles. In the second, independent
subsets correspond to linearly independent subsets of vectors. A basis of a matroid is a maximal
independent set.

A subset H C M is called a circuit if r(H) = |H| — 1. In the first example, this new notion of
a circuit and the traditional notion of a circuit in a graph match. In the second example a circuit
is a subset of vectors with precisely one linear relation between them.

Given any matroid M, there is a dual matroid M™ with the same underlying set and with the
rank function given by ra+ (H) := |H|+rp (M \ H) —r(M). In particular (M) +r(M*) = |M]|.
Any basis of M* is a complement to a basis of M.

The dual matroid to the cycle matroid of a graph G is called the bond matroid of G: B(G) :=
(C(@))*. The circuits of B(G) are the minimal edge cuts, also known as the bonds of G. These are
those subsets of the edges of G which, when removed from G, increase the number of connected
components. The Whitney planarity criteria [Whi|] says that a graph G is planar if and only if its
bond matroid B(G) is the cycle matroid of some graph. In this case, it will be the cycle matroid
of the dual graph, B(G) = (C(G))* = C(G*).

Definition 1.2 ([LVI] LV2| [LV3]). For two matroids M and M’, a bijection M — M’ is called
a matroid perspective if any circuit of M is mapped to a union of circuits of M’. Equivalently,

rvu(X)—rpy(Y) Zru (X)) —rae (V) forall YCX,

where r); and 7 are the rank functions of matroids M an M’.
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Definition 1.3 (|[LV1l [LV2, [LV3]). The Tutte polynomial of a matroid perspective M — M’ is
the polynomial

S (o — 1) =raar () (3 1 yaae (ED (M) =g (D) =M )= (D)
HCM

where ny(H) := |H| — rp(H) is the nullity in M.

(1) Tyusm(v,y,2) =

)

Properties. The usual Tutte polynomial of matroid M and M’ can be recovered from the
Tutte polynomial of matroid perspective in the following ways:
Ty (w,y) = Trvsm(2,y,2) 5
TM(xv y) = TM—)M’("Ev Y, T — 1) 5
T (‘Tvy) = (y - 1)T(M)_T(M/)TMHM’ (Ia Y, ﬁ) .

For graphs GG and G* dually cellularly embedded in a surface ¥, the natural map of the bond
matroid of G* onto the cycle matroid of G, B(G*) — C(G), is a matroid perspective. We call the
Tutte polynomial of this matroid perspective, T(G+)—c(a)(Z,y, 2), the Las Vergnas polynomial
of the graph G on the surface ¥, and denote it LVg »(z, v, 2).

In this paper we assume that ¥ is orientable.

Example 1.4. Let G be a graph with one vertex and two loops embedded into a torus as shown.
Then G* is the similar graph.

G* G

In this case the bond matroid M = B(G*) has rank 2, and the cycle matroid M’ = C(G) has rank
0. For any subset H: rp(H) = |H|, np(H) =0, and rp (H) = 0. We have

LVgs(v,y,2) =22 +22+1.

2. KRUSHKAL POLYNOMIAL

V. Krushkal came to his polynomial in research relating topological quantum field theories and
algebraic and combinatorial properties of models of statistical mechanics, as well as generalizing
the Tutte and Bollobds—Riordan polynomials [Krul.

Definition 2.1 ([Kru]). For a graph G embedded into a (not necessarily connected, but ori-
entable) surface X,

() Pos(X,Y, A, B) = 3" XCUD-el@y k) s(iD)/2 g (11)/2
HCG

)

where
e ¢(H) is the number of connected components of the spanning subgraph H;

e the restriction of the embedding G — ¥ to H induces a map on the first homology groups
and we define

k(H) := dim(ker(Hy(H;R) — H1(2;R))) ;

e s(H) is equal to twice the genus of a regular neighborhood of the spanning subgraph H
in ¥ (the neighborhood is a surface with boundary, and its genus is defined as the genus
of the closed surface obtained by attaching a disk to each boundary circle);

e st (H) is equal to twice the genus of the surface obtained by removing a regular neigh-
borhood of H from 3.
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Remark. V. Krushkal indicates in his paper [Kru] that the parameters s(H) and s*(H) have
the following interpretation in terms of the symplectic bilinear form on the vector space Hq(%;R)
giving by the intersection number. For a given spanning subgraph H, let V' be its image in the
homology group:

H(Z;R) DV :=V(H) :=im(H(H;R) - Hi(X;R)) .
For the subspace V' we can define its orthogonal complement V* in H; (2;R) with respect to the
symplectic intersection form. Then
s(H) =dim(V/(V VL)),  st(H)=dim(Vi/(Vnvh)).

Example 2.2. Continuing with example[[4] for the graph G on the torus X, the map H;(G;R) —
H,(%;R) is not degenerate. Therefore k(H) = 0 for any subset H. Also ¢(H) = 1 for any H.
If H # @G, then its regular neighborhood has genus 0, so for such H, s(H) = 0, while s(G) = 2.
Similarly, if H # (), then the regular neighborhood of its complement has genus 0, so for such H,
s+ (H) = 0, while s*()) = 2. Combining all this we get

Pex(X,Y,AB)=B+2+A.

3. MAIN THEOREM

Theorem 3.1. Suppose G is cellularly embedded in an orientable surface ¥ of genus g. Then
(3) LVgs(z,y,2) = 29Pas(r — 1,y — 1,271, 2).

Proof. The summands corresponding to each subgraph H of G will be shown to be equal. Applying
the substitution @) in (@) we arrive at summands of the form

(2 — 1)U =e(@) (4 _ 1)FUH) g—s(H) /2 (H) /2,

The cycle matroid rank of a graph is given by r(M’) = v(G) — ¢(G) and that of a subgraph
HCGbyry(H)=v(G) —c(H). Sor(M') —ry(H) = ¢(H) — ¢(G) and hence the powers of
the (x — 1) factor coincide.

It remains to prove the equality of the exponents of (y — 1) and z:

o k(H)=ny(H)
o g—s(H)/2+s(H)/2=ry(G) —rap(G) —rar(H) + rap (H)
These will be proved separately in the next section. 0

Corollary 3.2 ([LV1], LV2] LV3]).
LVG’ﬂE(Iv Y, Z) = Z2gLVG,E(ya €L, Z_l) :

This follows from Krushkal’s formula [Kru|: Pg- »(X,Y, A, B) = Pe (Y, X, B, A) for cellular
embeddings G — .

4. MATROIDAL COMBINATORICS AND COMBINATORIAL TOPOLOGY

In this section we relate the topological parameters of the embedding G < ¥ with the combi-
natorial parameters of the matroid perspective B(G*) — C(G).

Lemma 4.1. k(H) = ny(H).

Proof. Let N := C(G*) = (B(G*))* = M*. The rank of a dual matroid can be defined in terms
of the rank of a matroid by 7y (H) = |H|+ rn(E \ H) — rn(N), where H is a subset of edges of
G* that can be naturally identified with the corresponding subset of edges of G. Since the nullity
is defined as the number of edges minus the rank we have that ny (H) = ry(N) — rn(G*\ H),
where, by G* \ H we mean the spanning subgraph of G* consisting of the edges of H and all
vertices of G*. Thus, because N is the cycle matroid of the graph G*, we have

nm(H) = (0(G") = ¢(G7)) = (0(G") = ¢(G*\ H)) = ¢(G* \ H) = ¢(G7) .
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Obviously, ¢(G*) = ¢(G) and is equal to the number of connected component ¢(X) of X.

Now we consider H as a spanning subgraph of G. We want to remove its regular neighborhood
from the surface ¥ and count the number of connected components ¢(¥ \ H). First we remove
small discs around all vertices of H, i.e./ all vertices of G. These are exactly the faces of G*. So
we are left with a regular neighborhood of G* in ¥. Secondly, removing neighborhoods of the
edges of H C G from X will give us the same surface, topologically, as deleting the corresponding
neighborhoods of the edges of H C G*, because these edges are transverse to each other. In other
words ¢(G* \ H) is the number of components of ¥\ H. Hence

nu(H) = c(X\ H) - c(G)

where H is regarded as a spanning subgraph of G.

Let us turn our attention to the number that we want ny(H) to be equal to. Denote by i, :
Hy,(H;R) —» H;(%;R) the linear map induced by the composition of embeddings H — G < X.
We have k(H) = dim(ker(i,)).

The topological pair (X, H) gives us a long exact sequence of homology groups

o Ho(H) — Hy(X) — Ho(S, H) S Hy(H) 25 Hi(Z) — - .

Hy(H) is trivial as H is one dimensional, H2(X) has dimension equal to the number of components
of X. and H»(X, H) has dimension equal to the number of components of ¥\ H.
So if we turn our attention to the short exact sequence

0— R 5 Hy(S, H) = imé — 0,
wherein im § = keri,, we see that dimkeri, = c¢(Z\ H) —¢(X) =c(Z\ H) — ¢(G) =ny(H). O

Thus the (y — 1) powers in the main theorem coincide.

In fact, the argument with the long exact sequence was used by V. Krushkal [Krul, end of proof
of Theorem 3.1] where he essentially proved that k(H) = ¢(X\ H) — ¢(X) using a slightly different
terminology. However, the relation of this parameter to the matroidal ny;(H) was not addressed
there.

Lemma 4.2. 29 = 7 (G) — rp (G).

Proof. ra(G) = v(G) — ¢(G) = e(T), where T is a spanning forest of G. The bond rank of a
graph G*, is the maximal number of edges that one can delete from it without increasing the
number of connected components, i.e. all edges but a spanning forest, 7, of the graph G*. So
ru(G) = e(G*) —e(T*) = e(G) — e(T*) and ) (G) — ry (G) = e(G) — e(T*) — e(T). But the
number of edges in a spanning forest of GG is equal to the number of vertices minus the number of
components. Similarly, e(T*), the number of edges in a spanning forest of G*, is the number of
faces, f, of G minus the number of components. So 7y (G) =7y (G) = e—(f—c(X))— (v—c(X)) =
e—f—v+2c¢(X) =29(%) = 2g. O

Lemma 4.3. g+ s(H)/2 — s~ (H)/2=ry(H) — e (H).
Proof. Consider ry(H) — rpr (H). For either matroid, M or M, rank is equal to the number of

edges minus nullity. So 7 (H) — rar (H) = npyp (H) — nar(H). We have seen in Lemma [4] that
ny(H) = k(H). Formula (2.5) in Krushkal’s paper [Kru] tells us that this nullity

na (H) =k(H) +g+s(H)/2 — s (H)/2 .
So we have ry (H) — rp (H) equaling
s(H) _ st(H)

kH)+g9g+———-—F——-k(H)=9g+

() st
2 2

2 2
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Lemma is a particular case of Lemma [£.3] where we take H = G. Indeed, in this case we
have s(G) = 2g and s*(G) = 0.

Lemmas and (3] together imply

g—s(H)/2+ st (H)/2 =1y (G) —rar (G) — rag(H) + rpp (H) .

Thus the z powers in the main theorem coincide. This completes the proof of the main theorem.

5. KRUSHKAL AND BOLLOBAS-RIORDAN POLYNOMIALS

A cellular embedding G < ¥ may be studied in terms of a ribbon graphs which represents a
regular neighborhood G of G in ¥. Working backwards, starting with a ribbon graph G, we can
construct a surface ¥ by capping all boundary components of G by discs. Then the core graph G
of G, obtained by contracting all edge-ribbons to their central lines and all vertex-discs to their
central points, can be cellularly embedded in . For ribbon graphs, we have the Bollobas-Riordan
polynomial [BR] defined as

BRg (X, Y, Z) = Z (X _ 1)0(%)—0(9)}/77,(’7"[)ZC(’H)—I)C(’H)"F’IL(’H)
HCEG

3

where be(H) is the number of boundary components of the spanning ribbon subgraph #. Note
that the exponent c¢(H) — be(H) + n(H) is equal to 2g(H) for oriented ribbon graphs.
V. Krushkal proved [Kru, Lemma 4.1] that

(4) BRg(X,Y,Z) =YPax(X —1,Y,YZ> Y !).

It was proved in [BR] Theorem 2| that BRg is universal in the class of polynomials satisfying
the contraction/deletion property. The Krushkal polynomial also satisfies a contraction/deletion
property [Kru, Lemma 2.1]. Based on that V. Krushkal wrote that BRg and Pg x carry equivalent
information. However this is not the case as the contraction/deletion properties for BRg and for
Pc s are not quite the same. The problem arises when deletion of an edge of a ribbon graph
changes its genus. The genus might decrease by 1 with removal of an edge. For example, if we
delete a loop e from the ribbon graph G corresponding to G from Example[[.4] then the resulting
graph with a single loop will have genus zero. So, while in the Bollobds-Riordan approach it is
considered as a graph embedded to a sphere, in the Krushkal approach it is still embedded into
the torus. We cannot apply the substitution {@) to that graph since its embedding on the torus
is no longer cellular. Thus the Krushkal polynomial does not satisfy the contraction/deletion
property in the sense of Bollobas and Riordan.

We also find that the Las Vergnas polynomial LVg s(x,y,z) does not satisfy the contrac-
tion/deletion property in the sense of Bollobds and Riordan either.

Example 5.1. This is an example of a calculation of the three polynomials. Here G is a graph
on torus with two vertices and three edges a, b, and c. Its dual G* has one vertex and three loops.
The ribbon graph corresponding to G is denoted G. We use the same symbols a, b, ¢ to denote
the corresponding edges in all three graphs.

a
o-((3 a-((<= G-

The matroid M’ = C(G) is of rank 1, and for any nonempty subset H, rap(H) = 1. The cycle
matroid C(G*) of the dual graph is of rank zero because G* has only loops. So its dual M = B(G*)

b C
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has rank 3, all subsets H are independent and rp,(H) = |H|. The next table shows the value of
various parameters and contributions of all eight subsets H C {a,b,c} to the three polynomials.

H| 0 |{a}[{0}]|{ab} | {c}]|fac} | {bc} | {abc}
¢(H) 2 1|1 1 1 1 1 1
F k(H) 0 010 0 0 0 0 0
@ s(H) 0 0o 0 0 0 0 2
Z st(H) 2 2 | 2 0 2 0 0 0
Pox XB B|B| 1 B| 1 1 A
g ru(H) 0 1|1 2 1 2 2 3
2 rw(H) 0 1|1 1 1 1 1 1
- nu(H) 0 olo] o 0] o 0 0
3 LVe s (r—1)22 | 22 | 22 z 22 z z 1
g 5 __ct) 2 1|1 1 1 1 1 1
ST nH) 0 010 1 0 1 1 2
2 2 be(H) 2 1|1 2 1 2 2 1
BRg| (x-1) |1 |1] v 1] v y | vy2z2

Thus
Pgs =343B+XB+A,  LVgs=32+32"+(z—1)2*+1,  BRg=3+3Y+(X-1)+Y?Z%

One can readily confirm the relations [B) and ) from here.

Now if we contract the edge ¢, the graph G/c still will be cellularly embedded into the same
torus 3, and its regular neighborhood coincides with the ribbon graph G/c. Examples [ and
[2.2] and the right part of the table above give the following polynomials:

Pgress=B+2+ A, LVg ey =22 +22+1, BRg).=1+42Y +Y?Z%
Meanwhile if we delete the edge ¢, then
Pog_ex=XB+2B+1.

But the graph G — ¢ is not cellularly embedded into the torus ¥ any more. Thus the Las Vergnas
and the Bollobas-Riordan polynomials are not defined for it. Its regular neighborhood gives the
ribbon graph G — ¢ which, after capping the discs to its two boundary components, results in the
sphere S2. Thus the graph G — ¢ embeds cellularly into the the sphere S2. For this embedding
we have

PG,C752:X+2+YV, LVG,C_’52:((E—1)+2+(y—1), BRg_c:(X—1)+2+Y
Therefore
Pgs=Pg s+ FPgjexs and  BRg = BRg-.+ BRg. ,
but
Pos # Pg_cs2+Pgjes  and  LVgs # LVg_ .52+ LVges -

Currently, according to relations (B) and (), the Krushkal polynomial is the most general
polynomial of graphs on surfaces and so it clearly deserves further research. Also, because the
two relations look quite different, the Las Vergnas and the Bollobas-Riordan polynomials seem
to be independent. Very recently the Krushkal polynomial was generalized to higher dimensional
simplicial complexes [KR]. Tt is related to matroids as well but in a very different way.
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