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Generalized Fibonacci Numbers
and Blackwell’s Renewal Theorem
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Abstract: We investigate a connection between generalized Fibonacci
numbers and renewal theory for stochastic processes. Using Blackwell’s re-
newal theorem we find an approximation to the generalized Fibonacci num-
bers. With the help of error estimates in the renewal theorem we figure out
an explicit representation.
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1 Introduction

A variety of generalizations for the Fibonacci numbers has been proposed
over the last decades and were studied using different techniques. In this
article we study the d-generalized Fibonacci numbers (d ≥ 2) defined as
follows:

F (d)
n = 0 for all n ≤ 0, F

(d)
1 = 1

and by the recursion

F (d)
n =

d
∑

i=1

F
(d)
n−i for all n ≥ 2. (1)

Obviously the standard Fibonacci numbers come out for d = 2. The case
d = 3 is also of special interest, the resulting sequence is called Tribonacci
sequence and the first few terms for n ≥ 0 are given by

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, ...

The generalized Fibonacci numbers were introduced by E. P. Miles in [5] and
were further studied e.g. in [3] and [4], where Binet-type representations were
given. These kind of representations were obtained using different standard
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techniques for difference equations such as generating functions and matrix
techniques. From these techniques one expects to obtain representations of
the form

F (d)
n =

d
∑

i=1

λiz
n
i for all n ≥ 0, (2)

where z1, ..., zd are the (possibly complex) roots of the polynomial xd−xd−1−
...− x− 1. The coefficients λ1, ..., λd are not so straightforward to find.

In this article we take a stochastic point of view to represent the general-
ized Fibonacci numbers via a stochastic process and use Blackwell’s renewal
theorem we find the asymptotic behavior of the generalized Fibonacci num-
bers using one special root of the above polynomial in Section 2. Here it is
remarkable that the right constant comes out immediately.
Since we wish to get an explicit representation of F

(d)
n for all n we use geo-

metric error estimates for the renewal theorem to see that our approximation
is sufficiently good in Section 3. In opposite to the representation in (2) our
representations is just based on one special root of the polynomial.

2 Approximation using renewal theory

First we give a combinatorial interpretation of the d-generalized Fibonacci
numbers. F

(d)
n is the numbers of possibilities to write n − 1 as the sum of

numbers in {1, ..., d}:

Lemma 2.1. With the notation

F (d)
n =

∞
⋃

m=0

{(xi)
m
i=1 ∈ {1, ..., d}m :

m
∑

k=1

xk = n} for all n ∈ Z

it holds that
F (d)
n = |F

(d)
n−1| for all n ∈ Z.

Proof. For all n ≤ 0 it holds that F
(d)
n = 0 = |∅| = |F

(d)
n−1| and for n = 1 we

have F
(d)
1 = 1 = |{()}| = |F

(d)
0 |. For n > 1 the following recursion holds

|F (d)
n | = |

d
⋃

k=1

{(xi)
m
i=1 ∈ F (d)

n : xm = k}| =
m
∑

k=1

|F
(d)
n−k|,

which proves the claim.
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For the use of renewal theory we embed the generalized Fibonacci num-
bers into a stochastic process as follows:
Let X1, X2, ... be independent and identically distributed random variables
with P (X1 = i) = qi for all i = 1, ..., d, where q = qd is the unique number
in (0, 1) with

q + q2 + ...+ qd = 1 (3)

and let Sk =
∑k

i=1Xi, k = 1, 2, ... be the random walk generated byX1, X2, ....
Furthermore let τn = inf{k ≥ 0 : Sk ≥ n} denote the first passage time over
n for n = 1, 2, ....

Remark 2.2. Formally for d = ∞ the random variables X1, X2, ... have
a geometric distribution with parameter 1/2. For geometric distributions
renewal theory turns out to be much easier than in the general case.

Remark 2.3. By multiplying equation (3) by 1/qd we see that 1/q is a root
of the polynomial xd − xd−1 − ...− x− 1.

Proposition 2.4. For all n ≥ 1 it holds that

P (Sτn = n) = qnF
(d)
n+1.

Proof. For all (x1, ..., xm) ∈ F
(d)
n we have

P (X1 = x1, ..., Xm = xm) =

m
∏

i=1

P (Xi = xi) = q
∑

m

i=1 xi = qn,

hence using Lemma 2.1

P (Sτn = n) =
∑

(xi)mi=1∈F
(d)
n

P (X1 = x1, ..., Xm = xm) = qn|F (d)
n | = qnF

(d)
n+1.

The proposition above states that we can represent F
(d)
n in terms of the

probability that S1, S2, ... visits the state n. This probability is well studied in
probability theory, more specifically in renewal theory. The random variables
X1, X2, X3, ... are interpreted as renewal lifetimes and P (Sτn = n) can be
seen as the probability for a renewal at time n. The asymptotic behavior of
P (Sτn = n) for n → ∞ is well understood:
The Blackwell renewal theorem for the lattice case (cf. e.g. [1, Theorem
I.2.2]) states that

P (Sτn = n) →
1

EX1
=

1
∑d

i=1 iq
i
=

(q − 1)2

dqd+2 − (d+ 1)qd+1 + q
=: cd

for n → ∞. This leads to the following
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Theorem 2.5.
F (d)
n ≈ cdq

−(n−1),

where ≈ means asymptotic equivalence.

Proof. Using Lemma 2.1 it holds that F
(d)
n+1q

n = P (Sτn = n) → cd.

Remark 2.6. With equation (2) in mind it is not hard to believe that F
(d)
n qn−1

converges to a constant, but it is not clear how to find the right constant eas-
ily. As seen above for our approach nearly no any algebra is needed.

3 Error estimation

When using the approximation cdq
−(n−1) for F

(d)
n it is first of all not clear

if the approximation is good or not. As an example let us consider the
Tribonacci sequence

0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, ...

In this case c3q
−(n−1) is given by

0.33, 0.61, 1.13, 2.09, 3.84, 7.07, 13.01, 23.94, 44.03, 80.99, 148.98, ...

and we see that the approximation is close to the true value; the error is
always less than 1/2, so that rounding the approximation gives the correct
value.

In this section we estimate the error in the general case when using the
approximation to the generalized Fibonacci numbers obtained in the previous
section, i.e. we study

xn = F (d)
n − cdq

−(n−1) = q−(n−1)[P (Sτn−1 = n− 1)− cd], n ∈ Z. (4)

Because we want to find a global bound for |xn| we especially have to show
that |P (Sτn = n) − cd| has a geometric convergence rate. The question of
convergence speed in the renewal theorem has been studied intensively and
we apply these results in our setting. To this end we first show that X1 is
”new better then used”:

Lemma 3.1. For all i, j ≥ 0 with P (X1 > i) > 0 it holds that

P (X1 > i+ j|X1 > i) ≤ P (X1 > j).
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Proof. The proof is just straightforward calculus:

P (X1 > i+ j) = 1− P (X1 ≤ i+ j) = 1−
i

∑

k=1

qk −

i+j
∑

k=i+1

qk

and

P (X1 > i)P (X1 > j) = (1−
i

∑

k=1

qk)(1−

j
∑

k=1

qk) = 1−
i

∑

k=1

qk−(1−
i

∑

k=1

qk)

j
∑

k=1

qk,

therefore P (X1 > i+ j|X1 > i) ≤ P (X1 > j) is equivalent to

i+j
∑

k=i+1

qk ≥

j
∑

k=1

qk(1−
i

∑

k=1

qk),

i.e. equivalent to

qi ≥ 1−
i

∑

k=1

qk =
d

∑

k=i+1

qk = qi
d−i
∑

k=1

qk

what is obviously true.

Now we can prove the following

Theorem 3.2.

|xn| ≤ (1− q)

(

1− q

q

)n−1

for all n ≥ 1.

Proof. For the proof we use the results from [2] on the rate of convergence in
the renewal theorem: Using Lemma 3.1 we can apply [2, Corollary 2.1] and
obtain

|P (Sτn−1 = n− 1)− cd| ≤ P (X1 > 1)n for all n ≥ 1,

hence

|xn| = q−(n−1)|P (Sτn−1 = n− 1)− cd|

≤ q−(n−1)P (X1 > 1)n = q−(n−1)(1− q)n

= (1− q)

(

1− q

q

)n−1

for each n ≥ 1.
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As a result we obtain the representation of F
(d)
n in terms of cd and q as

follows:

Corollary 3.3. |xn| < 1/2 for all n ∈ Z, so that F
(d)
n is the unique integer

with minimal distance to cdq
n−1.

Proof. Since q > 1/2 it holds that (1−q)/q < 1, so by (i) we have |xn| < 1/2
for all n ≥ 1. Hence it remains to show |xn| < 1/2 for all n ≤ 0. Since in
this case |xn| = cdq

−(n−1) we only have to treat |x0| = q/E(X1). We have

1

q
E(X1) =

d
∑

i=1

iqi−1 ≥ 1 + 2q + q2 + ... + qd−1

> 1 + q + q2 + ...+ qd−1 + qd = 2,

so that |x0| < 1/2.

Remark 3.4. We just want to mention that the previous result can also
be obtained elementary without the use of renewal theory. Furthermore the
representation given above is different to the usual Binet-type representation
since it just uses one root of the characteristic polynomial. This has the
benefit that not all (complex) roots of the polynomial have to be found.

Remark 3.5. With equation (2) in mind we can furthermore see that 1/q is
the only root of the equation xd−xd−1− ...−x−1 with modulus ≥ 1, because
else xn = F

(d)
n − cdq

n−1 could not converge to 0. This is one more proof for
this well known result.
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