Towards bounded negativity of self-intersection on general blown-up projective planes

Claudio Fontanari

Abstract

We address the problem of bounding from below the self-intersection of integral curves on the projective plane blown-up at general points. In particular, by applying classical deformation theory we obtain the expected bound in the case of either high ramification or low multiplicity.

1 Introduction

Let S be the blow-up of the complex projective plane \mathbb{P}^{2} at $n \geq 1$ general points p_{1}, \ldots, p_{n}. Denote by H the hyperplane class and by E_{i} the exceptional divisor for $i=1, \ldots, n$.

The following natural problem seems to be still widely open:
Question 1. Is there a constant c_{n} depending only on n such that the selfintersection number C^{2} satisfies $C^{2} \geq c_{n}$ for every integral curve $C \subset S$?

Renewed interest in this question has been recently witnessed by both Joe Harris and Brian Harbourne (see [9, Question on p. 24, and [8], Conjectures I.2.1 and I.2.7).

According to 7], the celebrated Segre-Harbourne-Gimigliano-Hirschowitz (SHGH) Conjecture (see for instance [7], Conjecture 3.1) turns out to be equivalent to the sharp inequality $C^{2} \geq g-1$, where g is the arithmetic genus of C, hence the expected lower bound is precisely $C^{2} \geq-1$.

It is indeed well-known that $C^{2} \geq-1$ if C is rational (see for instance 4], Proposition 2.4). The main result of (4) shows in particular that $C^{2} \geq-1$ if $C \in\left|d H-\sum_{i=1}^{n} m_{i} E_{i}\right|$ with $m_{k}=2$ for some k. The Mori-theoretic point of view introduced in [4] has been further developed in [11] and [5].

Here we generalize [4], Theorem 2.5, in two different directions:

Theorem 1. Let Γ be an integral curve in \mathbb{P}^{2} and let C be its strict transform. If Γ has at most two tangent directions at p_{k} for some k, then $C^{2} \geq-1$.

Theorem 2. Let Γ be an integral curve in \mathbb{P}^{2} and let $C \in\left|d H-\sum_{i=1}^{n} m_{i} E_{i}\right|$ be its strict transform. If $m_{k} \leq 3$ for some k, then $C^{2} \geq-1$.

Our main tool is classical deformation theory. In particular, we follow the well-established approach of Xu (see [12, [13). We also exploit some recent refinements which appeared in [1], Lemma 3, and [10], Theorem A. For further applications of deformation theory to linear systems of divisors we refer to [3] and [2], $\S 2$.

We work over the complex field \mathbb{C}.
We are grateful to Edoardo Ballico, Ciro Ciliberto and Edoardo Sernesi for stimulating discussions on these topics and to the anonymous referee for her/his valuable remarks.

This research has been partially supported by GNSAGA of INdAM and MIUR Cofin 2008 - Geometria delle varietà algebriche e dei loro spazi di moduli (Italy).

2 The proofs

Proof of Theorem 1. Let $\Gamma \in\left|d H-\left(\sum_{i \neq k} m_{i} p_{i}-\left(m_{k}-1\right) p_{k}\right)\right|$ for appropriate choices of d and m_{j}. The proof of [12], Lemma 1 (see also [6], Lemma 1.1) shows that the linear system $\left|d H-\left(\sum_{i \neq k} m_{i} p_{i}-\left(m_{k}-1\right) p_{k}\right)\right|$ contains a curve $\Gamma^{\prime} \neq \Gamma$. More explicitly, if $\Gamma=\{F(X, Y, Z)=0\}$, $p_{k}(t):=[a(t), b(t), 1]$ with $p_{k}(0)=p_{k}$ and $p_{i}(t):=p_{i}$ for every $i \neq k$, then there is a deformation $\Gamma_{t}=\left\{F_{t}(X, Y, Z)=0\right\}$ of Γ such that $F_{0}(X, Y, Z)=F(X, Y, Z)$ and Γ_{t} passes through $p_{i}(t)$ with multiplicity m_{i} for every $i=1, \ldots, n$ and every t in a neighbourhood of 0 . It follows that the curve Γ^{\prime} defined as

$$
\Gamma^{\prime}=\left\{\left.\frac{\partial F_{t}}{\partial t}\right|_{t=0}(X, Y, Z)=0\right\}
$$

passes through p_{i} with multiplicity m_{i} for every $i \neq k$ and through p_{k} with multiplicity $m_{k}-1$. Indeed, if

$$
\Gamma=\left\{f_{m_{k}}(x, y)+\text { higher }=0\right\}
$$

in local affine coordinates (x, y) centered at p_{k}, then

$$
\begin{equation*}
\Gamma^{\prime}=\left\{\dot{a}(0) \frac{\partial f_{m_{k}}}{\partial x}(x, y)+\dot{b}(0) \frac{\partial f_{m_{k}}}{\partial y}(x, y)+\text { higher }=0\right\} . \tag{1}
\end{equation*}
$$

Now, if Γ has at most two tangent directions at p_{k}, then we may assume that coordinates have been chosen so that

$$
f_{m_{k}}=x^{\alpha} y^{\beta}
$$

with $\alpha, \beta \geq 0$ and $\alpha+\beta=m_{k}$. It follows that

$$
\Gamma^{\prime}=\left\{\dot{a}(0) \alpha x^{\alpha-1} y^{\beta}+\dot{b}(0) \beta x^{\alpha} y^{\beta-1}+\text { higher }=0\right\}
$$

In particular, by choosing $p_{k}(t)=[a(t), b(t), 1]$ such that one of $\dot{a}(0)$ and $b(0)$ is 0 and the other is not 0 we obtain a curve $\Gamma^{\prime} \neq \Gamma$ (since their multiplicity at p_{k} is different) of degree d (see [12], proof of Lemma 1) such that Γ^{\prime} and Γ have exactly $m_{k}-1$ tangents in common at p_{k} (counted with multiplicity).

Hence Bezout's theorem yields

$$
d^{2}=\Gamma . \Gamma^{\prime} \geq \sum_{i \neq k} m_{i}^{2}+m_{k}\left(m_{k}-1\right)+m_{k}-1=\sum_{i=1}^{n} m_{i}^{2}-1
$$

and

$$
C^{2}=d^{2}-\sum_{i=1}^{n} m_{i}^{2} \geq-1
$$

Proof of Theorem 2. By Theorem 1, we may assume that $m_{k}=3$ and Γ has an ordinary singularity at p_{k}. Let S_{k} be the blow-up of \mathbb{P}^{2} at the $n-1$ points $\left\{p_{1}, \ldots, p_{n}\right\} \backslash\left\{p_{k}\right\}$ and let $\sigma_{k}: S \rightarrow S_{k}$ be the blow-up of p_{k}. If $C_{k} \subset S_{k}$ is the strict transform of $\Gamma \subset \mathbb{P}^{2}$, then it is enough to show that $C_{k}^{2} \geq m_{k}^{2}-1$.

In order to do so, we follow the proof of Lemma 3 in [1] (see also [10], Theorem A). Indeed, the argument of [6], Lemma 1.1, and of [12], Lemma 1, as recalled above at the beginning of the proof of Theorem 1, yields non-zero sections $s \in H^{0}(C, L)$, where

$$
L:=\left.\left(\sigma_{k}^{*}\left(\mathcal{O}_{C_{k}}\left(C_{k}\right)\right) \otimes \mathcal{O}_{S}\left(\left(1-m_{k}\right) E_{k}\right)\right)\right|_{C}=\left.\mathcal{O}_{S}\left(C+E_{k}\right)\right|_{C}
$$

In our notation, the sections s are induced by the strict transforms on S of the curves (11). Since Γ has at least two tangent directions at p_{k}, then as in [13], proof of Lemma 1, Case (1) on p. 202, we have that $\frac{\partial f_{m_{k}}}{\partial x}(x, y)$ and $\frac{\partial f_{m_{k}}}{\partial y}(x, y)$ are linearly independent modulo higher degree terms. It follows that the strict transforms on S of

$$
\begin{aligned}
\Gamma_{1}^{\prime} & =\left\{\frac{\partial f_{m_{k}}}{\partial x}(x, y)+\text { higher }=0\right\} \\
\Gamma_{2}^{\prime} & =\left\{\frac{\partial f_{m_{k}}}{\partial y}(x, y)+\text { higher }=0\right\}
\end{aligned}
$$

together with $C+E_{k}$ generate a net of curves in $\mathbb{P} H^{0}\left(S, \mathcal{O}_{S}\left(C+E_{k}\right)\right)$ and induce two linearly independent sections $s_{1}, s_{2} \in H^{0}(C, L)$. Hence we get a map $\phi: C \rightarrow \mathbb{P}^{1}$ of degree $\operatorname{deg}(\phi) \leq \operatorname{deg}(L)=C_{k}^{2}-m_{k}\left(m_{k}-1\right)$.

Now, if C is rational then it is well-known that $C^{2} \geq-1$ (see for instance [4], Proposition 2.4). Otherwise, we have

$$
2 \leq \operatorname{deg}(\phi) \leq C_{k}^{2}-m_{k}\left(m_{k}-1\right)
$$

hence

$$
C_{k}^{2} \geq m_{k}^{2}-m_{k}+2=m_{k}^{2}-1
$$

since $m_{k}=3$.

References

[1] F. Bastianelli: Remarks on the nef cone on symmetric products of curves. Manuscripta Math. 130 (2009), 113-120.
[2] L. Chiantini and C. Ciliberto: Weakly defective varieties. Trans. Amer. Math. Soc. 354 (2002), 151-178.
[3] C. Ciliberto and R. Miranda: A deformation theory approach to linear systems with general triple points. Matematiche (Catania) 55 (2000), 259-270 (2002).
[4] T. de Fernex: Negative curves on very general blow-ups of \mathbb{P}^{2}. Projective varieties with unexpected properties, 199-207, de Gruyter, Berlin, 2005.
[5] T. de Fernex: On the Mori cone of blow-ups of the plane. arXiv:1001.5243 (2010).
[6] L. Ein and R. Lazarsfeld: Seshadri constants on smooth surfaces. Journées de Géométrie Algébrique d'Orsay (Orsay, 1992). Astérisque 218 (1993), 177-186.
[7] B. Harbourne: The (unexpected) importance of knowing alpha. Projective Varieties with Unexpected Properties, 267-272, de Gruyter, Berlin, 2005.
[8] B. Harbourne: Global aspects of the geometry of surfaces. In: Summer School on Linear Systems. Pedagogical University of Cracow, Poland, March 23-27, 2009, available online at http://www.math.unl.edu/~bharbourne1/LecturesJune8-09.pdf.
[9] J. Harris: The Interpolation Problem. In: Classical Algebraic Geometry Today. MSRI, Berkeley, January 26-30, 2009, available online at http://jessica2.msri.org/attachments/13549/13549.pdf.
[10] A. L. Knutsen, W. Syzdek, and T. Szemberg: Moving curves and Seshadri constants. Math. Res. Lett. 16 (2009), 711-719.
[11] F. Monserrat: Lins Neto's examples of foliations and the Mori cone of blow-ups of \mathbb{P}^{2}. arXiv:0901.1565 (2009).
[12] G. Xu: Curves in \mathbb{P}^{2} and symplectic packings. Math Ann. 299 (1994), 609-613.
[13] G. Xu: Ample line bundles on smooth surfaces. J. Reine Angew. Math. 469 (1995), 199-209.

Claudio Fontanari
Dipartimento di Matematica
Università di Trento
Via Sommarive 14
38123 Trento, Italy.
E-mail address: fontanar@science.unitn.it

