
ar
X

iv
:1

01
2.

44
42

v1
  [

m
at

h.
PR

] 
 2

0 
D

ec
 2

01
0

On backward stochastic differential equations approach to

valuation of American options

Tomasz Klimsiak and Andrzej Rozkosz
Faculty of Mathematics and Computer Science, Nicolaus Copernicus University

Chopina 12/18, 87-100 Toruń, Poland

Abstract

We consider the problem of valuation of American (call and put) options written
on a dividend paying stock governed by the geometric Brownian motion. We show
that the value function has two different but related representations: by means of
a solution of some nonlinear backward stochastic differential equation and weak
solution to some semilinear partial differential equation.

1 Introduction

We consider a financial market model in which the price dynamics of a dividend pay-
ing stock Xs,x evolves (under the equivalent martingale measure P ) according to the
stochastic differential equation (SDE) of the form

Xs,x
t = x+

∫ t

s

(r − d)Xs,x
θ dθ +

∫ t

s

σXs,x
θ dWθ, t ∈ [s, T ]. (1.1)

Here x > 0, W is a standard Wiener process, d ≥ 0 is the dividend yield for the stock,
r ≥ 0 is the risk-free interest rate and σ > 0 is the volatility.

It is well known (see, e.g., [8, Section 2.5]) that the arbitrage-free value of an
American option with payoff function g : R → [0,∞) and expiration time T is given by

V (s, x) = sup
s≤τ≤T

Ee−r(τ−s)g(Xs,x
τ ), (1.2)

where E denotes the expectation with respect to P and the supremum is taken over
all stopping times with respect to the standard augmentation {Ft} of the filtration
generated by W . From [6] we know also that the optimal stopping problem and,
a fortiori, the value function V , are related to the solution (Y s,x, Zs,x,Ks,x) of the
reflected backward stochastic differential equation (RBSDE)















Y s,x
t = g(Xs,x

T )−
∫ T

t
rY s,x

θ dθ +Ks,x
T −Ks,x

t −
∫ T

t
Zs,x
θ dWθ, t ∈ [s, T ],

Y s,x
t ≥ g(Xs,x

t ), t ∈ [s, T ],

Ks,x is increasing, continuous, Ks,x
s = 0,

∫ T

s
(Y s,x

t − g(Xs,x
t )) dKs,x

t = 0

(1.3)
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via the equality
V (s, x) = Y s,x

s , (s, x) ∈ QT ≡ [0, T ]× R. (1.4)

Formula (1.4) when combined with general results on connections between RBSDEs
and parabolic PDEs proved in [4] provides a probabilistic proof of the fact that V =
{V (s, x); (s, x) ∈ QT }, where V (s, x) is given by (1.2), is a viscosity solution of the
obstacle problem (or, in another terminology, the quasi-variational inequality)

{

min(u(s, x)− g(x),−LBSu(s, x) + ru(s, x)) = 0, (s, x) ∈ QT ,

u(T, x) = g(x), x ∈ R,
(1.5)

where LBS is the Black and Scholes differential operator defined by

LBSu = ∂su+ (r − d)x∂xu+
1

2
σ2x2∂2

xxu.

In the present paper we concentrate on the American call and put options for which
the payoff function is given by

g(x) =

{

(x−K)+, call option,
(K − x)+, put option.

We prove that in that case the process Ks,x has the form

Ks,x
t =







∫ t

s
(dXs,x

θ − rK)+1{Y s,x
θ

=g(Xs,x
θ

)} dθ, call option,
∫ t

s
(rK − dXs,x

θ )+1{Y s,x
θ

=g(Xs,x
θ

)} dθ, put option
(1.6)

for t ∈ [s, T ], i.e. the first two components (Y s,x, Zs,x) of the solution of (1.3) solve the
usual (non-reflected) BSDE

Y s,x
t = g(Xs,x

T ) +

∫ T

t

(−rY s,x
θ + q(Xs,x

θ , Y s,x
θ )) dθ −

∫ T

t

Zs,x
θ dWθ, t ∈ [s, T ], (1.7)

where

q(x, y) =

{

(dx− rK)+1(−∞,g(x)](y), call option,

(rK − dx)+1(−∞,g(x)](y), put option

for x, y ∈ R. The above result is in fact a reformulation of the representation for Snell
envelope of the discounted payoff process ξt = e−r(t−s)g(Xs,x

t ), t ∈ [s, T ] (see Section 3).
Therefore our contribution here consists in providing new proof of the last statement
and clarifying relations between (1.3) and (1.7). We hope also that our proof of the
representation for Snell envelope for ξ will be of interest, because contrary to known to
us proofs it avoids considering the parabolic free-boundary value problem associated
with the optimal stopping problem (1.2).

Formula (1.6) has an analytical counterpart. Let ̺(x) = (1 + |x|2)−α, x ∈ R,
where α is chosen so that

∫

R
̺2(x)x2 dx < ∞. By a solution of (1.5) we understand a

pair (u, µ) consisting of a measurable function u : QT → R possessing some regularity
properties and a Radon measure µ on QT such that

{

LBSu = ru− µ,

u(T ) = g, u ≥ g,
∫

QT
(u− g)̺2 dµ = 0

(1.8)
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(see Section 2 for details). We prove that (1.8) has a unique solution (u, µ) such that
µ is absolutely continuous with respect to the Lebesgue measure and

dµ(t, x) = q(x, u(t, x)) dt dx. (1.9)

Moreover, for each (s, x) ∈ QT such that x 6= 0,

(Y s,x
t , Zs,x

t ) = (u(s,Xs,x
t ), σx∂xu(t,X

s,x
t )), t ∈ [s, T ], P -a.s., (1.10)

i.e. (1.3) provides probabilistic representation for the first component u of the solution
of (1.8). In particular, V = u. Formula (1.9) is an analytical analogue of (1.6).

From (1.8), (1.9) it follows that V is a solution of the semilinear Cauchy problem

LBSu = ru− q(·, u), u(T, ·) = g. (1.11)

The above problem was considered in [2, 3] as an alternative to the obstacle problem
formulation (1.5) and the free boundary problem formulation (see, e.g., [8, Section 2.7]).
In [2] it is shown that (1.11) has a unique viscosity solution (since q is discontinuous, the
standard definition of a viscosity solution is modified appropriately) and V = u. Our
approach to (1.5) via (1.8) shows that in fact (1.11) results from a better understanding
of the nature of solutions of (1.5).

2 Obstacle problem for the Black and Scholes equation

In this section we prove existence, uniqueness and stochastic representation of solutions
of the obstacle problem (1.8). We begin with the precise definition of solutions of (1.8).

Let Qst = [s, t]×R, Qt = Q0t, and let R denote the space of all functions ̺ : R → R

of the form ̺(x) = (1 + |x|2)−α, x ∈ R, for some α ≥ 0. In the whole paper we will
assume that

∫

R
̺2(x)x2 dx < ∞.

Given ̺ ∈ R we denote by L2,̺(R) the Hilbert space of functions u on R such
that u̺ ∈ L2(R) equipped with the inner product 〈u, v〉2,̺ =

∫

R
uv̺2 dx. Similarly, by

L2,̺(Qst) we denote the Hilbert space of functions u on Qst such that u̺ ∈ L2(Qst)
with the inner product 〈u, v〉2,̺,s,t =

∫

Qst
uv̺2 dx dt. If s = 0 we drop the subscript s

in the notation. H̺ = {η ∈ L2,̺(R) : x∂xη(x) ∈ L2,̺(R)}, W̺ = {η ∈ L2(0, T ;H̺) :
∂tη ∈ L2(0, T ;H

−1
̺ )}, where H−1

̺ is the space dual to H−1
̺ . By 〈·, ·〉̺,T we denote the

duality pairing between L2(0, T ;H̺) and L2(0, T ;H
−1
̺ ). Finally, V = W̺ ∩C(QT ).

We say that a pair (u, µ), where u ∈ V and µ is a Radon measure on QT , is a
solution of the obstacle problem (1.8) if (1.8)2 is satisfied and the equation (1.8)1 is
satisfied in the strong sense, i.e. for every η ∈ C∞

0 (QT ),

〈∂tu, η〉̺,T + 〈LBSu, η〉̺,T = r〈u, η〉2,̺,T −

∫

QT

η̺2 dµ,

where

〈LBSu, η〉̺,T = 〈(r − d)x∂xu, η〉2,̺,T −
1

2
σ2〈∂xu, ∂x(x

2η̺2)〉2,T .
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We say that a pair (u, µ) satisfies (1.8)1 in the weak sense if µ is a Radon measure
on QT , u ∈ L2(0, T ;H̺) ∩ C([0, T ],L2,̺(R)) and for every η ∈ C∞

0 (QT ),

〈u, ∂tη〉̺,T − 〈LBSu, η〉̺,T = 〈h(T ), η(T )〉2,̺ − 〈u(0), η(0)〉2,̺ − r〈u, η〉2,̺,T

+

∫

QT

η̺2 dµ.

Let {Ft} denote the standard augmentation of the natural filtration generated by
W . By a solution of RBSDE (1.3) we understand a triple (Y s,x, Zs,x,Ks,x) of {Ft}-
progressively measurable process on [s, T ] such that

E sup
t∈[s,T ]

|Y s,x
t |2 < ∞, E

∫ T

s

|Zs,x
t |2 dt < ∞, E|Ks,x

T |2 < ∞ (2.1)

and (1.3) is satisfied P -a.s.. A pair (Y s,x, Zs,x) of {Ft}-progressively measurable process
is a solution of BSDE (1.7) if (1.7) holds P -a.s. and Y s,x, Zs,x satisfy the integrability
conditions (2.1).

From general results proved in [4] it follows that (1.3) has a unique solution. We
shall prove that the third component Ks,x of the solution is absolutely continuous.

Proposition 2.1 If (Y s,x, Zs,x,Ks,x) is a solution of RBSDE (1.3) then

Ks,x
t −Ks,x

τ ≤

∫ t

τ

1{Y s,x
θ

=Sθ}
(dXs,x

θ − rK)+ dθ, s ≤ τ ≤ t ≤ T. (2.2)

Proof. We prove the theorem in the case of call option. The proof for put option is
similar and therefore left to the reader.

Suppose that (Y s,x, Zs,x,Ks,x) is a solution of (1.3) and u is a viscosity solution of
(1.5). By [4, Theorem 8.5],

Y s,x
t = u(t,Xs,x

t ), t ∈ [s, T ]. (2.3)

Set St = g(Xs,x
t ), t ∈ [s, T ], and denote by {La

t (ξ); (t, a) ∈ [0,∞) × R} the local time
of a continuous semimartingale ξ. By the Tanaka-Meyer formula, for every t ∈ [s, T ],

(Xs,x
t −K)+ =

∫ t

s

1(K,∞)(X
s,x
θ )(r − d)Xs,x

θ dθ

+

∫ t

s

1(K,∞)(X
s,x
θ )σXs,x

θ dWθ +
1

2
L0
t (X

s,x −K) (2.4)

and

0 = (Y s,x
t − St)

− = −

∫ t

s

1(−∞,0](Y
s,x
θ − Sθ) dY

s,x
θ +

∫ t

s

1(−∞,0](Y
s,x
θ − Sθ) dSθ

+
1

2
L0
t (Y

s,x − S)

=

∫ t

s

1{Y s,x
θ

=Sθ}
(−rY s,x

θ dθ + dKs,x
θ − Zs,x

θ dWθ)

+

∫ t

s

1(K,∞)(X
s,x
θ )1{Y s,x

θ
=Sθ}

((r − d)Xs,x
θ dθ + σXs,x

θ dWθ)

+
1

2

∫ t

s

1{Y s,x
θ

=Sθ}
dL0

θ(X
s,x −K) +

1

2
L0
t (Y

s,x − S). (2.5)
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Write I = {u = g} and observe that (t,K) /∈ I for all t ∈ [0, T ), because u = V by [4,
Proposition 2.3], and so u is strictly positive. Consequently,

∫ t

s

1{Y s,x
θ

=Sθ}
dL0

θ(X
s,x −K) = 0.

Furthermore, from (2.4) and Proposition 4.2 and Remark 4.3 in [4] it follows that
σXs,x

t 1(K,∞)(X
s,x
t ) = Zs,x

t a.s. on {Y s,x
t = St}. From (2.5) we therefore get

Ks,x
t −Ks,x

τ +
1

2
L0
t (Y

s,x − S)−
1

2
L0
τ (Y

s,x − S)

=

∫ t

τ

r1{Y s,x
θ

=Sθ}
Sθ dθ −

∫ t

τ

1{Y s,x
θ

=Sθ}
1(K,∞)(X

s,x
θ )(r − d)Xs,x

θ dθ

=

∫ t

τ

1{Y s,x
θ

=Sθ}
1(K,∞)(X

s,x
θ )((r − d)Xs,x

θ − r(Xs,x
θ −K)+)− dθ.

Hence

Ks,x
t −Ks,x

τ ≤

∫ t

τ

1{Y s,x
θ

=Sθ}
1(K,∞)(X

s,x
θ )((r − d)Xs,x

θ − r(Xs,x
θ −K)+)− dθ. (2.6)

Since, by (2.3), Y s,x is strictly positive, {Y s,x
t = g(Xs,x

t )} ⊂ {Xs,x
t > K} and hence

Ks,x increases only on the set {Xs,x
t > K}. Therefore (2.6) forces (2.2). 2

Proposition 2.2 There exists at most one solution of the problem (1.8).

Proof. Suppose that (u1, µ1), (u2, µ2) are solutions of (1.8). Write u = u1 − u2,
µ = µ1 − µ2. Then (u, µ) satisfies (1.8)1 in the strong sense. Since by standard
regularization arguments we can put u as a test function in (1.8)1 and obviously (1.8)1
is satisfied on QtT for any t ∈ [0, T ), we have

‖u(t)‖2,̺ +
1

2
σ2‖x∂xu‖

2
2,̺,t,T = 〈(µ− d)x∂xu, u〉2,̺,t,T + σ2〈∂xu, xu〉2,̺,t,T

+ σ2〈∂xu, x
2u∂x̺, ̺〉2,t,T + r‖u‖22,̺,t,T +

∫

QtT

u̺2 dµ.

From the above, the fact that
∫

QtT
u̺2 dµ ≤ 0, |∂x̺| ≤ C̺ and the elementary inequality

ab ≤ εa2 + ε−1b2 we get

‖u(t)‖2,̺ ≤ C

∫ T

t

‖u(s)‖22,̺ ds, t ∈ [0, T ].

By Gronwall’s lemma, u = 0, and in consequence, µ = 0. 2

Given δ > 0 write D+
δ = (0, T ) × (δ,+∞), D−

δ = (0, T ) × (−∞, δ) and D+ = D+
0 ,

D− = D−
0 , D = D+ ∪D−. Note that from the well known explicit formula for Xs,x it

follows that Xs,x
t ∈ D+, t ∈ [s, T ], P -a.s. if x > 0, and Xs,x

t ∈ D−, t ∈ [s, T ], P -a.s.
if x < 0. Note also that if x 6= 0 and t > s then the density of the distribution of the
random variable Xs,x

t is given by the formula

p(s, x, t, y) =
1

y
√

2π(t− s)
exp(

−(ln y
x
+ (σ

2

2 − r + d)(t − s))2

t− s
)1{ y

x
>0}. (2.7)
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It follows in particular that for fixed s ∈ [0, T ), x 6= 0 and δ ∈ (0, T − s] the function
p(s, x, ·, ·) is bounded on Qs+δ,T .

Theorem 2.3 (i) There exists a unique solution (u, µ) of the problem (1.8).
(ii) Let x 6= 0 and let (Y s,x, Zs,x,Ks,x) be a solution of RBSDE (1.3). Then

(Y s,x
t , Zs,x

t ) = (u(t,Xs,x
t ), σ∂xu(t,X

s,x
t )), t ∈ [s, T ], P -a.s.

and for any η ∈ C0(QsT ),

E

∫ T

s

η(t,Xt) dK
s,x
t =

∫

QsT

η(t, y)p(s, x, t, y) dµ(t, y). (2.8)

Proof. Let un be a unique viscosity solution of the following penalized problem

∂un
∂t

+ LBSun = run − n(un − g)−, un(T ) = g, (2.9)

and for fixed (s, x) let (Y s,x,n, Zs,x,n) denote a solution of the BSDE

Y s,x,n
t = g(Xs,x

T )−

∫ T

t

rY s,x,n
θ dθ +

∫ T

t

n(Y s,x,n
θ − g(Xs,x

θ ))− dθ −

∫ T

t

Zs,x,n
θ dθ.

Using standard arguments one can show that x 7→ EY s,x,n
s is Lipschitz continuous

uniformly in s. Therefore un has the same regularity, because by [4, Theorem 8.5],
Y s,x,n
t = un(t,X

s,x
t ), t ∈ [s, T ], P -a.s., and hence un(s, x) = EY s,x,n

s . Since the operator
LBS is uniformly elliptic on each domain D+

δ , for each δ > 0 there is a unique weak
solution vδ of the following terminal-boundary problem

∂vδ
∂t

+ LBSvδ = rvδ − n(vδ − h)−, vδ(T ) = g, vδ(x) = un(x) on (0, T ) × {δ}

(see [10, 11]). Since vδ is a viscosity solution of the above problem as well, vδ = un|D+

δ
by

uniqueness. Using this, Lipschitz continuity of un and [7, Theorem 1.5.9] we conclude
that un ∈ C1,2(D). Hence, by Proposition 1.2.3 and Theorem 2.2.1 in [12], Y s,x,n

t ∈ D
1,2

for every (s, x) ∈ QT such that x 6= 0, where D
1,2 is the domain of the derivative

operator in L2(Ω) (see [12, Section 1.2] for a precise definition). Consequently, applying
once again Proposition 1.2.3 and Theorem 2.2.1 in [12] and using the fact that g and
x 7→ x− are Lipschitz continuous functions we conclude that if x 6= 0 then g(Xs,x

T ),
∫ T

t
rY s,x,n

θ dθ,
∫ T

t
n(Y s,x,n

θ − g(Xs,x
θ ))− dθ ∈ D

1,2. Moreover, by [12, Proposition 1.2.3]
and [5, Lemma 5.1], there exists an adapted bounded process A such that for every
s < τ ≤ t,

DτY
s,x,n
t = Zs,x,n

τ +

∫ t

τ

DτZ
s,x,n
θ dθ + r

∫ t

τ

DτY
s,x,n
θ dθ

− n

∫ t

τ

AθDτ (Y
s,x,n
θ − h(Xθ)) dθ,

where Dτ denotes the derivative operator. From this it follows in particular that

DtY
s,x,n
t = Zs,x,n

t , P -a.s.

6



for every t ∈ [s, T ]. On the other hand, by remarks following the proof of Proposition
2.2 and remark following the proof of [12, Proposition 1.2.3],

DτY
s,x,n
t = ∂xun(t,X

s,x
t )DτX

s,x
t , P -a.s.

for every r, t ∈ [s, T ]. Moreover, by [12, Theorem 2.2.1], DtX
s,x
t = σXs,x

t . Thus, if
x 6= 0, then

Zs,x,n
t = σXs,x

t ∂xun(t,Xt), P -a.s..

By results from Section 6 in [4] and standard estimates for diffusions we have

E sup
s≤t≤T

|un(t,X
s,x
t )|2 + E

∫ T

s

|σXs,x
t ∂xun(t,X

s,x
t )|2 dt

≤ CE sup
s≤t≤T

|h(Xs,x
t )|2 ≤ C|x|2. (2.10)

By the above and Proposition 5.1 in Appendix in [1] it follows that un ∈ L2(0, T ;H̺).
Accordingly, un is a weak solution of (2.9). Furthermore, from results proved in [4,
Section 6] it follows that for every (s, x) ∈ QT ,

E sup
s≤t≤T

|(un − um)(t,Xs,x
t )|2 + E

∫ T

s

|σXs,x
t ∂x(un − um)(t,Xs,x

t )|2 dt

+ E sup
s≤t≤T

|Ks,x,n
t −Ks,x,m

t |2 → 0 (2.11)

as m,n → ∞. From (2.10), (2.11) and [9, Proposition 4.1] we conclude that there
exists u ∈ C(QT ) ∩ L2(0, T ;H̺) such that un → u uniformly on compact subsets of
QT , un → u in L2(0, T ;H̺) and un → u in C([0, T ],L2,̺(R)). Moreover, using (2.10)
and [9, Proposition 4.1] we see that ‖un‖L2(0,T ;H̺) ≤ C. Therefore from (2.9) it follows
that the sequence of measures {µn} defined by dµn = n(un − h)− dλ, n ∈ N, where
λ is the 2-dimensional Lebesgue measure, is tight. If µn → µ weakly, which we may
assume, then letting n → ∞ in (2.9) we conclude that the pair (u, µ) satisfies equation
(1.8)1 in the weak sense and that

u(t,Xs,x
t ) = Y s,x

t , t ∈ [s, T ], P -a.s., Zs,x
t = σXs,x

t ∂xu(t,X
s,x
t ), dt⊗ P -a.s.

because in [4, Section 6] it is proved that Y s,x,n
t → Y s,x

t , t ∈ [s, T ], P -a.s. and

E
∫ T

s
|Zs,x,n

t − Zs,x
t |2 dt → 0. In particular, it follows from the above that u ≥ g.

Let η ∈ C0(QT ). Since un → u uniformly,
∫

QT

(un − g)η dµn →

∫

QT

(u− g)η dµ ≥ 0.

On the other hand,
∫

QT

(un − g)η dµn = −

∫

QT

n((un − g)−)2 dλ ≤ 0.

From this we get (1.8)2. Furthermore, if x 6= 0 then for any δ ∈ (0, T − s) and
η ∈ C0(Qs+δ,T ) we have

E

∫ T

s

η(t,Xs,x
t ) dKs,x,n

t =

∫

QsT

η(t, y)p(s, x, t, y) dµn(t, y). (2.12)
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Since it is known that Ks,x,n
t → Ks,x

t uniformly in t ∈ [s, T ] in probability (see [4,
Section 6]), letting n → ∞ in (2.12) and using (2.7), (2.11) we get (2.8) for η ∈
C0(Qs+δ,T ), and hence for any η ∈ C0(QsT ). In order to complete the proof we have to
show that u ∈ W̺. Since p(s, x, ·, ·) is positive for every (s, x) ∈ QT such that x 6= 0,
it follows from (2.8) and Proposition 2.1 that dµ ≤ 1{u=g}(t, x)(dx − rK)+ dλ, i.e. for

every η ∈ C+
0 (QT ),

∫

QT

η(t, x) dµ(t, x) ≤

∫

QT

η(t, x)1{u=g}(t, x)(dx − rK)+ dx dt.

Hence there exists a measurable function α on QT such that 0 ≤ α ≤ 1 and

dµ

dλ
(t, x) = α(t, x)1{u=g}(t, x)(dx − rK)+. (2.13)

This implies that u ∈ W̺ and u satisfies (1.8)1 in the strong sense, i.e. (u, µ) is a
solution of (1.8). 2

Remark 2.4 It is known that for each t ∈ [0, T ), ∂R{h = u(t)} is a singleton (see, e.g.,
[2]). This implies that the Lebesgue measure of ∂QT

{u = h} equals zero.

3 Linear RBSDEs and nonlinear BSDEs

We begin with proving the key formulas (1.6), (1.9). As the first application we will
show the semimartingale representation for the Snell envelope of the discounted payoff
process and the early exercise premium representation for V .

Theorem 3.1 (i) If (u, µ) is a solution of the obstacle problem (1.8), then µ is given
by (1.9).
(ii) If (Y s,x, Zs,x,Ks,x) is a solution of RBSDE (1.3), then Ks,x is given by (1.6).

Proof. We prove the theorem in the case of call option. The proof for put option
requires only some obvious changes and is left to the reader.

Suppose that (Y s,x, Zs,x,Ks,x) is a solution of (1.3) and (u, µ) is a solution of (1.8).
By (2.13), u solves the equation

∂tu+ (r − d)x∂xu+
1

2
σ2x2∂2

xxu = ru− α(t, x)1{u=g}(t, x)(dx − rK)+ (3.1)

in the strong sense. By Remark 2.4, u is continuous. Let I = {u = h} and I0 =Int I.
By (3.1), for any η ∈ C∞

0 (I0) we have
∫

QT

u(t, x)∂tη(t, x) dt dx −
1

2

∫

QT

σ2x2∂2
xxu(t, x)η(t, x) dt dx

−

∫

QT

(r − d)x∂xu(t, x)η(t, x) dt dx

=

∫

QT

(−ru(t, x) + α(t, x)1{u=g}(t, x)(dx − rK)+)η(t, x) dt dx

+

∫

R

g(x)η(T, x) dx −

∫

R

u(0, x)η(0, x) dx.
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Since supp η ⊂ I0 and g is regular on I0, we deduce from the above that
∫

I0

(r − d)x1[K,∞)(x)η(t, x) dt dx

=

∫

I0

rg(x)η(t, x) dt dx −

∫

I0

α(t, x)1{u=g}(t, x)(dx− rK)+η(t, x) dt dx.

Equivalently, we have
∫

I0

f(t, x)η(t, x) dt dx =

∫

I0

α(t, x)1{u=g}(t, x)1[K,∞)(x)(dx− rK)+η(t, x) dt dx,

where f(t, x) = (r − d)x1[K,∞)(x)− r(x−K)+ = (−dx+ rK)1[K,∞)(x). Since

α(t, x)(dx − rK)+ = −α(t, x)((r − d)x1[K,∞)(x)− r(x−K)+)− = −α(t, x)f−(x)

on I0, it follows that
∫

I0

f(t, x)η(t, x) dt dx = −

∫

I0

α(t, x)f−(t, x)η(t, x) dt dx

for any η ∈ C∞
0 (I0). Therefore, f(t, x) = −α(t, x)f−(t, x) a.e. on I0. Since f = f+−f−,

we see that f+(t, x) = (1 − α(t, x))f−(t, x), hence that (1 − α(t, x))f−(t, x) = 0 a.e.
on I0, i.e. α(t, x)(dx − rK)+ = (dx− rK)+ a.e. on I0. Since the Lebesgue measure of
∂I equals zero (see Remark 2.4), the above equality holds a.e. on I, which in view of
(2.13) completes the proof of (i).

In case x = 0 part (ii) is trivial since in that case Xs,x
t = Ks,x

t = 0, t ∈ [s, T ]. In the
case x 6= 0 part (ii) follows from part (i) and results proved in [9]. To see this, let us
denote by X the canonical process on the space C([0, T ];R) of continuous functions on
[0, T ], and by Ps,x the law of Xs,x, i.e. Ps,x = P ◦ (Xs,x)−1. We may and will assume
that Xs,x

s = x, t ∈ [0, s], and hence that Ps,x is a measure on C([0, T ];R). Write

Ms,t = Xt −Xs −

∫ t

s

(r − d)Xθ dθ, Bs,t =

∫ t

s

1

σXθ

dMs,θ, 0 ≤ s ≤ t ≤ T

and observe that if x 6= 0 then under Ps,x the process Bs,· is a standard Wiener process
on [s, T ] with respect to the natural filtration generated by X. Furthermore, set

Ks,t = u(s,Xs)− u(t,Xt) +

∫ t

s

ru(θ,Xθ) dθ

+

∫ t

s

σ∂xu(θ,Xθ) dBs,θ, 0 ≤ s < t ≤ T

and

K̃s,t =

∫ t

s

(dXθ − rK)+1{u(θ,Xθ)=g(Xθ)} dθ, 0 ≤ s < t ≤ T.

Let (Y s,x, Zs,x,Ks,x) be a solution of (1.3) and let K̃s,x denote the process defined by
the right hand-side of (1.6). By Theorem 2.3, for every (s, x) ∈ [0, T )× R,

Ks,x
t −Ks,x

s = u(s,Xs,x
s )− u(t,Xs,x

t ) +

∫ t

s

ru(θ,Xs,x
θ ) dθ

+

∫ t

s

σ∂xu(θ,X
s,x
θ ) dWθ, 0 ≤ s < t ≤ T, P -a.s..
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From this and the fact that the law of (X,Bs,·) under Ps,x is equal to the law of
(Xs,x,W· − Ws) under P we conclude that the law of Ks,· under Ps,x is equal to the
law of Ks,x under P . Consequently, by (2.8), for every s ∈ [0, T ), x 6= 0,

Es,x

∫ T

s

η(t,Xt) dKs,t =

∫

QsT

η(t, y)p(s, x, t, y) dµ(t, y) (3.2)

for all η ∈ C0(QsT ), where Es,x denotes expectation with respect to Ps,x. Thus, the
additive functional K = {Ks,t; 0 ≤ s ≤ t ≤ T} of the Markov family {(X,Ps,x); (s, x) ∈
[0, T )×R} corresponds to the measure µ in the sense defined in [9]. Similarly, for every
s ∈ [0, T ), x 6= 0 the law of K̃s,· under Ps,x is equal to the law of K̃s,x under P , and
hence, by part (i), (3.2) is satisfied with K replaced by K̃, i.e. the additive functional
K̃ = {K̃s,t; 0 ≤ s ≤ t ≤ T} corresponds to µ, too. The proof of [9, Proposition 4.4]
now shows that Ps,x(Ks,t = K̃s,t, t ∈ [s, T ]) = 1 for every s ∈ [0, T ), x 6= 0, hence that
P (Ks,x

t = K̃s,x
t , t ∈ [s, T ]) = 1 for s ∈ [0, T ), x 6= 0, which completes the proof. 2

Corollary 3.2 If (Y s,x, Zs,x,Ks,x) is a solution of (1.3) then (Y s,x, Zs,x) is a solution
of (1.7). Conversely, if (Y s,x, Zs,x) is a solution of (1.7) then (Y s,x, Zs,x,Ks,x) with
Ks,x defined by (1.6) is a solution of (1.3).

Proof. The first part follows immediately from Theorem 3.1. The second part is a
consequence of the first one and the fact that the solution of (1.7) is unique, because
for every x ∈ R the function y 7→ q(x, y) is decreasing. 2

Let ξ denote the discounted payoff process for the American option, i.e.

ξt = e−r(t−s)g(Xs,x
t ), t ∈ [s, T ].

By (1.7),

er(t−s)Y s,x
t = e−r(T−s)g(Xs,x

T ) +

∫ T

t

e−r(θ−s)q(Xs,x
θ , Y s,x

θ ) dθ

−

∫ T

t

e−r(θ−s)Zs,x
θ dWθ.

From this and the fact that V (t,Xs,x
t ) = u(t,Xs,x

t ) = Y s,x
t , t ∈ [s, T ], we obtain

Corollary 3.3 The Snell envelope ηt = e−r(t−s)V (t,Xs,x
t ), t ∈ [s, T ], of ξ admits the

representation

ηt = E

(

e−r(T−s)g(Xs,x
T ) +

∫ T

t

e−r(θ−s)q(Xs,x
θ , Y s,x

θ ) dθ |Ft

)

. (3.3)

From (3.3) we get immediately the early exercise premium representation for V .
For instance, for American put option,

V (s, x) = Ee−r(T−s)g(Xs,x
T ) + E

∫ T

s

e−r(t−s)(rK − dXs,x
t )+ 1{V=g}(t,X

s,x
t ) dt. (3.4)

Representations (3.3), (3.4) are known (see [8, Corollary 7.11]). Up to our knowledge
our proof is new. Let us stress, however, that we were influenced by results of [2].

10



References

[1] Bally, V. and Matoussi, A. (2001). Weak solutions for SPDEs and backward doubly
stochastic differential equations. J. Theoret. Probab. 14 125–164.

[2] Benth, F.S., Karlsen, K.H. and Reikvam, K. (2003). A semilinear Black and Scholes
partial differential equation for valuing American options. Finance Stoch. 7 277–
298.

[3] Benth, F.S., Karlsen, K.H. and Reikvam, K. (2004). On a semilinear Black and
Scholes partial differential equation for valuing American options. Part II: approx-
imate solutions and convergence. Interfaces Free Bound. 6 379–404.

[4] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M.C. (1997).
Reflected solutions of backward SDEs, and related obstacle problems for PDE’s.
Ann. Probab. 25 702–737.

[5] El Karoui, N., Peng, S. and Quenez, M.C. (1997). Backward Stochastic Differential
Equations in Finance. Mathematical Finance 7 1–77.

[6] El Karoui, N. and Quenez, M.C. (1997). Non-linear pricing theory and back-
ward stochastic differential equations. In Lecture Notes in Math. 1656 191–246.
Springer, Berlin Heidelberg New York.

[7] Friedman, A. (1994). Partial Differential Equations of Parabolic Type. Prentice-
Hall, Englewood Cliffs, N.J.

[8] Karatzas, I. and Shreve, S.E. (1998). Methods of Mathematical Finance. Springer,
New York.

[9] Klimsiak, T. (2010). Strong solutions of semilinear parabolic equations with
measure data and generalized backward stochastic differential equations.
arXiv:1005.1793v1.

[10] Ladyzenskaya, O.A., Solonnikov, V.A. and Ural’ceva, N.N. (1968). Linear and
Quasi-Linear Equations of Parabolic Type. Transl. Math. Monographs 23. Amer.
Math. Soc., Providence, R.I.
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