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REAL ANALYTIC APPROXIMATIONS WHICH ALMOST

PRESERVE LIPSCHITZ CONSTANTS OF FUNCTIONS

DEFINED ON THE HILBERT SPACE

D. AZAGRA, R. FRY, AND L. KEENER

Abstract. Let X be a separable real Hilbert space. We show that for
every Lipschitz function f : X → R, and for every ε > 0, there exists a
Lipschitz, real analytic function g : X → R such that |f(x) − g(x)| ≤ ε

and Lip(g) ≤ Lip(f) + ε.

In a recent paper [AFK1] we proved that for every separable Banach
space X having a separating polynomial there exists a constant C ≥ 1 such
that, for every Lipschitz function f : X → R and every ε > 0 there exists
a Lipschitz, real analytic function f : X → R such that |f − g| ≤ ε and
Lip(g) ≤ CLip(f). It is natural to wonder whether the constant C can be
assumed to be 1 (as in the finite-dimensional case), or at least any number
greater that 1. The aim of this note is to prove that the latter is indeed true
in the case when X is a Hilbert space.

Theorem 1. Let X be a separable real Hilbert space. For every Lipschitz

function f : X → R, and for every ε > 0, there exists a Lipschitz, real

analytic function g : X → R such that |f(x) − g(x)| ≤ ε and Lip(g) ≤
Lip(f) + ε.

By using the main result of [AFK1] as well as the techniques developed
for its proof, we have shown recently [AFK2] that, for such spaces X, for
every C1 function f : X → R with a uniformly continuous derivative, and
for every ε > 0 there exists a real analytic function g such that |f − g| ≤ ε
and ‖f ′ − g′‖ ≤ ε.

In fact, an analysis of the proof of [AFK2] (in view of Proposition 1
of [AFK1] and following the lines of Lemma 4 of [AFK1]) shows that the
domain where a holomorphic extension of the function g is defined and ε-
close to g only depends on ‖f‖∞, on ε, and on the modulus of continuity
of f ′. Namely, we have the following sharp version of the main result of
[AFK2].

Theorem 2 (AFK2). Let X be a separable Banach space with a separat-

ing polynomial, and let M,K, ε > 0 be given. Then there exists an open

neighborhood Ũ of X in X̃, depending only on M,K, ε, such that for every

function f ∈ C1,1(X) with ‖f‖∞ ≤ M and Lip(f ′) ≤ K there exists a real
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analytic function g : X → R, with holomorphic extension g̃ : Ũ → C, such

that

(1) |f(x)− g(x)| ≤ ε for all x ∈ X.

(2) |f ′(x)− g′(x)| ≤ ε for all x ∈ X.

(3) |g̃(x+ z)− g(x)| ≤ ε for all x ∈ X, z ∈ X̃ with x+ z ∈ Ũ .

(Here we use the same notation as in [AFK1, AFK2]; in particular X̃ denotes
the complexification of X, endowed with the Taylor norm.)

We will prove Theorem 1 by combining Theorem 2 with the Lasry-Lions
sup-inf convolution regularization technique [LL], and with a refinement of
Lemma 3 and Proposition 2 of [J] (alternatively, one can also use a refine-
ment of the original tube and crown gluing method introduced in [AFK1,
Lemma 5], but this produces a somewhat longer proof).

We start considering the special case when f is bounded.
Given an L-Lipschitz function f : X → [0,M ] defined on a separable

Hilbert space X, set

fλ(x) = inf{f(u) + 1

2λ
|x− u|2 : u ∈ X} = inf{f(x− u) +

1

2λ
|u|2 : u ∈ X}

fµ(x) = sup{f(u)− 1

2λ
|x−u|2 : u ∈ X} = sup{f(x−u)− 1

2λ
|u|2 : u ∈ X}.

Since the supremum (and the infimum) of a family of L-Lipschitz functions
is L-Lipschitz, it is clear that fλ and fµ are L-Lipschitz.

Now, since f is bounded and uniformly continuous, according to [LL], the
function

gλ,µ(x) := (fλ)
µ(x) = sup

z∈X
inf
y∈X

{f(y) + 1

2λ
|z − y|2 − 1

2µ
|x− z|2}

is well defined and has a Lipschitz derivative on X satisfying

Lip(g′λ,µ) ≤ max{ 1
µ
,

1

λ− µ
},

for all 0 < µ < λ small enough, and converges to f(x), uniformly on X,
as 0 < µ < λ → 0. In fact, as noted in [LL], the rate of convergence of
gλ,µ to f only depends on Lip(f), so for every ε > 0 there exists λ0 > 0
(only depending on ε and L) so that |gλ,µ(x) − f(x)| ≤ ε/2 for all x ∈ X,
0 < µ < λ ≤ λ0.

Also, according to the above observations, this function is L-Lipschitz.
Therefore we have

‖g′λ,µ(x)‖ ≤ L, and |f(x)− gλ,µ(x)| ≤
ε

2
for all x ∈ X, for some 0 < µ < λ small enough. Now fix λ, µ with

0 < λ < λ0, µ :=
λ

2
,

and apply Theorem 2 to obtain a real analytic function g : X → R such that

|gλ,µ(x)− g(x)| ≤ ε

2
and |g′λ,µ(x)− g′(x)| ≤ ε

2
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for all x ∈ X. By combining the last two inequalities we get |f(x)−g(x)| ≤ ε
for all x ∈ X and Lip(g) ≤ L+ε. Moreover gλ,µ has a holomorphic extension

to a neighborhood Ũ of X in X̃ which only depends on L, on Lip(g′λ,µ), on

M , and on ε. Since Lip(g′λ,µ) ≤ max{1/µ, 1/(λ − µ)} = 2/λ and in turn λ

only depends on ε and on Lip(f) ≤ L, we have thus proved the following.

Proposition 1. Let X be a separable Hilbert space. For every L,M, ε > 0

there exists a neighborhood Ũ := ŨL,M,ε of X in X̃ such that, for every

L-Lipschitz function f : X → [0,M ] there exists a real analytic function

g : X → R, with holomorphic extension g̃ : Ũ → C, such that

(1) |f(x)− g(x)| ≤ ε for all x ∈ X.

(2) g is (L+ ε)-Lipschitz.

(3) |g̃(x+ iy)− g(x)| ≤ ε for all z = x+ iy ∈ Ũ .

Now fix L = M = 1, and ε ∈ (0, 1/16). Let θ : R → [0, 1] be a C∞

function such that:

(1) θ(t) = 0 iff t ∈ (−∞, 4ε]
(2) θ(t) = 1 iff t ∈ [1− 4ε,∞)

(3) θ
′
(t) > 0 iff t ∈ (4ε, 1 − 4ε)

(4) |θ(t)− t| ≤ 5ε if t ∈ [0, 1]
(5) Lip(θ) ≤ 1/(1 − 10ε).

Define θ̃κ : C → C by

θ̃κ(z) = aκ

∫

R

θ(t)e−κ(z−t)2dt, where aκ :=
1∫

R
e−κt2dt

,

and denote by θκ the restriction of θ̃ to R. It is clear that θ̃ is holomorphic
in C and θ is real analytic, and Lip(θ) = Lip(θ). Now, assume z ∈ C satisfies
|z| ≤ ε. Then, denoting z = u+ iv, we can estimate

|θ̃κ(z)| = |aκ
∫

R

θ(s)e−κ(u+iv−s)2ds| ≤ aκe
κε2

∫ ∞

4ε
e−κ(u−s)2ds =

aκe
κε2

∫ ∞

3ε
e−κt2dt = aκ

∫ ∞

3ε
e−κ(t2−ε2)dt = aκ

∫ ∞

3ε
e−κt2/2e−κ(t2/2−ε2)dt ≤

aκe
−κ((3ε)2/2−ε2)

∫ ∞

3ε
e−κt2/2dt ≤ aκe

−κ(9ε2/2−ε2)

∫ ∞

−∞

e−κt2/2dt =
√
2e−7κε2/2.

On the other hand, θκ and θ′κ uniformly converge on R to θ and θ
′
, respec-

tively, as κ → ∞. Therefore, observing that limκ→∞

√
2e−7κε2/2 = 0, for

every n ∈ N we can choose κn large enough so that, denoting θ̃n := θ̃κn
and

θn := θκn
, we have

(1) |θ̃n(z)| ≤ ε/2n+2 if z ∈ C, |z| ≤ ε
(2) Lip(θn) ≤ 1/(1 − 10ε)
(3) |θn(t)− θ(t)| ≤ ε/2n+2

(4) |θ′n(t)| ≤ ε/2n+2 if t ∈ (−∞, 2ε] ∪ [1− 2ε,∞).
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Now, let f : X → [0,∞) be a 1-Lipschitz function. Define, for every
n ∈ N, the function fn : X → [0, 1] by

fn(x) =





0 if f(x) ≤ n− 1,

f(x) if n− 1 ≤ f(x) ≤ n,

1 if n ≤ f(x).

It is clear that the functions fn are 1-Lipschitz, and we have

f(x) =

∞∑

n=1

fn(x)

for every x ∈ X. In fact this sum is finite on every bounded set. By

Proposition ??, there exists an open neighborhood Ũ := Ũ1,1,ε of X in X̃
and a collection of real analytic functions gn : X → R with holomorphic

extensions g̃n : Ũ → C, such that

• |fn − gn| ≤ ε/2
• Lip(gn) ≤ 1 + ε

• |g̃(x+ z)− g(x)| ≤ ε/2 for all x ∈ X, z ∈ X̃ with x+ z ∈ Ũ .

Define

g̃(z) =

∞∑

n=1

θ̃n(g̃n(z)) for all z ∈ Ũ .

This function is well defined and holomorphic on Ũ . Indeed, for a given
x ∈ X, there exists a unique nx ∈ N such that f(x) ∈ [nx − 1, nx), and in
particular we have fn(x) = 0 for all n > nx. Therefore |gn(x)| ≤ ε/2, and

|g̃n(x+ z)| ≤ |g̃n(x+ z)− gn(x)|+ |gn(x)| ≤
ε

2
+

ε

2
= ε

provided that n > nx, x + z ∈ Ũ . By the first property of θ̃n noted above,
this implies that

|θ̃n(g̃n(x+ z))| ≤ ε

2n+2
if n > nx, z ∈ X̃ with x+ z ∈ Ũ .

Therefore the series of holomorphic functions
∑∞

n=1 θ̃n ◦ g̃n converges locally

uniformly and absolutely on Ũ and defines a holomorphic function g̃ on Ũ ,
whose restriction to X will be denoted by g.

Let us now check that |f(x) − g(x)| ≤ 8ε for all x ∈ X. Indeed, if
f(x) ∈ [nx − 1, nx) then we have fn(x) = 1 for n < nx and fn(x) = 0 for
n > nx. Therefore

gn(x) ≥ 1− ε

2
if n < nx;

|fnx
(x)− gnx

(x)| ≤ ε

2
and

gn(x) ≤
ε

2
if n > nx,
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which implies

|θn(gn(x)) − fn(x)| = |θn(gn(x))− 1|
= |θn(gn(x)) − θ(gn(x))| ≤

ε

2n+2
if n < nx;

|θnx
(gnx

(x))− fnx
(x)| ≤

|θnx
(gnx

(x))− θnx
(fnx

(x))|+ |θnx
(fnx

(x))− fnx
(x)| ≤

1

1− 10ε

ε

2
+ 6ε ≤ 7ε, and

|θn(gn(x)) − fn(x)| = |θn(gn(x))| ≤
ε

2n+2
if n > nx.

Hence we have

|
∞∑

n=1

θn(gn(x))− f(x)| = |
∞∑

n=1

(θn(gn(x))− fn(x)) | ≤

nx−1∑

n=1

ε

2n+2
+ 7ε+

∑

n>nx

ε

2
n+2

≤ 8ε.

As for Lip(g), we observe that gn(x) ∈ (−∞, ε/2]∪[1−ε/2, 1+ε/2] if n 6= nx,
hence |θ′n(gn(x))| ≤ ε/2n+2 if n 6= nx, and

‖D(θ◦gn)(x)‖ = |θ′n(gn(x))| ‖Dgn(x)‖ ≤ ε

2n+2
Lip(gn) ≤

ε

2n+2
(1+ε) for n 6= nx.

Therefore

‖Dg(x)‖ ≤
∞∑

n=1

‖D(θn ◦ gn)(x) ≤
∑

n 6=nx

ε

2n+2
(1 + ε) + Lip(θnx

)Lip(gnx
)

≤ ε(1 + ε) +
1

1− 10ε
(1 + ε) ≤ 1 + 3ε

1− 10ε
,

which shows that Lip(g) ≤ 1+3ε
1−10ε .

Since limε→0
1+3ε
1−10ε = 1, up to a change of ε we have shown the following:

for every 1-Lipschitz function f : X → [0,∞) and for every ε > 0, there
exists a (1 + ε)-Lipschitz real analytic function g : X → [0,∞) such that
|f − g| ≤ ε.

Now, if f : X → R is 1-Lipschitz unbounded function, we have f =
f+ − f−, where f+ = max{f, 0}, f− = max{−f, 0} are 1-Lipschitz and
take values in [0,∞). According to what we have just proved, there are
(1 + ε)-Lipschitz, real analytic functions g+, g− : X → [0,∞) such that
|f± − g±| ≤ ε on X. Take a real analytic function α : R → R such that

• |α(t) − t| ≤ 3ε if t ≥ 0
• Lip(α) = 1
• |α′(t)| ≤ ε if t ≤ 3ε.
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Such a function can be defined, for instance, by

α(t) =

∫
R
α(s)e−κ(t−s)2ds∫

R
e−κs2ds

for κ large enough, where α(s) = 0 if s ≤ 2ε and α(s) = s− 2ε if s ≥ 2ε.
Define g = α ◦ g+ − α ◦ g−. It is clear that g is a real analytic function.

Besides,

|f − g| ≤
|f+ − α ◦ f+|+ |α ◦ (f+ − g+)|+ |f− − α ◦ f−|+ |α ◦ (f− − g−)| ≤
3ε + 1ε+ 3ε+ 1ε = 8ε.

On the other hand, if f(x) ≥ 0 then g−(x) ≤ ε, so |α′(g−(x))| ≤ ε, and
‖D(α ◦ g−)(x)‖ ≤ ε(1 + ε). Similarly, if f(x) ≤ 0 then ‖D(α ◦ g+)(x)‖ ≤
ε(1+ε). And in any case we also have ‖D(α◦g±)(x)‖ ≤ 1(1+ε). Therefore
we can estimate

‖Dg(x)‖ ≤ ‖D(α◦g+)(x)‖+‖D(α◦g−)(x)‖ ≤ 1(1+ε)+ε(1+ε) = (1+ε)2.

Up to a change of ε this argument proves Theorem 1 in the case Lip(f) ≤
1. Finally, in the case of a function f with Lip(f) := L ∈ (0,∞), consider
F (x) = 1

εf(
ε
Lx), which is 1-Lipschitz. We can then find a (1 + ε)-Lipschitz,

real analytic function G : X → R such that |F − G| ≤ 1. If we define
g(x) = εG(Lε x), we get a real analytic function g : X → R with Lip(g) ≤
(1+ε)Lip(f), and such that |g−f | ≤ ε. This concludes the proof of Theorem
1 in the general case.
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