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Abstract. Proving the existence of an operator that connects non-perturbed states

to perturbed states, an alternative derivation of the Dalgarno-Lewis method is given.

To illustrate that the Dalgarno-Lewis method is an apt tool for algebraic Hamiltonians,

the method is applied to one class of such systems, namely deep three-dimensional

potentials with positive parity.

PACS numbers: 03.65.Fd,03.65.Ge

1. Introduction

In perturbation theory the total Hamiltonian of the system under consideration is taken

to be of the form

Ĥ = Ĥ0 + λĥ, (1)

where it is assumed that the eigenstates and the eigenvalues of the Hamiltonian, Ĥ0,

are known:

Ĥ0|n〉 = ǫn|n〉 (2)

and the parameter λ is small. In this work we will assume that the eigenvalue spectrum

of the operator Ĥ0 is non-degenerate. One is interested in finding the eigenvalue spectra

of the operator Ĥ :

Ĥ|Ψn(λ)〉 = En(λ)|Ψn(λ)〉. (3)

The question we wish to address here is if there exists an operator Ŝn(λ) that

connects each state in (2) and (3):

|Ψn(λ)〉 = Ŝn(λ)|n〉 (4)

and describe the connection between such operators and the Dalgarno-Lewis method

[1]. Clearly one needs to impose

lim
λ→0

Ŝn(λ) = 1̂. (5)

We assume that the operator Ŝn(λ) can be written in the form

Ŝn(λ) = exp
(

λF̂n + λ2Ĝn + λ3Γ̂n · · ·
)

, (6)
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where F̂n, Ĝn and Γ̂n, · · · are operators to be determined. Inserting (4) and (6) into (3),

one finds that the condition
(

[Ŝn(λ)]
−1Ĥ(λ)Ŝn(λ)

)

|n〉 = En(λ)|n〉 (7)

needs to be satisfied. Expanding the eigenvalue, En(λ), in powers of λ:

En(λ) = ǫn + λǫ(1)n + λ2ǫ(2)n + · · · , (8)

one inserts into (7). After equating powers of λ, one gets the following conditions:

O(λ) : ĥ− [F̂n, Ĥ0] = ǫ(1)n (9)

O(λ2) :
1

2
[F̂n, [F̂n, Ĥ0]]− [Ĝn, Ĥ0]− [F̂n, ĥ] = ǫ(2)n (10)

O(λ3) : −[Ĝn, ĥ]− [Γ̂n, Ĥ0] +
1

2
[F̂n, [Ĝn, Ĥ0]] +

1

2
[Ĝn, [F̂n, Ĥ0]]

+
1

2
[F̂n, [F̂n, ĥ]]−

1

6
[F̂n, [F̂n, [F̂n, Ĥ0]]] = ǫ(3)n (11)

and so on. The equalities in (9), (10), and (11) are understood to be acting on the

state |n〉, e.g. (9) is a short-hand notation for (ĥ− [F̂n, Ĥ0])|n〉 = ǫ(1)n |n〉. This equation
suggests that we can take the operators F̂n to be the same for all n and the part of that

operator which is diagonal in the basis of the eigenfunctions of Ĥ0 drops out from (9).

Indeed multiplying (9) by the state 〈m| from left we find that

〈m|ĥ|n〉 = (ǫn − ǫm)〈m|F̂ |n〉+ ǫ(1)n δnm. (12)

For n = m this equation yields the standard expression for the first order correction to

the energy eigenvalues in non-degenerate perturbation theory. For n 6= m, (12) gives

non-diagonal elements of F̂ . Without any loss of generality we will take the diagonal

elements of this operator to be zero and write

F̂ =
∑

n 6=m

(

〈m|ĥ|n〉
ǫn − ǫm

)

|m〉〈n|. (13)

We can now consider (9) an operator relationship provided that the right-hand side

is replaced by a diagonal operator in basis of the eigenstates of Ĥ0, the eigenvalues

of which are ǫ(1)n . Following similar arguments we can also consider (10) and (11) as

operator relationships provided that we replace the right-hand sides with appropriate

diagonal operators. We will denote these operators ǫ(1), ǫ(2), ǫ(3), · · ·. We find it useful

to spell out the diagonal and non-diagonal parts of the operator ĥ:

ĥ = ĥD + ĥND. (14)

From (9) we observe that ĥD = ǫ(1) and

[F̂ , Ĥ0] = ĥND. (15)

Using (15), the operator equivalent of (10) can be rewritten as

− [Ĝ, Ĥ0]− [F̂ , ĥD]−
1

2
[F̂ , ĥND] = ǫ(2). (16)
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Inspection reveals that the first two commutators in (16) yield non-diagonal operators,

consequently one gets the standard second order result:

− 1

2
〈n|[F̂ , ĥND]|n〉 = ǫ(2)n . (17)

Dalgarno and Lewis developed a method for calculating second-order corrections to

the perturbation expansion, which essentially uses the same commutator [1]. The non-

diagonal elements of the operator Ĝ can be calculated by taking the expectation value

of (16) between states 〈m| and |n〉 (m 6= n):

〈m|Ĝ|n〉 = −(ǫ(1)n − ǫ(1)m )

ǫn − ǫm
〈m|F̂ |n〉 − 1

2

1

ǫn − ǫm
〈m|[F̂ , ĥND]|n〉. (18)

Again without any loss of generality we can take the diagonal part of the operator Ĝ to

be zero.

We now turn our attention to the third order correction. Using the Jacobi identity,

after some algebra (11) can be rewritten as
(

−[Ĝn, ĥD]− [Γ̂n, Ĥ0]−
1

2
[Ĥ0, [F̂n, Ĝn]] +

1

2
[F̂ 3

n , Ĥ0]

+
1

2
(F̂ 2

n ĥD + ĥDF̂
2
n)− F̂nĥF̂n

)

|n〉 = ǫ(3)n |n〉. (19)

Inspection reveals that the first four terms in (19) lead to only non-diagonal operators.

Hence the third order correction to the energy eigenvalues is given by

ǫ(3)n = 〈n|1
2
(F̂ 2ĥD + ĥDF̂

2)− F̂nĥF̂n|n〉, (20)

which is again the standard result. The non-diagonal part of (19) can then be used

to explicitly calculate the operator Γ̂. We omit that expression in this paper. We

succeeded in showing that there exists an operator Ŝ that connects non-perturbed states

to perturbed states in (4) and that this operator is the same for all states. Even though

there is extensive literature on the Dalgarno-Lewis method [2, 3, 4, 5], the existence

of an operator that connects non-perturbed states to perturbed states, as well as the

connection of this operator to the Dalgarno-Lewis method was not previously noted.

Since the Dalgarno-Lewis method can be presented in terms of commutators, it is

clearly very suitable for applications when Hamiltonians are formulated in an algebraic

framework. We provide one such example in the next section.

2. Rotational Bands in Deep Potentials

If the Hamiltonians considered have an underlying algebraic structure, then calculation

of the operators F̂ , Ĝ, etc. are considerably simplified. As an application we consider

a three dimensional Hamiltonian with a deep potential, which is a function of r2 only.

Such Hamiltonians arise in the study of alpha-clustering in nuclei.

The low-lying states of the Hamiltonian

Ĥ =
p2

2µ
+ V (r2) (21)
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can be evaluated by expanding the attractive potential in a power series in r2:

V (r2) = −V0(1− αr2 + βr4 + · · ·) (22)

Insight into the low-lying eigenstates of such a potential may be gained by taking the

harmonic oscillator part

Ĥ0 =
p2

2µ
+ αV0r

2 (23)

as the unperturbed potential and

ĥ = −V0βr
4 (24)

as the perturbation [6]. Perturbation theory can be formulated algebraically introducing

the harmonic oscillator creation and annihilation operators

a
†
i =

(

µω

2h̄

)1/2

xi − i

(

1

2µh̄ω

)1/2

pi (25)

and

ai =
(

µω

2h̄

)1/2

xi + i

(

1

2µh̄ω

)1/2

pi. (26)

To utilize and algebraic formalism one introduces the operators K+, K−, K0:

K0 =
1

4

∑

i

(

a
†
iai + aia

†
i

)

. (27)

K+ =
1

2

∑

i

a
†
ia

†
i , K− = (K+)

†, (28)

which form the SU(1,1) Lie algebra with the commutation relations

[K0, K±] = ±K±, [K+, K−] = −2K0. (29)

The Casimir operator of this algebra is

C2 = K2
0 −

1

2
(K+K− +K−K+) . (30)

For the realization given in (27) and (28), this Casimir operator depends on the orbital

angular momenta:

C2 =
1

4
L2 − 3

16
. (31)

The states are labeled by two numbers, k and m. The eigenvalues of the Casimir

operator are

C2|k,m〉 = k(k − 1)|k,m〉, (32)

which implies that

k =
1

2

(

ℓ +
3

2

)

, (33)



Dalgarno-Lewis Method Revisited 5

where ℓ is the orbital angular momentum quantum number. The label m is the

eigenvalue of the operator K0:

K0|k,m〉 = m|k,m〉. (34)

In the above equations m takes values of k, k + 1, k + 2, k + 3, · · ·. One also has

K±|k,m〉 = [(m± k)(m∓ k ± 1)]1/2 |k,m± 1〉. (35)

It is easy to show that r2 can be expressed as

r2 =
h̄

µω
(K+ +K− + 2K0). (36)

Hence the perturbation Hamiltonian of (24) is

ĥ = − h̄2β

2µα
(K+ +K− + 2K0)

2 = − h̄2β

2µα
[6K2

0 − 2C2 + 2(K+K0 +K0K+)

+2(K−K0 +K0K−) +K2
+ +K2

−]. (37)

The first two terms in the above equation are diagonal in the unperturbed basis. It is

then straightforward to verify that

F̂ = − h̄β

2α
√
2αµV0

[

2(K−K0 +K0K−)− 2(K+K0 +K0K+) +
1

2
(K2

− −K2
+)
]

.(38)

To calculate the second order correction to the energy eigenvalues, (17), we need to

calculate the diagonal part of the commutator of F̂ with ĥND. Defining the operators

Â+ = K+K0 +K0K+, (39)

and

Â− = K−K0 +K0K− = (Â+)
†, (40)

one sees, upon inspection, that there are two only diagonal contributions to [F̂ , ĥND].

One comes from the commutator

[Â+, Â−] = −16K3
0 + 8C2K0 − 2K0, (41)

and the other one from the commutator

[K2
+, K

2
−] = −2(4K3

0 − 4C2K0 + 2K0). (42)

Putting it all together we can write down the energy eigenvalues of the Hamiltonian of

(21) as

Em

V0

= − 1 +
(

m+
1

2

)√
2δ +

(

C2 − 3m2
) β

α2
δ2

−
(

7mC2 − 15m3 − 3

2
m

)√
2
β2V0

α4
δ3 + · · · (43)

where we defined the dimensionless expansion parameter

δ = h̄

√

α

µV0
. (44)
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This Hamiltonian exhibits rotational bands (terms proportional to C2 ∼ L2) in its

energy spectrum. The existence of such rotational bands for deep Gaussian potentials

was proposed in [7] based on numerical calculations. We showed that application of

the Dalgarno-Lewis method not only provides a convenient framework for calculating

higher-order perturbative corrections, but also makes the existence of rotational bands

manifest.
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