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Abstract

Some functions f : R+ → R+ induce mean of positive numbers and the matrix
monotonicity gives a possibility for means of positive definite matrices. Moreover,
such a function f can define linear mapping βf : Mn → Mn on matrices (which
is basical in the constructions of monotone metrics). The present subject is to
check the complete positivity of βf in the case of a few concrete functions f . This
problem has been motivated by applications in quantum information.
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1 Introduction

The matrix monotone function f : R+ → R+ will be called standard if f(1) = 1 and
tf(t−1) = f(t). Standard functions are used to define (symmetric) matrix means:

Mf (A,B) = A1/2f(A−1/2BA−1/2)A1/2,

see [8]. For numbers mf(x, y) = xf(y/x).
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It is well-known that if f : R+ → R+ is a standard matrix monotone function, then

2x

x+ 1
≤ f(x) ≤ x+ 1

2
.

For example,
2x

x+ 1
≤

√
x ≤ x− 1

log x
≤ x+ 1

2

they correspond to the harmonic, geometric, logarithmic and arithmetic mean. The
matrix means have application in quantum theory and this paper is also motivated by
that, see [4, 11, 13, 16].

Assume that a standard matrix monotone function f is given. Let λ1, λ2, . . . , λn be
strictly positive numbers. The positivity of the matrix X ∈ Mn defined as

Xij = mf (λi, λj) (1)

is an interesting question. We call X mean matrix. Positivity of the mean matrix for all
possibilities is equivalent to the positive definiteness of the kernel

Ff(x, y) := mf (x, y).

(A stronger property than positivity is the so-called infinite divisibility [1], it is not
studied here, but some results are used.)

The choice λ1 = 1 and λ2 = x shows that

f(x) ≤
√
x

is a necessary condition for the positivity of the mean matrix, in other words mf should
be smaller than the geometric mean. If f(x) ≥ √

x, then the matrix

Tij =
1

mf (λi, λj)
(2)

can be positive. The matrix (2) was important in the paper [10] for the characterization
of monotone metrics, see also [11, 13]. It will be shown that T is positive if and only if
the linear mapping A 7→ A ◦ C is completely positive. (Here A ◦ C is a notation for the
Hadamard product.)

The subject of the paper is the study of the existence and description of this kind
of completely positive mappings which are induced by a standard matrix monotone
function. Examples of good matrix means are presented.

2 The positive operator J
f
D

Let D ∈ Mn be a positive definite matrix and f be a standard matrix monotone function.
A linear operator JfD : Mn → Mn can be defined. If D = Diag (λ1, . . . , λn), then

(JfDA)ij = Aijm(λi, λj) (A ∈ Mn).
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Since
TrA∗(JfDA) =

∑

ij

|Aij|2m(λi, λj) ≥ 0,

the linear mapping J
f
D is positive with respect to the Hilbert-Schmidt inner product (for

any f ≥ 0). Another definition is

J
f
D = f(LDR

−1
D )RD , (3)

where
LD(X) = DX and RD(X) = XD .

(The operator LDR
−1
D appeared in the modular theory of von Neumann algebras.)

The inverse of this mapping is

((JfD)
−1B)ij = Bij

1

m(λi, λj)
(A ∈ Mn).

and it appeared in [10] to describe the abstract quantum Fisher information, see also
[13]. The linear mappings (JfD)

−1 : Mn → Mn have the monotonicity condition

α∗(Jfα(D))
−1α ≤ (JfD)

−1 (4)

for every completely positive trace preserving mapping α : Mn → Mm, if f is a standard
matrix monotone function.

The linear transformation (JfD)
−1 appeared also in the paper [16] in a different no-

tation. There Ωk
D is the same as (JfD)

−1 with f = 1/k, see also [11, 13]. The complete
positivity of the mapping β := (JfD)

−1 : Mn → Mn is a question in the paper [16].

The subject of this paper is to find functions f such that the mapping β is monotone
(in the sense of (4) ) and completely positive. The complete positivity is equivalent to
the positivity of a matrix, see the next lemma.

If D = Diag (λ1, . . . , λn), then

β(A)ij = Aij
1

m(λi, λj)
,

where m is the mean corresponding to the function f . In the notation (2), we have
β(A) = A ◦ T , it is a Hadamard product.

Lemma 1 The linear mapping β : Mn → Mn, β(A) = A ◦ T is completely positive if
and only if the matrices T ∈ Mn defined in (2) are positive.

Proof: If β is completely positive, then A ◦ T ≥ 0 for every positive A. This implies
the positivity of T .
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The mapping β linearly depends on T . Therefore, it is enough to prove the complete
positivity when Tij = λiλj. Then

β(A) = Diag (λ1, λ2, . . . , λn)
∗ADiag (λ1, λ2, . . . , λn)

and the complete positivity is clear. �

Hence β is completely positive if and only if β is positive. The problem of [16] is
equivalent to the positivity of the matrix T .

3 Completely positive mappings

In this section we analyze the complete positivity of β = J
f
D for several matrix monotone

functions f . The first three examples are very simple and actually they are particular
cases of Example 6.

Example 1 If f(x) =
√
x, then

〈a, Ta〉 =
∑

ij

aiaj
m(λi, λj)

=
∑

i

aiλ
−1/2
i

∑

j

ajλ
−1/2
j ≥ 0,

so T ≥ 0. In this case β(A) = D−1/2AD−1/2 and the complete positivity is obvious.
Moreover, β−1 is completely positive as well. (This is the only example such that both
β and β−1 are completely positive.) �

Example 2 If f(x) = (1 + x)/2, the arithmetic mean, then T is the so-called Cauchy
matrix,

Tij =
2

λi + λj
= 2

∫ ∞

0

esλiesλj ds,

which is positive. Therefore β : A 7→ A ◦ T is completely positive. This can be seen also
from the formula

β(A) = 2

∫ ∞

0

exp(−sD)A exp(−sD) ds.

�

Example 3 The logarithmic mean corresponds to the function f(x) = (x− 1)/ log x.

Let D = Diag (λ1, λ2, . . . , λn) be positive definite. The mapping

β : A 7→
∫ ∞

0

(D + t)−1A(D + t)−1 dt

is a positive mapping. Since β(A) = T ◦ A is a Hadamard product with

Tij =
log λi − log λj

λi − λj
,
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the positivity of the mapping β implies the positivity of T . Another proof comes from
the formula

log λi − log λj

λi − λj
=

∫ ∞

0

1

(s+ λi)(s+ λj)
ds.

�

Example 4 Consider the mean

m(x, y) :=
1

2
(xty1−t + x1−tyt) ≥ √

xy (0 < t < 1)

(which is sometimes called Heinz mean). Let D = Diag (λ1, λ2, . . . , λn) be positive
definite. The mapping

α : A 7→ 1

2
(DtAD1−t +D1−tADt)

has the form α(A) = X ◦ A with

Xij =
1

2
(λt

iλ
1−t
j + λ1−t

i λt
j).

The inverse of the mapping is denoted by β, it is the Hadamard product with

Tij =
2

λt
iλ

1−t
j + λ1−t

i λt
j

.

β is a positive mapping if and only T ≥ 0.

To find the inverse of α, we should solve the equation

2A = DtY D1−t +D1−tY Dt,

when Y = β(A) is unknown. It has the form

2D−tAD−t = Y D1−2t +D1−2tY

which is a Sylvester equation. The solution is

β(A) = Y =

∫ ∞

0

exp(−sD1−2t)(2D−tAD−t) exp(−sD1−2t) ds.

Therefore the mapping β is positive and the matrix T is positive as well. �

The function
ft(x) = 22t−1xt(1 + x)1−2t (5)

is a kind of interpolation between the arithmetic mean (t = 0) and the harmonic mean
(t = 1). This function appeared in the paper [3] and it is proven there that it is a
standard matrix monotone function.
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Theorem 1 If t ∈ (0, 1/2), then

ft(x) = 22t−1xt(1 + x)1−2t ≥
√
x

and the matrix

Tij =
1

mft(λi, λj)
=

21−2t

(λi + λj)1−2t
(λiλj)

−t

is positive and the corresponding mapping β is completely positive.

Proof: For |x| < 1 and 1− 2t = α > 0 the binomial expansion yields

(1− x)−α =
∞
∑

k=0

akx
k,

where

ak = (−1)k
(−α

k

)

= (−1)k
(−α− 1)(−α− 2) · . . . · (−α− k + 1)

k!
> 0.

So that

(λi + λj)
−(1−2t) =

(

(

λi +
1

2

)(

λj +
1

2

)

(

1−
(

λi − 1
2

) (

λj − 1
2

)

(

λi +
1
2

) (

λj +
1
2

)

))−(1−2t)

=

(

λi +
1

2

)−(1−2t)(

λj +
1

2

)−(1−2t) ∞
∑

k=0

ak

(

(

λi − 1
2

) (

λj − 1
2

)

(

λi +
1
2

) (

λj +
1
2

)

)k

=

∞
∑

k=0

ak

(

λi − 1
2

)k (
λj − 1

2

)k

(

λi +
1
2

)k+(1−2t) (
λj +

1
2

)k+(1−2t)
.

Hence we have

Tij = 21−2t
∞
∑

k=0

ak

(

λi − 1
2

)k

(

λi +
1
2

)k+(1−2t)
λt
i

(

λj − 1
2

)k

(

λj +
1
2

)k+(1−2t)
λt
j

and T is the sum of positive-semidefinite matrices of rank one. �

If t ∈ (1/2, 1) in (5), then
ft(x) ≤

√
x

and the positivity of the matrix

Yij = mft(λi, λj)

can be shown similarly to the above argument.
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Example 5 The mean

m(x, y) =
1

2

(

x+ y

2
+

2xy

x+ y

)

is larger than the geometric mean. Indeed,

1

2

(

x+ y

2
+

2xy

x+ y

)

≥
√

x+ y

2

2xy

x+ y
=

√
xy.

The numerical computation shows that in this case already the determinant of a 3×3
matrix T can be negative. This example shows that the corresponding mapping β is not
completely positive. �

Next we consider the function

ft(x) = t(1− t)
(x− 1)2

(xt − 1)(x1−t − 1)
(6)

which was first studied in the paper [4]. If 0 < t < 1, then the integral representation

1

ft(x)
=

sin tπ

π

∫ ∞

0

dλ λt−1

∫ 1

0

ds

∫ 1

0

dr
1

x((1− r)λ+ (1− s)) + (rλ+ s)
(7)

shows that ft(x) is operator monotone. (Note that in the paper [15] the operator mono-
tonicity was obtained for −1 ≤ t ≤ 2.) The property xf(x−1) = f(x) is obvious.

If t = 1/2, then

f(x) =

(

1 +
√
x

2

)2

≥
√
x

and the corresponding mean is called binomial or power mean. In this case we have

Tij =
4

(
√
λi +

√

λj)2
.

The matrix

Uij =
1√

λi +
√

λj

is a kind of Cauchy matrix, so it is positive. Since T = 4U ◦ U , T is positive as well.

If γ(A) = A ◦ U , then β = 4γ2. Since

γ(A) =

∫ ∞

0

exp(−s
√
D)A exp(−s

√
D) ds,

we have

β(A) = 4

∫ ∞

0

∫ ∞

0

exp(−(s + r)
√
D)A exp(−(s+ r)

√
D) ds dr. (8)

The complete positivity of β is clear from this formula.

For the other values of t in (0, 1) the proof is a bit more sophisticated.
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Lemma 2 If 0 < t < 1, then ft(x) ≥
√
x for x > 0.

Proof: It is enough to show that for 0 < t < 1 and x > 0

t
x− 1

xt − 1
≥ x

1−t
2 , (9)

since this implies

t
x− 1

xt − 1
(1− t)

x− 1

x1−t − 1
≥ x

1−t
2 x

t
2 =

√
x.

Denote
g(x) := t(x− 1) + x

1−t
2 − x

1+t
2 .

Then inequality (9) reduces to g(x) ≥ 0 for x ≥ 1 and to g(x) ≤ 0 for 0 < x ≤ 1. Since
g(1) = 0 it suffices to verify that g is monotone increasing, in other words g′ ≥ 0. By
simple calculation one obtains

g′(x) = t +
1− t

2
x

−t−1
2 − 1 + t

2
x

t−1
2

and

g′′(x) =
1− t2

4
x

t−3
2 − 1− t2

4
x

−t−3
2 ,

which yields g′′(x) ≤ 0 for 0 < x < 1 and g′′(x) ≥ 0 for x ≥ 1. Thus, due to g′(1) = 0,
g′ ≥ 0, the statement follows. �

It follows from the lemma that the matrix

Tij = t(1 − t)×
λt
i − λt

j

λi − λj
×

λ1−t
i − λ1−t

j

λi − λj
(1 ≤ i, j ≤ m)

can be positive. It is a Hadamard product, so it is enough to see that

U
(t)
ij =

λt
i − λt

j

λi − λj
(1 ≤ i, j ≤ m)

is positive for 0 < t < 1. It is a well-known fact that the function g : R+ → R is matrix
monotone if and only if the Löwner matrices

Lij =
g(λi)− g(λj)

λi − λj
(1 ≤ i, j ≤ m)

are positive. The function g(x) = xt is matrix monotone for 0 < t < 1 and the positivity
of U and T follows. So we have:

Theorem 2 For the function (6) the mapping β is completely positive if 0 < t < 1.
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To see the explicit complete positivity of β, the mappings γt(A) = A ◦U (t) are useful,
we have

β(A) = t(1− t)γt(γ1−t(A)).

Instead of the Hadamard product, which needs the diagonality of D, we can use

γt(A) =
∂

∂x
(D + xA)t

∣

∣

∣

x=0
.

We compute γt from

(D + xA)t =
sin πt

π

∫ ∞

0

(

I − s(D + xA + sI)−1
)

st−1 ds.

So we obtain

γt(A) =
sin πt

π

∫ ∞

0

st(D + sI)−1A(D + sI)−1 ds

and

β(A) = t(1− t)
sin πt sin π(1− t)

π2
∫ ∞

0

∫ ∞

0

r1−tst(D + rI)−1(D + sI)−1A(D + sI)−1(D + rI)−1 ds dr. (10)

Example 6 The power difference means are determined by the functions

ft(x) =
t− 1

t

xt − 1

xt−1 − 1
(−1 ≤ t ≤ 2), (11)

where the values t = −1, 1/2, 1, 2 correspond to the well-known means, harmonic,
geometric, logarithmic and arithmetic. The functions (11) are operator monotone [2]
and we show that for fixed x > 0 the value ft(x) is increasing function of t.

By substituting x = e2λ one has

ft(e
2λ) =

t− 1

t

eλt e
λt−e−λt

2

eλ(t−1) eλ(t−1)−e−λ(t−1)

2

= eλ
t− 1

t

sinh(λt)

sinh(λ(t− 1))
.

Since

d

dt

(

t− 1

t

sinh(λt)

sinh(λ(t− 1))

)

=
sinh(λt) sinh(λ(t− 1))− λt(t− 1) sinh(λ)

t2 sinh2(λ(t− 1))
,

it suffices to show that

g(t) = sinh(λt) sinh(λ(t− 1))− λt(t− 1) sinh(λ) ≥ 0.

Observe that lim±∞ g = +∞ thus g has a global minimum. By simple calculations one
obtains

g′(t) = λ(sinh(λ(2t− 1))− (2t− 1) sinh(λ)).

9



It is easily seen that the zeros of g′ are t = 0, t = 1/2 and t = 1 hence g(0) = g(1) = 0
and g(1

2
) = sinh2(λ

2
) + λ

4
sinh(λ) ≥ 0 implies that g ≥ 0.

It follows that √
x ≤ ft(x) ≤

1 + x

2

when 1/2 ≤ t ≤ 2. For these values of the parameter t the complete positivity holds.
This follows from the next lemma which contains a bigger interval for t.

Lemma 3 The matrix

Tij :=
t

t− 1

λt−1
i − λt−1

j

λt
i − λt

j

is positive if 1
2
≤ t.

Proof: For t > 1 the statement follows from the proof of Theorem 2, since

t

t− 1

λt−1
i − λt−1

j

λt
i − λt

j

=
t

t− 1

(λt
i)

t−1
t − (λt

j)
t−1
t

λt
i − λt

j

,

where 0 < t−1
t

< 1, further, for t = 1 the statement follows from Example 3. If 1
2
≤ t < 1

let s := 1− t where 0 < s ≤ 1
2
. Then

Tij =
t

t− 1

λt−1
i − λt−1

j

λt
i − λt

j

=
1− s

−s

λ−s
i − λ−s

j

λt
i − λt

j

=
1− s

s

(λt
i)

s
t − (λt

j)
s
t

λt
i − λt

j

1

λs
iλ

s
j

so that T is the Hadamard product of U and V , where

Uij =
(λt

i)
s
t − (λt

j)
s
t

λt
i − λt

j

is positive due to 0 < s
t
≤ 1 and

Vij =
1− s

s

1

λs
iλ

s
j

is positive, too. �

Example 7 Another interpolation between the arithmetic mean (t = 1) and the har-
monic mean (t = 0) is the following:

ft(x) =
2(tx+ 1)(t+ x)

(1 + t)2(x+ 1)
(0 ≤ t ≤ 1).

First we compare this mean with the geometric mean:

ft(x
2)− x =

(x− 1)2(2tx2 − (1− t)2x+ 2t)

(1 + t)2(x2 + 1)

10



and the sign depends on

x2 − (1− t)2

2t
x+ 1 =

(

x− (1− t)2

4t

)2

+ 1−
(

(1− t)2

4t

)2

.

So the positivity condition is (1− t)2 ≤ 4t which gives 3−2
√
2 ≤ t ≤ 3+2

√
2. For these

parameters ft(x) ≥
√
x and for 0 < t < 3− 2

√
2 the two means are not comparable.

For 3− 2
√
2 ≤ t ≤ 1 the matrix monotonicity is rather straightforward:

ft(x) =
2

(1 + t)2

(

tx+ t2 − t+ 1− (t− 1)2

x+ 1

)

However, the numerical computations show that T ≥ 0 is not true. �

4 Some matrix monotone functions

First the Stolarsky mean is investigated [9, 14].

Theorem 3 Let

fp(x) :=

(

p(x− 1)

xp − 1

)
1

1−p

, (12)

where p 6= 1. Then fp is matrix monotone if −2 ≤ p ≤ 2.

Proof: First note that f2(x) = (x + 1)/2 is the arithmetic mean, the limiting case
f0(x) = (x− 1)/ logx is the logarithmic mean and f−1(x) =

√
x is the geometric mean,

their matrix monotonicity is well-known. If p = −2 then

f−2(x) =
(2x)

2
3

(x+ 1)
1
3

which will be shown to be matrix monotone at the end of the proof.

Now let us suppose that p 6= −2,−1, 0, 1, 2. By Löwner’s theorem fp is matrix mono-
tone if and only if it has a holomorphic continuation mapping the upper half plane into
itself. We define log z as log 1 := 0 then in case −2 < p < 2, since zp − 1 6= 0 in the
upper half plane, the real function p(x− 1)/(xp − 1) has a holomorphic continuation to
the upper half plane, moreover it is continuous in the closed upper half plane, further,
p(z − 1)/(zp − 1) 6= 0 (z 6= 1) so fp also has a holomorphic continuation to the upper
half plane and it is also continuous in the closed upper half plane.

Assume −2 < p < 2 then it suffices to show that fp maps the upper half plane
into itself. We show that for every ε > 0 there is R > 0 such that the set {z : |z| ≥
R, Im z > 0} is mapped into {z : 0 ≤ arg z ≤ π + ε}, further, the boundary (−∞,+∞)
is mapped into the closed upper half plane. Then by the well-known fact that the image

11



of a connected open set by a holomorphic function is either a connected open set or a
single point it follows that the upper half plane is mapped into itself by fp.

Clearly, [0,+∞) is mapped into [0,∞) by fp.

Now first suppose 0 < p < 2. Let ε > 0 be sufficiently small and z ∈ {z : |z| =
R, Im z > 0} where R > 0 is sufficiently large. Then

arg(zp − 1) = arg zp ± ε = p arg z ± ε,

and similarly arg z − 1 = arg z ± ε so that

arg
z − 1

zp − 1
= (1− p) arg z ± 2ε.

Further,
∣

∣

∣

∣

z − 1

zp − 1

∣

∣

∣

∣

≥ |z| − 1

|z|p + 1
=

R− 1

Rp + 1
,

which is large for 0 < p < 1 and small for 1 < p < 2 if R is sufficiently large, hence

arg

(

z − 1

zp − 1

)
1

1−p

=
1

1− p
arg

(

z − 1

zp − 1

)

± 2ε = arg z ± 2ε
2− p

1− p
.

Since ε > 0 was arbitrary it follows that {z : |z| = R, Im z > 0} is mapped into the
upper half plane by fp if R > 0 is sufficiently large.

Now, if z ∈ [−R, 0) then arg(z − 1) = π, further, pπ ≤ arg(zp − 1) ≤ π for 0 < p < 1
and π ≤ arg(zp − 1) ≤ pπ for 1 < p < 2 whence

0 ≤ arg

(

z − 1

zp − 1

)

≤ (1− p)π for 0 < p < 1,

and

(1− p)π ≤ arg

(

z − 1

zp − 1

)

≤ 0 for 1 < p < 2.

Thus by

π arg

(

z − 1

zp − 1

)
1

1−p

=
1

1− p
arg

(

z − 1

zp − 1

)

it follows that

0 ≤ arg

(

z − 1

zp − 1

)
1

1−p

≤ π

so z is mapped into the closed upper half plane.

The case −2 < p < 0 can be treated similarly by studying the arguments and noting
that

fp(x) =

(

p(x− 1)

xp − 1

)
1

1−p

=

( |p|x|p|(x− 1)

x|p| − 1

)

1
1+|p|

.

12



Finally, we show that f−2(x) is matrix monotone. Clearly f−2 has a holomorphic
continuation to the upper half plane (which is not continuous in the closed upper half

plane). If 0 < arg z < π then arg z
2
3 = 2

3
arg z and 0 < arg(z + 1) < arg z so

0 < arg

(

z
2
3

(z + 1)
1
3

)

< π

thus the upper half plane is mapped into itself by f−2. �

The limiting case p = 1 is the so-called identric mean:

f1(x) =
1

e
x

x
x−1 = exp

(

x log x

x− 1
− 1

)

.

It is not so difficult to show that f1 is matrix monotone.

The inequality
√
x ≤ fp(x) ≤

1 + x

2

holds if p ∈ [−1, 2]. It is proved in [1] that the matrix

Tij =

(

λp
i − λp

j

p(λi − λj)

)

1
1−p

is positive.

Corollary 1 The mapping β induced by the Stolarsky mean is monotone and completely
positive for p ∈ [−1, 2].

The power or binomial mean

m(a, b) =

(

ap + bp

2

)
1
p

can be also a matrix monotone function:

Theorem 4 The function

fp(x) =

(

xp + 1

2

)
1
p

(13)

is matrix monotone if and only if −1 ≤ p ≤ 1.

Proof: Observe that f−1(x) = 2x/(x+1) and f1(x) = (x+1)/2, so fp could be matrix
monotone only if −1 ≤ p ≤ 1. We show that it is indeed matrix monotone. The case
p = 0 is well-known. Further, note that if fp is matrix monotone for 0 < p < 1 then

f−p(x) =

(

(

x−p + 1

2

)
1
p

)−1

13



is also matrix monotone since x−p is matrix monotone decreasing for 0 < p ≤ 1.

So let us assume that 0 < p < 1. Then, since zp + 1 6= 0 in the upper half plane, fp
has a holomorphic continuation to the upper half plane (by defining log z as log 1 = 0).
By Löwner’s theorem it suffices to show that fp maps the upper half plane into itself. If
0 < arg z < π then 0 < arg(zp + 1) < arg zp = p arg z so

0 < arg

(

zp + 1

2

)
1
p

=
1

p
arg

(

zp + 1

2

)

< arg z < π

thus z is mapped into the upper half plane. �

In the special case p = 1
n
,

fp(x) =

(

x
1
n + 1

2

)n

=
1

2n

n
∑

k=0

(

n

k

)

x
k
n ,

and it is well-known that xα is matrix monotone for 0 < α < 1 thus fp is also matrix
monotone.

Since the power mean is infinitely divisible [1], we have:

Corollary 2 The mapping β induced by the power mean is monotone and completely
positive for p ∈ [−1, 1].

5 Discussion and conclusion

The complete positivity of some mappings βf : Mn → Mn has been a question in physical
applications when β is determined by a function f : R+ → R+. The function f is in
connection with means larger than the geometric mean. In the paper several concrete
functions are studied, for example, Heinz mean, power difference means, Stolarsky mean
and interpolations between some means. The complete positivity of βf is equivalent with
the positivity of a matrix. The analysis of the functions studied here is very concrete,
general statement is not known.
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