arXiv:1012.4751v1l [math.GR] 21 Dec 2010

SIMPLY INTERSECTING PAIR MAPS IN THE MAPPING
CLASS GROUP

LEAH R. CHILDERS

ABSTRACT. The Torelli group, .# (S, ), is the subgroup of the mapping
class group consisting of elements that act trivially on the homology
of the surface. There are three types of elements that naturally arise
in studying .#(S,): bounding pair maps, separating twists, and simply
intersecting pair maps (SIP-maps). Historically the first two types of
elements have been the focus of the literature on .# (S, ), while SIP-maps
have received relatively little attention until recently, due to an infinite
presentation of .# (S,) introduced by Andrew Putman that uses all three
types of elements. We will give a topological characterization of the
image of an SIP-map under the Johnson homomorphism and Birman-
Craggs-Johnson homomorphism. We will also classify which SIP-maps
are in the kernel of these homomorphisms. Then we will look at the
subgroup generated by all SIP-maps, SIP(S, ), and show it is an infinite
index subgroup of .# (S,).

1. INTRODUCTION

Let S, 5 » be an oriented surface of genus g with b boundary components
and n punctures. Our convention is that boundary components are always
fixed pointwise. Further we will often omit an index if it is O (sometimes 1,
when noted as such). We define the mapping class group of Sg, Mod(S,),
to be:

Mod(S,) := Homeo™ (S,)/Homeog (S,)
where Homeo™ (S,) is the group of of orientation preserving homeomor-
phisms of S, and Homeog (Sg) is the normal subgroup consisting of ele-
ments isotopic to the identity. Thus Mod(S,) is the group of isotopy classes
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of orientation preserving self-homeomorphisms of a surface. See [2], [9],
and [[L1] for background information. A subgroup of the mapping class
group of primary importance is the Torelli group, .#(S,), the kernel of the
well-known symplectic representation of the mapping class group. Map-
ping classes act naturally on the first homology of the surface and preserve
the intersection form, giving rise to a surjective map to Sp(2g,7Z) (see Chap-
ter 7 of [9]). This action is known as the symplectic representation.

1 — .7(S,) = Mod(Sg) — Sp(2g,Z) — 1

Equivalently, .# (S, ) is the subgroup of Mod(S,) acting trivially on the ho-
mology of the surface.

There are three types of elements that naturally arise in studying .# (S,):
bounding pair maps (BP-maps), Dehn twists about separating curves, and
simply intersecting pair maps (SIP-maps). Historically the first two types
of elements have been the focus of the literature on .#(S,). For example,
in [14], [12], and [15] Johnson showed that when g > 3 BP-maps generate
#(8) and further that Dehn twists about separating curves generate an infi-
nite index subgroup of .# (S,), called the Johnson kernel, % (S). However,
SIP-maps have been brought to the forefront due to an infinite presenta-
tion of .#(S,) introduced by Putman that uses all three types of elements
[19]. While Putman’s presentation includes an infinite number of genera-
tors, he is able to classify all relations amoung these generators into a finite
number of classes. Thus the hope is that a better understanding of SIP-
maps might yield insight into answering the question: Is .#(S,) finitely
presentable when g > 37

The purpose of this paper is to investigate SIP-maps in their own right.
Moreover, we will compare and contrast SIP-maps with the standard ele-
ments of .#(S,), that is with BP-maps and Dehn twists about separating
curves. In Section[3] we will begin our discussion of SIP-maps by showing

Main Result 1 (Corollary [3.3). Let the commutator f = [T,,T,) be an SIP-
map with associated lantern L. Then f is pseudo-Anosov on L.

In addition, we will discuss how the same two curves can yield several
distinct SIP-maps. Then in Section ] we consider the group generated by
SIP-maps, which we call SIP(S, ). In light of Johnson’s work regarding BP-
maps and separating twists, it is natural to ask: Is SIP(S,) = .#(S,)? If not,
what is the index of SIP(S,) in .7 (S,)?

We will answer these questions by giving a topological description of
the image of SIP-maps under the Johnson homomorphism, ©: . (Sg1) —
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A3H where H = H; (S, 1,7). For the most part we will simply think of H
as an abelian group. The Johnson homomorphism is one of the classical
abelian quotients of .# (S, 1). The abelianization of % (S, ) = A’H @ B
where B is a number of copies of Z;. Of the two pieces of the abelianiza-
tion of .# (S, 1), one is captured by 7 and the other by the Birman-Craggs-
Johnson homomorphism o. For that reason we will calculate the image of
an SIP-map under both these homomorphisms.

In order to do this calculation we first rewrite SIP-maps as the product of
five BP-maps. We use this rewriting to show:

Main Result 2 (Proposition 4.3). The image under t of an SIP-map whose
associated lantern has boundary components w,x,y, and z is £x Ny N\ z.

We will use this same rewriting to find a topological description of the
image under o of an SIP-map. Further, from these calculations, we are also
able to deduce that SIP(S,) # .7 (S,) by observing that SIP-maps are in
the kernel of the so-called “contraction map.” Further, the contraction map
shows:

Main Result 3 (Corollary [4.6). The group SIP(Sy) is an infinite index sub-
group of I (Sy).

In addition, we are able to characterize which SIP-maps are in ker 7 =

H(S).

Main Result 4 (Corollary 4.7). An SIP-map f is an element of J (S) if
and only if the lantern associated with f has a boundary component that is
null-homologous or if two boundary components are homologous.

In Section [5] we will show how SIP-maps can be used to reinterpret one
of Johnson’s relations about BP-maps.

Then in Section [6] we characterize the image of SIP-maps under the
Birman-Craggs-Johnson homomorphism, ¢ : .¢ — Bz, where B3 is a Z;-
vector space of Boolean (square free) polynomials with generators corre-
sponding to non-zero elements of H;(S,Z;) [13]. We show:

Main Result 5 (Proposition [6.1] and Corollary [6.2). Let ¢ be the Birman-
Craggs-Johnson homomorphism. Let f be an SIP-map with associated
lantern L. If none of the boundary components of L are null-homologous,
then o(f) is a cubic polynomial in the homology classes of the boundary
components of L. Further o(f) = 0 if and only if one of the boundary
components of L is null-homologous.
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Since SIP(S,) is not .# (S,), it is natural to ask: What is the precise struc-
ture of SIP(S,)? For example, since we know the abelian quotient of .# (S,)
is captured by 7 and o, we can ask the following:

Problem. Is .7 (S,)/SIP(S,;) abelian?

Building on work of Johnson, to answer Problem (1| it will suffice to es-
tablish if the intersection of the Johnson kernel and the Birman-Craggs-
Johnson kernel lies in SIP(S,) [[16]. In the main results above, we have
characterized which SIP-maps are in the Johnson kernel, . (S), and which
are in the Birman-Craggs-Johnson kernel. It remains to investigate the con-
verse:

Problem. Which elements of the Johnson kernel, ¢ (Sg), and Birman-
Craggs-Johnson kernel lie in SIP(Sg)?

While Johnson has given a completely algebraic characterization of the
Birman-Craggs-Johnson kernel [16], this kernel is still not well understood
in terms of BP-maps, separating twists, and SIP-maps, all of which have a
natural topological structure.

2. BACKGROUND

Basic Definitions. We will refer to a simple closed curve as a curve
unless stated otherwise and we will often not distinguish between a curve
and its isotopy class unless needed.

The simplest infinite order element in Mod(S) is a (right) Dehn twist
about a simple closed curve ¢, denoted 7;.. One can think of this map as cut-
ting the surface along ¢ and twisting a neighborhood of one of the boundary
components 360°, and then gluing the surface back together along c. For
example, in Figure |1, we see the image of the curve d under the mapping
class 7.

< - OL(@ _

T.(d)

FIGURE 1. An example of the image of a curve under a
Dehn twist.
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For completeness, note that Dehn twists are basic elements of the map-
ping class group in the following sense.

Theorem 2.1 (Dehn, [8]]). The mapping class group, Mod(S), is generated
by finitely many Dehn twists about simple closed curves.

The algebraic intersection number of a pair of transverse, oriented curves
a and B on a surface, denoted i(«, ), is the sum of the indices of the
intersection points of o and 3, where an intersection point has index +1 if
the orientation of the intersection agrees with the orientation of the surface,
and —1 otherwise.

The geometric intersection number of a pair of curves o and f3 is defined
as

(o, ) = min Nb|.
l( ﬁ) aea,b€ﬁ|a |

Note this is well-defined on isotopy classes of curves (Chapter 1, [9]).

Relations in Mod(S). We will discuss several well-known relations in
Mod(S) that will be used throughout this paper, most notably the so-called
lantern relation. Proofs for all these can be found in Chapter 2 of [9].

Lemma 2.2. Let f € Mod(S) and a be a curve on S. Then fT,f~! = Tf(a)-

Lemma 2.3. Let a and b be curves on S. Then T, = Ty, if and only if a is
isotopic to b.

Lantern Relation in Mod(S). The lantern relation is a relation in
Mod(S) among 7 Dehn twists all supported on a subsurface of S home-
omorphic to a sphere with 4 boundary components (otherwise known as
a lantern). This relation was known to Dehn [8]], and later rediscovered
by Johnson [17]. The lantern relation will be particularly important in
Lemma [4.2] when writing an SIP-map as the product of BP-maps. Given
curves a, b, c, and d, so that a,b,c, and d bound a lantern, then the follow-
ing relation holds where the curves are as in Figure

T.1,T.T; = T,T,T,.

The Torelli Group. A subgroup of the mapping class group of primary
importance is the Torelli group, .7 (S,), the kernel of the well-known sym-
plectic representation of the mapping class group.

1 = Z(Sg) = Mod(S,) — Sp(2g,Z) — 1

Equivalently, .# (S, ) is the subgroup of Mod(S,) acting trivially on the ho-
mology of the surface. Note that we will often refer to H;(S,Z) simply as
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FIGURE 2. The curves in the lantern relation: 7,7, T.T; = T, T, T,

H. Further, because the symplectic group, Sp(2g,7Z) is well understood,
J(S) is often thought of as the “mysterious” part of Mod(S). Further when
g = 1 the symplectic representation is faithful, so .Z(S) = 1.

There are three types of elements that naturally arise in studying .#(S):
(1) Bounding Pair Maps. Given two disjoint, non-separating, homol-
ogous simple closed curves ¢ and d, a bounding pair map (BP-map)

is the product TCTd_l. If § =S, 1, then we say a BP-map has genus
k if the subsurface whose boundary is ¢ Ud has genus k.

d

A

|
—_—
k “

c

FIGURE 3. A genus k bounding pair.

(2) Separating Twists. A simple closed curve c is called separating
if S —c is not connected. A separating twist is a Dehn twist about
a separating curve. If § =S, |, then we say a separating twist has
genus k if the subsurface whose boundary is ¢ has genus k. As a
side note, when g =2, .7 (S,) = J# (S3), the subgroup generated by
separating twists, as there are no BP-maps in .7 (S3) [18].

(3) Simply Intersecting Pair Maps. Let ¢ and d be simple closed
curves so that i(c,d) = 0 and i(c,d) = 2. Then a simply intersecting
pair map (SIP-map) is the commutator of the Dehn twists about the
two curves, that is [T, Ty] = TchTc_le_l.
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FIGURE 4. A genus k separating curve.

() <) -
\_ -/
d c

FIGURE 5. Simple closed curves c and d that form an SIP-map.

In Chapter 7 of [9], Farb-Margalit outline how a Dehn twist acts on the
homology of a surface. Let a and b be oriented curves on a surface S. Then

(73 (a)] = la] + k- i(a, ) [b].

Using this and Lemma it is straightforward to show SIP-maps are in
J(S) since

—1p—1 -1
(T, Ta) = T(Ta T, T ) =TTy

The curves ¢ and T (c) are homologous because [Ty(c)] = [c] +i(c,d)[d] =
[c]. Since twists about homologous curves have the same image under the
symplectic representation (see Chapter 7 of [9] for further details), we can
conclude that TCTT; (lc) € .7 (S). Observe that in essence, SIP-maps are a nat-
ural generalization of BP-maps in that they are "inverse products” of Dehn
twists about homologous curves and could further be generalized by con-
sidering commutators of Dehn twists about curves with higher geometric
intersection number which still have algebraic intersection number O.

While the first two types of elements have been the focus of the literature
on .#(S), SIP-maps have been brought to the forefront due to an infinite
presentation of .#(S,) introduced by Putman that uses all three types of
elements [19]].

3. BASIC FACTS ABOUT SIP-MAPS

In this section we will further investigate the structure of SIP-maps. We
begin by showing they are pseudo-Anosov elements on a lantern.

Classification of Mapping Classes. Mapping classes are often clas-
sified according to whether or not they fix any curves in the surface, as
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follows. A curve, c, is called a reducing curve for a mapping class f, if
f"(c) = ¢ for some n.

Nielsen-Thurston Trichotomy. We are able to classify any mapping
class, f, into one of the following categories:

(1) The mapping class, f, is a finite order element; that is, there exists
an n such that /" = id

(2) The mapping class, f, is reducible; that is it fixed a collection of
pairwise disjoint curves, or

(3) The mapping class, f, is pseudo-Anosov if it is not finite order or
reducible.

There is an equivalent, somewhat more standard and more technical, def-
inition of a pseudo-Anosov mapping class given in terms of measured foli-
ations. We will not need to use this definition or the machinery of measured
foliations explicitly in this work.

There is non-trivial overlap between the finite order and reducible ele-
ments. In order to make this a true trichotomy, we can replace the condition
of having a reducing curve with that of having an essential reducing curve:
areducing curve c is essential for a mapping class 4 if for each simple close
curve b on the surface such that i(c,b) # 0, and for each integer m # 0, the
classes 1" (b) and b are distinct.

Theorem 3.1 (Birman-Lubotzky-McCarthy, [4]). For every mapping class
h there exists a system (possibly empty) of essential reducing curves. More-
over, the system is unique up to isotopy, and there is an n such that cutting
along the system, the restriction of h"* to each component of the cut-open
surface is either pseudo-Anosov, finite order, or reducible.

Further a fixed curve of a finite order mapping class is never essential,
because there is always an n such that 4" = id after cutting open along all
the other curves.

The canonical reduction system for a mapping class, f, is the collection
of all essential reducing curves for f. This classification, as well as the
canonical reduction system, will be used throughout this paper.

Using work of Atalan-Korkmaz we will classify SIP-maps on a lantern,
So0.4. They make the following characterizations of reducible elements on
the lantern.
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Lemma 3.2 (Atalan-Korkmaz, Lemma 3.4, [[1]). The reducible elements of
Mod(So.4) consist of conjugates of nonzero powers of T,, T, and T, T),.

Thus we are able to deduce the following.

Corollary 3.3. Let a and b be two curves with i(a,b) =2 and i(a,b) = 0.
Then the SIP-map f = [T,, Ty is pseudo-Anosov on a regular neighborhood
of a and b; that is, on a lantern, Sy 4.

Proof. 1t is clear TaTbTa’lTb_1 is a cyclicly reduced word in the free group
generated by 7, and 7. Thus f is not conjugate to a power of T, Tj, or T, T},
and must be pseudo-Anosov. U

Further, we consider how many SIP-maps are supported on a given lantern.

Proposition 3.4. Consider the curves x,y, and z as in Figure [2| Then the
SIP-maps, [Ty, Ty], Ty, T;|, and [Ty, T;], are all distinct, as well as their in-
verses.

Proof. Consider the lantern in Figure [2{ with boundary components a, b, c,
and d and the lantern relation: T.T7,T, = T,T,1.T;. We consider the SIP-
maps [Ty, T,] and [T}, T;]. Suppose [Ty, Ty] = [Ty, T;]. Using the lantern rela-
tion and Lemmas 2.2 and [2.3] we have:
[Tx?Ty] = [TwTZ]
= LLLLT T = LLLLT T T

—1 _ -1
— TTX(Z) - TT;I(Z)

= T(z) = T,'(2)

A simple calculation shows these are not the same curve. Thus [T}, T;] #
[Ty, T;]. Similar arguments show that the remaining SIP-maps are also dis-
tinct. U

Note that distinct pairs of curves can define the same SIP-map. For ex-
ample, consider the SIP-maps [T}, ;| and [TTyfl(x), Ty] where x,y, and z are
as in Figure[2] Using the lantern relation, Lemmal[2.2] and the fact that Dehn
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twists about disjoint curves commute, we see

_ -1 -1
T Bl = T BT h

: (x)
_ Ty’lTxTyTyTy’lTx’lTyTy’l
_ T{IY}TyT{l
= (T, T ) (L LT T
= TLI'T

T:, T2

In the next section instead of looking at individual SIP-maps, we will look at

the group generated by SIP-maps and compare it to well known subgroups
of Z(9).

4. THE SIP(S,)-GROUP

The goal of this section is to prove some basic results about the group
generated by all SIP-maps in Mod(S), which we will denote as SIP(S). We
will do this by looking at the image of SIP(S) under well-known represen-
tations of .#(S) as well as classifying which SIP-maps are in the kernel of
these representatives. Recall that we do not distinguish between a curve
and its isotopy class. Similarly, we will frequently not distinguish between
a curve and its homology class. There is an issue regarding the orientation
of a curve, and we will deal with this issue when necessary.

Johnson Homomorphism. Johnson defined a surjective homomor-
phism, 7: .# (S 1) — A’H in [12]] that measures the action of f € .7 (Sg 1)
on 7;(S). Johnson showed that separating twists are in ker 7. Further he
showed separating twists generate ker 7. We call this subgroup the Johnson
kernel, J (S).

Theorem 4.1 (Johnson, [12] and [15]). The group ker T is generated by
Dehn twists about separating curves.

In addition, Johnson showed how to calculate the image of a BP-map
under 7 by first choosing a symplectic basis {ay,...,ax,b1,...,b;} for the
homology of the subsurface bounded by ¢ and d. With the chosen basis he
showed

k
T(TCTdil) = Z(ai /\b,’) Ac
i=1
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Note that the orientation of ¢ is chosen so that the subsurface not containing
the boundary component is on the left. Johnson also showed that the image
is independent of the choice of symplectic basis. For our purposes we will
take this as the definition of 7, since BP-maps generate .# (S, 1) when g > 3.
We will usually use the standard symplectic basis for H shown in Figure [6]

FIGURE 6. A collection of oriented curves that form a sym-
plectic homology basis for H;(S,Z).

It is natural to ask what the image of an SIP-map is under 7. One way
to calculate this is by factoring the SIP-map into BP-maps. Consider the
SIP-map [T, T}] as shown in Figure[7]

FIGURE 7. A collection of curves needed to rewrite the SIP-
map, [T, Tp| in terms of BP-maps.

Lemma 4.2. Let the commutator [Ty, Ty| be an SIP-map as shown in Fig-
ure(7} Then [T,,Ty) can be rewritten as shown.

[T, T) = (LT, )L )T ) (Tt (LT,

Proof. We will need to use the lantern relation twice to rewrite this SIP-map
in terms of BP-maps.

From the Top Lantern: 7,7,T. = T.T,T.T,
From the Bottom Lantern: T,7,T, = T,T.T,T,
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Then using the above facts and disjointness, we see
T.,T,) = (LT,)T,'T,"
= E(J}E)Twn_lTa_lTb_l
T, ' T, Ty LT T T T
= (LT )LL) T D) (Tt W(LT,)
O

Now we are ready to compute the image of an SIP-map under 7. In [12]
Johnson gave topological formulas for the image under 7 of BP-maps and
separating twists. Similarly we will give a topological formula for the im-
age of an SIP-map. We will rely on a common principle used in the study
of mapping class groups called the change of coordinates principle. The
idea is that to prove a topological statement about a certain configuration of
curves, if suffices to show the result on our “favorite” example of curves sat-
isfying the condition. For example to show a result about a non-separating
curve, up to homeomorphism, it suffices to show the result for any non-
separating curve. See Section 1.3 of [9] for further details. We will make
use of this principle in proving many of our main results.

Proposition 4.3. The image under T of an SIP-map whose associated lantern
has boundary components w,x,y, and z is given by T(f) = £[x] A [y] A [z].

Proof. Let f = [T,,Tp]. Then by the change of coordinates principle, show-
ing the result for f will suffice to prove the general result.

([T D)) = (BT )T W T )T, )T )
= (LT, Y+, ) +o(T T )+ o(T, ) + (LT )
ai Aby) Nx]+ (a1 Aby +ax Nby+a3 Ab3) A [w] +
a1/\b1+a2/\(b2—a3+b3))/\[f]+(a1/\b1 +a2/\b2)/\[d]+
(—a2 —|-a3) /\b3) A [e]
aj /\b])/\(—ag)—f—(a] Abi+ayANbry+as /\b3)/\(—a4)—|—
ai ANby+ax N\ (by —az+b3)) N (ay —az+ag) +
ai\Nby+ay /\bz) VAN (a3) + ((—az +a3) /\b3) N (—a2 +a4)
= —arNaz/Nay
= ERIADIAL
Observe that every SIP-map is naturally embedded in a lantern with bound-

ary components w,x,y, and z, hence we see the image of an SIP-map is
©([Ty, Tp]) = £x Ay Az where the orientations of w, x, y and z are so that the

(
(
(
(
(
(
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lantern is on the left. The sign is dependent on the ordering of the boundary
components with respect to a and b. U

Recently Putman [20] and independently Church [7] also calculated the
image of a SIP-map under 7 directly, that is without using the above factor-
1zation.

Theorem 4.4. The subgroup SIP(Sg 1), is a proper subgroup of % (Sg1).

Proof. To show this we will make use of the contraction map ¢ which
Johnson introduces in [12]. The contraction map % : A3SH — H is defined
by
anbAc—s2(i(b,c)a+i(a,c)b+i(a,b)c).
Hence using Proposition4.3|it is easy to see that SIP-maps are in the kernel
of (¢ o 1) since the boundary components of a lantern are disjoint.
(€ 0T)([Te, Ty]) = € (W AxAy) = 0.

Further, Johnson shows that € o T actually maps .# (S, 1) onto 2H. From
this, we are able to deduce that .7 (S, 1) # SIP(S, 1). O

The following corollaries are immediate consequences of the proof of
Theorem {.4] and Proposition 4.3

Corollary 4.5. The group SIP(Sg1) € # (Sg.1).
Corollary 4.6. The group, SIP(S, 1), is an infinite index subgroup of . (S 1).

I

SIP-maps in 7 (S). We can now characterize which SIP-maps are in
H(S) =ker .

Corollary 4.7. An SIP-map f is an element of % (S) if and only if the
lantern associated with f has a boundary component that is null-homologous
or if two boundary components are homologous.

Proof. This follows directly from the calculation given in Proposition 4.3
of 7(f) = ] A Ald]. -

See Figure [§| for examples of each type of SIP-map in J#(S).

The Subgroup (SIP(S, (), % (Sg.1)). The group (SIP(S, 1), % (Sg1))
has appeared in the literature before this, but has never been recognized
in terms of SIP-maps. We will define basic terminology regarding winding
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b

a

FIGURE 8. Examples of SIP-maps in . (S).

numbers and the Chillingworth subgroup. Then we show how (SIP(S, 1), % (S4,1))
can be viewed in four different ways.

More can be said about the structure of A>H, and it can be applied to our
current situation. According to Sakasai, A’H has two irreducible compo-
nents as Sp-modules (Section 2.3, [21]]):

NH=HDU

where U is the kernel of %, the contraction map. It follows from irreducibil-
ity and normality that T(SIP(Sg 1)) = U. From the following commutative
diagram we see that

SIP(Sg71)/(J£/(Sg71) ﬂSIP(SgJ)) =U.

SIP(S, 1) £ ker € =U

SIP(Sg.1)/(# (Se1) N SIP(Sg1))

Further, ker (¢"o t) = (SIP(S,,1),# (S,,1)). From this we can conclude
I (Sg.1)/(SIP(Sg,1), % (Sg,1)) = 2H.

Because 2H is an infinite group and SIP(S, 1) C (SIP(Sg 1), % (Sg1)), it
also follows that SIP(S, 1) is of infinite index in .7 (S 1).

Winding Number. For a surface S with continuous, non-vanishing vec-
tor field X on S, Chillingworth defines the concept of winding number with
respect to X of an oriented regular curve, ¢, to be the number of times its
tangent rotates with respect to the framing induced by X [, 6], denoted as
wx(c). If f € #(S), we have the function

erx(c) = wx(f(c)) — wx(c).
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This function measures the change in winding number induced by f. John-
son showed this function is independent of the choice of vector field X [12],
hence we will write ey. Note that Johnson also showed e is a function on
homology classes. We can then dualize the class ey to a homology class
tr where ¢ -ty = es(c). We call ¢y the Chillingworth class of f. Johnson
showed that ty = (4" o 7)(f). Thus we have shown (SIP(Sg 1), % (Sg.1)) is
the kernel of 7. The kernel of ¢ is also called the Chillingworth subgroup.

Chillingworth Subgroup. Trapp showed in [22] that the Chillingworth
subgroup is characterized as:

{f="1, TaleYz T(il Ty, T5_1 | T%Tgl is a genus one BP-map

and ) 2[y] =0inH}
i=1

This follows from a calculation done by Trapp and Johnson that if TyTS_l

is a genus one BP-map then t(TyTS_l) = 2[y]. Further, we can extend this
presentation to include BP-maps of genus g in the following way. If the
BP-map T,,Ta_l has genus g(7,8) with a;,b; as a symplectic basis for the
corresponding subsurface, then

HL T ) = €Y, ainb)Ay)

So we could write the Chillingworth subgroup as:
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{f =Ty T ' Ty T T, T3 ' | TyTy ' is a BP-map

28(7:,6:)[%] = 0in H}
1

n
and

1

Equivalently, we can include separating twists, Ty, because #(7y) = 0.
Hence the Chillingworth subgroup is:

{f=~Ar...fn | fi=TyandYis aseparating curve or

n
fi= T%.T(;l is a BP-map and Z 2¢(%,6)[n]=0in H,
i=1
with g(¥%, 6;) := 0 if 7; is separating }
Now we have the following equivalence:

Corollary 4.8. The following are equivalent definitions of the group (SIP(S, 1), % (Sq,1))-

(1) The group (SIP(S,1),# (Sq,1)) is the group generated by all sepa-
rating twists and SIP-maps.

(2) The group (SIP(S,1), % (S,,1)) is the kernel of € o T.

(3) The group (SIP(Sg 1), % (Sg.1)) is the group of all elements in .7 (S 1)
with winding number zero.
(4) The group (SIP(S,.1), % (Sg.1)) is the following group:

{f=T1, T(;TYZ Ts, L., T(il \ T%.Tgl is a genus one BP-map

2[y] =0in H}
1

n
and

1=
5. REINTERPRETING RELATIONS

A potential application of studying SIP-maps is to find a better generating
set for .#(S). While Johnson found a finite generating set for .# (S,) when
g > 3 it is extremely large [14]]. Johnson conjectured that this generating
set could be reduced to a more manageable size. Johnson’s main technique
was to employ several relations he discovered among BP-maps. We will
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use SIP-maps to reinterpret one of Johnson’s relations in .#(S). Perhaps
similar techniques could be used to rewrite the other Johnson relations.

Independently, Putman showed how to factor an SIP-map into the product
of two BP-maps [19].

Lemma 5.1 (Putman, Fact E.5, [19]). Let curves a,b, and e be as in Fig-
ure[/l Then

[Taa Tb] = (TTa(b) Teil)(TeTbil)-

Combining Lemmas [4.2| and [5.1] yields a new proof of the following re-
lation in .7 (S) discovered by Johnson [14].

FIGURE 9. The curves needed for Johnson’s relation.

Lemma 5.2 (Johnson, Lemma 10, [14]). Let curves a,da’,b,b’,c,c’,cy,c3,
d,e,e, f,and f' be as defined in Figure[9 Then

T.T, ' ,T, ' T T, = T.T, ' T;T, .

Proof. Using the factoring of Putman in Lemma [5.1| we see:
[T,,T.) = TyT, ' T.T.", where d = T,(c).
Using the techniques and factoring in Lemma f.2] we have the following:

[Ta, T = Ty T, ' T T, T T, T4 T,

f
Combining these two equations and rearranging we have the desired result.
nLT,' .77 = T,7, ', 1, .1 1T, !
A e Lol i | —1p 1
Ta Ta/ TbT / Td TC/ — 7‘:‘3 Te/ Tfo
l

Further study is needed to determine whether other relations among John-
son’s generators in .#(S) can be realized by SIP-maps.
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6. BIRMAN-CRAGGS-JOHNSON HOMOMORPHISM

In order to define the Birman-Craggs-Johnson homomorphism, one of
the most well known representations of the Torelli group, we will need first
to consider the Birman-Craggs homomorphisms.

Birman-Craggs Homomorphisms. In [3] Birman and Craggs intro-
duced a finite collection of homomorphisms from .# (S, 1) to Z, based on
the Rochlin invariant.

Rochlin Invariant. Let W be a homology sphere and X be a simply con-
nected parallelizable 4-manifold, so W = dX. We know such a manifold X

always exists, and the signature(X) is divisible by 8. Further, WmodZ
is independent of X; hence, an invariant of W called the Rochlin invariant
denoted by u. A good reference for this material is [10].

The Birman-Craggs homomorphisms is a collection of homomorphisms
Phn - I =7

defined by fixing an embedding % : § < S° and identifying S with A(S). For
f € .7, split §° along S and reglue the two pieces using f, creating a closed
3-manifold, W (h, f). Since f acts trivially on H,(S,Z), the 3-manifold
W (h, f) is a homology sphere. Thus the Rochlin invariant u(h, f) € Z;
is defined. Hence for a fixed embedding 4,

pu(f) == u(h, f)

is the Birman-Craggs homomorphism. In addition, Johnson showed these
homomorphisms correspond to the mod 2 self-linking forms associated with
S, hence there are only finitely many [13]].

Birman-Craggs-Johnson Homomorphism. In [13]], Johnson combined
all the Birman-Craggs homomorphisms into one homomorphism o, in the
sense that the kernel of ¢ is equal to the intersection of the kernels of all the
Birman-Craggs homomorphisms. In order to describe this homomorphism,
we first need to define boolean polynomials.

We construct from H, (S,Z;) a Z,-algebra B such that:

(1) B is commutative with unity

(2) B is generated by the abstract elements @ where a is nonzero in
H\(S,Zs),

(3) @> =aforall a # 0in H{(S,Z,). (Sometimes this is referred to as a
“square-free” algebra.)
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(4) (a+b)=a+b+a-bwherea-b € Z, C Bis the algebraic intersec-
tion of a and » modulo 2.

Elements of B are thought of as polynomials in the generators. The de-
gree of an element is well defined, and we let B3 equal the vector space of
all elements in B of degree less than or equal to 3.

Then the Birman-Craggs-Johnson homomorphism is a surjective homo-
morphism

O f(Sg,l) — Bj.

Johnson also calculated the image of BP-maps and separating twists un-
der 6. Again since BP-maps generate .# (S;) when g > 3, for our purposes
we will take this as the definition of the map ¢. Thus,

(1) A genus k separating curve, c:
e Choose a symplectic basis {ay,---,ax,by,---,bi} for the sub-
surface bounded by c.
. G(TC) = Zif:l a;b;
(2) A genus k BP-map Tch_lz
e Choose a symplectic basis {ay,--- ,ax,by,---,b;} for the sub-
surface bounded by ¢ and d.
o o(T.T; ") =i aibi(1-¢)

Johnson showed both these calculations are independent of the choice of
symplectic basis. We will find a similar formula for the image of an SIP-
map under o that is based completely on the topological structure of the
given SIP-map.

Given the rewriting of an SIP-map in terms of BP-maps in Lemma[4.2] it
is not hard to determine the image of an SIP-map under ©.

Proposition 6.1. Consider the SIP-map, (T,,T,), as shown in Figure [7]
which is naturally embedded in a lantern with boundary components w, x,y,
and z. Then o([T,,Tp]) = XyZ.

Proof. The proof consists of the following calculation using Lemma
and the change of coordinates principle. We will be using the standard
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symplectic basis show in Figure [6|for this calculation.
T Ty) = (LT DT DI (LT (T,
o(LT, )+ o (LT, ) +o(IT, ) +o(TT, ')+ o(LT, )
= aibi(1—ap) + (aiby +axby +azbz)(1 —ay)
(@b +ax(by —az+b3))(1 — (—ax +az —as))
(@151 +a2b2) (14 a3) + (Fa Fa3)b3) (1 — a2 —aip)
aras + arazaa
ar(—ax+as)(—az +ay)
xyz

Note that since w,x,y, and z bound a subsurface, the result is equivalent to
that using any three of the four bounding curves. For example, we consider
W
ow = x+y+z)
= WE+3+2)
= F+Iy Iz
= iz
U

Corollary 6.2. An SIP-map, [T, Tp|, with associated lantern, L, is an ele-
ment of ker & if and only if one of the boundary components of L is null-
homologous.

Observe that an SIP-map, [T, T,], where a or b is a separating curve, is
always in .#"(S) and sometimes in the kernel of 6. We call these separating
SIP-maps. Let SSIP(S) be subgroup generated by separating SIP-maps. We
will compute the image of SSIP(S) under o and deduce that SSIP(S) is a
proper subgroup of £ (S).

Theorem 6.3. The image of the subgroup generated by separating SIP-
maps, that is SSIP(S, 1), under the Birman-Craggs-Johnson homomorphism,
o, is <17di7bi7a_ibjadibi +c_l]bj|1 < la.] g gal 7£ .]>

An immediate consequence of this result and Theorem [.1]is the follow-
ing:
Corollary 6.4. Let S be a surface with genus, g > 3. Then the group gener-
ated by separating SIP-maps, SSIP(Sg.1), is a proper subgroup of J# (Sg.1).

Proof of Theorem[6.3 There are four basic types of generators of By:
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(1) aib; ) L
(2) a;bj with i # j (this also includes @;a;,a;b;, and b;b; )
(3) a; (bi)
“4) 1

Elements of type (1) we will refer to as symplectic terms and elements of
type (2) will be nonsymplectic. We will show that elements of type (2),
(3) and (4) are in o(SIP(S)N.#(S)). Then we will show which elements
generated by type (1) terms are in the image. Recall all coefficients in B;
are in Z /2.

Note that we will only consider separating SIP-maps, that is, SIP-maps
where at least one of the defining curves is separating as in Figure[10]

Type (2): Suppose ¢ and d are as shown. Then

@Ei5;
¢

FIGURE 10. An SIP-map, [T, T;] with c a separating curve.

o(l..T)) = o(LI,T,'T; ")

= o(I)+0(Ty ()
= o(T.)+0(Tr,))

d
It is not hard to see that

o (TC) =apb;.
Further 7y(c) is shown below with symplectic basis consisting of a; + b»,
and b; (where a; and b; are from the standard symplectic basis as shown in

Figure [6]

FIGURE 11. Ty(c) with symplectic basis a; + b, and b,
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Hence we see that G(TTd(c)) = (ay +by)by = ayby + b1by. Therefore
o([T.,T;]) = b1b,. By change of coordinates we can get all elements of
Type (2).

Type (3): Suppose ¢ and d are as shown in Figure [I2] We want to find

FIGURE 12. SIP-map for Type (3)

o ([T, Ty]) = o(T.) + 6(Tz,())- As shown in Figure |13} ¢ has symplectic
basis b, and b; +ay + b».

FIGURE 13. Curve ¢ with symplectic basis b, and by + as + b».

Thus
o(T.) = by(by +ay +by) = by(by +ar +br+ 1) = b1by +arhy

Further Ty(c) is shown in Figure [14] with symplectic basis consisting of b,
and a; +b; +ap+b;.

FIGURE 14. Curve Ty(c) with symplectic basis b, and a; +
by +ay+ bs.
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Hence we see that

0(Tr, () = (b2) (a1 + b1+ ax +by) = @by + byby + arby + b.

Therefore
o([Te, Tu)) = arba + by.
Since we can get all Type (2) elements by themselves, composing with the

appropriate SIP-maps and using change of coordinates we can get all ele-
ments of Type (3).

Type (4): Suppose ¢ and d are as shown in Figure [I5] We want to find

¢ d

FIGURE 15. SIP-map for Type (4).

o ([T, Ty]) = o (1) + o(Tr,())- Clearly c has symplectic basis a; and by,
hence o(T;.) = a,b;. Further T;(c) is shown in Figure |16/ with symplectic
basis consisting of a; +a + by and by +ay + b».

FIGURE 16. Curve Ty(c) with symplectic basis aj +ay +b;
and by +ap + bs.

Hence
o(Ty ) = (a1+ax+b2)(b1+ax+b)
= (@ +a+by+1)(by+a+by+1)
= ajby+aar+aiby+ayby +biby+by+a+by—+1

Therefore

G([Tc,Td]) = dldz—f—c_llbz—i-dzl_?l —I—Bll_n—}-Bl —i—dz—{—l_?z—i— 1.
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By change of coordinates and because we can get Type (2) and Type (3)
elements we can compose by the appropriate SIP-maps to get all Type (4)
elements.

Type (1): Now let us consider which elements of Type (1) are in 6 (SSIP(S)).
Let ¢ be any separating curve. o (T.) must have a symplectic term (that is,
a term of the form @;b;) and possibly other terms. We know

o(I.,Ty) = o(L.I,T,'T,; ")
o(T.)+o(T;T, T h
(T.) + Ty (T, ")
o(T;)+ Ty0(T)

Let [d] = aai+ -+ Ogag + Bib1 + - - -+ Byb,. Without loss of generality,
suppose d by is a term in 6(T).

= O

Then using the fact that [TX(a)] = [a] + ki(a,b)[b], we see
Ty(ab1) = Ta(@)Tu(br)
= (Ta(a1))(Ta(br))
= (a1 +Bi[d]) (b1 +ould])
Hence the Z,; coefficients of the symplectic terms are:
arby: 0B+ (1+Broy)(1+ayBi) =1
aib; - (Brow)(eufi) + (BiBi) (o) =0,Vi: 1 <i<g

Soin o([T;, Ty]) the ab; terms will cancel out. Now suppose ab, is a term
in 0(T;), similarly for any other nonsymplectic term. Then

Ty(aba) = (Ty(ar))(Tu(b2))
= (a1 +Bi[d])(b2+ [d])

Again, we only need to consider the symplectic coefficients.

arby : (14 Bran)(onpr) + B (0nar) = 0pf;

by : (Bron)(1+ ) + (BiB2)(05) = Py

aibi: (Bray)(awfi)+ (BiBi) () =0,Vi:2<i<g

Notice the @;b; and @b, coefficients are the same and the other symplectic
terms have coefficient 0. Hence we get a sum of two symplectic terms in

o ([T, Ty]). This is the case for any nonsymplectic term; the only way an
a;b; term will appear in o ([T, T]) is in a pair.

)

Suppose aj, or any other linear term, is in 6(7;.). Then Ty (a ) =(a
which has no terms of degree two. Similarly if 1 is in o(7.), then T, (1

ai + Pu[d]
=1
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because the action of Mod(S) on Bj is a linear isomorphism. Thus all sym-
plectic terms in o(SSIP(S)) are in (@;b; +a;b;|1 <i,j < g,i # Jj). O

7. AREAS FOR FURTHER STUDY

In this paper we have done a preliminary investigation of SIP-maps and
the group they generate, SIP(S). We have factored SIP-maps into the prod-
uct of 5 BP-maps, shown the image of SIP-maps under well-known rep-
resentations of the Torelli group, and characterized which SIP-maps are in
(S) and the kernel of the Birman-Craggs-Johnson homomorphism. Fur-
ther we have shown SIP(S) # .#(S) and is in fact an infinite index subgroup
when g > 3. We have also given several equivalent descriptions of the group
(SIP(S),.# (S)). We have also found a new interpretation in terms of SIP-
maps of a relation among Johnson generators of .7 ().

This work leads to many questions about SIP-maps as well as the struc-
ture of SIP(S) that deserve further investigation. For example:

e Is .7(S)/SIP(S) abelian?

e Can other relations in .#(S) be reinterpreted in terms of SIP-maps?
e Is SIP(S) finitely generated?

e Is SIP(S) finitely presentable?

REFERENCES

[1] F. Atalan and M. Korkmaz. The Number of Pseudo-Anosov Elements in the Mapping
Class Group of a Four-Holed Sphere. ArXiv e-prints, April 2008.

[2] Joan S. Birman. Braids, links, and mapping class groups. Princeton University Press,
Princeton, N.J., 1974. Annals of Mathematics Studies, No. 82.

[3] Joan S. Birman and R. Craggs. The u-invariant of 3-manifolds and certain structural
properties of the group of homeomorphisms of a closed, oriented 2-manifold. Trans.
Amer. Math. Soc., 237:283-309, 1978.

[4] Joan S. Birman, Alex Lubotzky, and John McCarthy. Abelian and solvable subgroups
of the mapping class groups. Duke Math. J., 50(4):1107-1120, 1983.

[5] D. R. J. Chillingworth. Winding numbers on surfaces. I. Math. Ann., 196:218-249,
1972.

[6] D.R.J. Chillingworth. Winding numbers on surfaces. II. Math. Ann., 199:131-153,
1972.

[71 Thomas Church. Orbits of curves under the Johnson kernel. in preparation.

[8] Max Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987.
Translated from the German and with introductions and an appendix by John Still-
well, With an appendix by Otto Schreier.

[9] Benson Farb and Dan Margalit. A primer on mapping class groups.



26 LEAH R. CHILDERS

[10] Robert E. Gompf and Andras I. Stipsicz. 4-manifolds and Kirby calculus, volume 20
of Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, 1999.

[11] Nikolai V. Ivanov. Mapping class groups. In Handbook of geometric topology, pages
523-633. North-Holland, Amsterdam, 2002.

[12] Dennis Johnson. An abelian quotient of the mapping class group .. Math. Ann.,
249(3):225-242, 1980.

[13] Dennis Johnson. Quadratic forms and the Birman-Craggs homomorphisms. Trans.
Amer. Math. Soc., 261(1):235-254, 1980.

[14] Dennis Johnson. The structure of the Torelli group. I. A finite set of generators for
S . Ann. of Math. (2), 118(3):423-442, 1983.

[15] Dennis Johnson. The structure of the Torelli group. II. A characterization of the group
generated by twists on bounding curves. Topology, 24(2):113-126, 1985.

[16] Dennis Johnson. The structure of the Torelli group. III. The abelianization of 7.
Topology, 24(2):127-144, 1985.

[17] Dennis L. Johnson. Homeomorphisms of a surface which act trivially on homology.
Proc. Amer. Math. Soc., 75(1):119-125, 1979.

[18] Geoffrey Mess. The Torelli groups for genus 2 and 3 surfaces. Topology, 31(4):775—
790, 1992.

[19] Andrew Putman. An infinite presentation of the Torelli group. Geom. Funct. Anal.,
19(2):591-643, 2009.

[20] Andrew Putman. The Johnson homomorphism and its kernel. submitted, 2009.

[21] Takuya Sakasai. The second Johnson homomorphism and the second rational coho-
mology of the Johnson kernel. Math. Proc. Cambridge Philos. Soc., 143(3):627-648,
2007.

[22] Rolland Trapp. A linear representation of the mapping class group .# and the theory
of winding numbers. Topology Appl., 43(1):47-64, 1992.



	1. Introduction
	2. Background
	3. Basic Facts About SIP-maps
	4. The `39`42`"613A``45`47`"603ASIP(Sg)-group
	5. Reinterpreting Relations
	6. Birman-Craggs-Johnson Homomorphism
	7. Areas for further study
	References

