
ar
X

iv
:1

01
2.

47
15

v1
  [

cs
.IT

]  
21

 D
ec

 2
01

0

Joint Unitary Triangularization for MIMO Networks
Anatoly Khina

Dept. of EE-Systems,
Tel-Aviv University,
Tel Aviv , Israel.

Email: anatolyk@eng.tau.ac.il

Yuval Kochman∗

EECS Dept., MIT
Cambridge, MA

Email: yuvalko@mit.edu

Uri Erez
Dept. of EE-Systems,
Tel-Aviv University,
Tel Aviv , Israel.

Email: uri@eng.tau.ac.il

Abstract—This work considers communication networks where
individual links can be described as MIMO channels. Unlike
orthogonal modulation methods (such as the singular-valuede-
composition), we allow interference between sub-channels, which
can be removed by the receivers via successive cancellation.
The degrees of freedom earned by this relaxation are used
for obtaining a basis which is simultaneously good for more
than one link. Specifically, we derive necessary and sufficient
conditions for shaping the ratio vector of sub-channel gains
of two broadcast-channel receivers. We then apply this to two
scenarios: First, in digital multicasting we present a practical
capacity-achieving scheme which only uses scalar codes and
linear processing. Then, we consider the joint source-channel
problem of transmitting a Gaussian source over a two-user
MIMO channel, where we show the existence of non-trivial cases,
where the optimal distortion pair (which for high signal-to-noise
ratios equals the point-to-point distortions of the individual users)
may be achieved by employing a hybrid digital-analog scheme
over the induced equivalent channel. Since in this approachthe
choice of modulation basis depends upon multiple links in the
network, we coin it “network modulation”.

Index Terms—Broadcast channel, MIMO, multicasting, gen-
eralized triangular decomposition, GSVD, GDFE, multiplicative
majorization, joint source-channel coding.

I. I NTRODUCTION

The choice of modulation domain plays a major role in
communication, both in deriving performance limits and in
the design of practical schemes which decouple the signal
processing task of channel equalization from coding. Thus,
choosing the “right” basis is of central importance. For ex-
ample, the capacity of the Gaussian inter-symbol interference
(ISI) channel is given by the water-filling solution, applied in
the frequency domain; the same transformation also allows to
use popular schemes such as Orthogonal Frequency-Division
Multiplexing (OFDM) which employs the discrete Fourier
transform. The singular value decomposition (SVD) plays a
similar role for multiple-input multiple-output (MIMO) chan-
nels. Common to both cases isdiagonalization: They yield
parallel independent equivalent channels. But do we really
need such orthogonality? Capacity can be achieved for both
the ISI and MIMO channels usingnon-orthogonalequivalent

† This work was supported in part by the U.S. - Israel Binational Science
Foundation under grant 2008/455. The material in this paperwas presented in
part at the 48th Annual Allerton Conference on Communication, Control and
Computing, 2010. Another part of this work has been submitted to ICASSP
2011.

channels, by a receiver which performstriangularization of
the channel1 (rather than diagonalization) and then decision-
feedback equalization or successive interference cancellation
(SIC). This is done without performing any transformation
at the transmitter. It is therefore natural to ask, what can be
achieved by allowingboth a transmitter transformation (in
addition to the receiver one) and SIC.

One such direction, pursued by Jiang, Hager and Li [1], is
the generalized triangular decomposition(GTD): A matrix A
is decomposed as

A = UTV † , (1)

whereU andV are unitary matrices,V † denotes the complex
conjugate ofV and T is upper triangular. It is shown in
[2], [3] that the transforming matricesU andV exist if and
only if the diagonal elements ofT obey Weyl’s multiplicative
majorization relation with the singular values ofA (see also
[4]). Since the product of these diagonal elements equals
the product of the singular values ofA, the decomposition
performsdiagonal shaping: it distributes the total gain between
the diagonal elements in a desired way. An important special
case is where it is desired to have balanced gains, i.e., the
diagonal elements ofT should all be equal. In that case,
named thegeometric mean decomposition(GMD) [5], the
majorization condition holds for anyA. When applied to
MIMO communication, GMD has an advantage over SVD,
that all subchannels enjoy the same gain, and thus may support
codebooks of the same rate, avoiding the need for a bit-loading
mechanism. This comes at the price of performing SIC at the
receiver. The GMD has received considerable attention; see,
e.g., [6]–[8] for some of its applications.

We take a different path, in which we wish to jointly
shape the diagonals of two matrices, for the purpose of multi-
terminal communication. Since with this approach the choice
of basis depends upon more than one communication link,
we call it network modulation. We jointly triangularize two
matricesA1 andA2 as

Ai = UiTiV
† , i = 1, 2, (2)

whereU1, U2 and V are unitary andT1 and T2 are upper
triangular. Having the same matrixV on one of the sides of

1Outside the high signal-to-noise ratio regime, “near triangularization” is
performed as an optimal balance between residual interference and noise.
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the decomposition corresponds to applying the same trans-
formation, and is thus suitable to two links originating (or
terminating) at the same node. It turns out that in different
network applications, it is important to shape the vector of
ratios between the diagonals. We show that the sufficient
and necessary condition for achievability of a ratio vector
is a multiplicative majorization relation with the generalized
singular values [9] of the pair(A1, A2).

In Section II we present known results, recalling how
to achieve the point-to-point MIMO capacity using unitary
triangularization. In Section III we prove the necessary and
sufficient conditions for joint unitary triangularizationof two
matrices. In the rest of the paper we apply this result in
two different scenarios, where in one we present an optimal
practical scheme for a problem for which the capacity is
known, and in the second we derive the (hitherto unknown)
optimal performance.

Namely, for multicasting digital data over two MIMO
channels, we present in Section IV a scheme which employs
linear processing of scalar codebooks, much like what can
be achieved in point-to-point MIMO communications using
schemes such as V-BLAST [10]. This can be achieved using
a uniform ratios vector, for which the majorization condition
is satisfied for any channels pair. In Section V, we address
the problem of transmission of ananalog source over two
MIMO links, where we show that a ratios vector of all-ones
except for one element creates an equivalent channel over
which a hybrid digital-analog scheme can achieve the optimal
tradeoff between user distortions; thus we derive the optimal
performance whenever the channels are such that this ratios
vector is feasible, and argue that this is the case for a wide
class of channels with two transmit antennas.

We note that the decomposition may equally be applied
to cases where two transmitters communicate with a joint
receiver via MIMO links (a MIMO-MAC channel). In this case
the roles of theU andV matrices in (2) are interchanged. An
application of the decomposition in such a setting is a MIMO
extension of the “physical network coding” approach to bi-
directional relays [11]. This application is beyond the scope
of this paper, and appears in [12].

II. BACKGROUND: UNITARY TRIANGULARIZATION FOR

MIMO CHANNELS

In this section we recall how the single-user Gaussian
MIMO capacity may be achieved using multiple codebooks
(each designed for a scalar AWGN channel) with SIC over
an equivalent channel obtained by unitary triangularization
of the form (1). To that end, we must first formalize that
decomposition.

A. Unitary Triangularization

Throughout the work, we will only need to decompose
matrices which belong to the following class.

Definition 1 (Proper dimensions):An m × n matrix A is
said to have proper dimensions if it is full-rank andm ≥ n.

We will need the following notation:

Definition 2 (Square part):Let A be a matrix of proper
dimensionsm×n. The square part ofA, denoted[A], consists
of the firstn rows ofA.

For decomposing non-square matrices, we need to refine the
definition of triangularity.

Definition 3 (Generalized triangular matrix):Let T be a
matrix of proper dimensions. We callT a generalized trian-
gular matrix, if it has the block structure

T =

(

[T ]
0

)

where the square part[T ] is upper-triangular.

Definition 4 (Unitary triangularization):Let A be a matrix
of proper dimensions. A decomposition:

A = UTV †

is called a unitary triangularization ifU and V are unitary
matrices, andT is generalized triangular matrix of the same
dimensions asA.

Remark 1:Throughout the paper, we will assume without
loss of generality that all the diagonal elementsTj,j are real.
This is similar to the definition of the SVD; any phase can be
absorbed inU andV .

Note that for any unitary triangularization of a matrixA of
proper dimensionsm× n,

det
(

A†A
)

= det
(

T †T
)

= (det[T ])2 =

n
∏

j=1

(Tj,j)
2 . (3)

B. SIC for MIMO Channels

The exposition below follows that of the universal matrix
decomposition (UCD) [13], which is in turn based upon the
derivation of the MMSE version of V-BLAST, see, e.g., [14].
Later in the paper we take the triangularization to be one
which is simultaneously good for two users. This is suppressed
for now. We assume throughout the paper perfect channel
knowledge everywhere.

We consider a point-to-point (complex) MIMO channel:

y = Hx+ z, (4)

wherex is the channel input of dimensionsNt × 1 subject to
an average power constraintP ;2 y is the channel output vector
of dimensionsNr × 1; H is the channel matrix of dimensions
Nr × Nt andz is an additive circularly-symmetric Gaussian
noise vector of dimensionsNr×1. Without loss of generality,
we assume that the noise elements are mutually-independent,
identically-distributed with unit variance.

2Alternatively, one can consider an input covariance constraint Cx ,

E
[

xx
†
]

� C, where byC1 � C2 we mean that the matrix(C2 − C1)
is positive semi-definite.
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Fig. 1. Multiple-codebook transmitter with linear precoding

The capacity of this channel is given by

C(H,P ) = max
Cx

I(H,Cx), (5)

where the maximization is over all channel input covari-
ance matricesCx ≥ 0, subject to the power constraint
trace (Cx) ≤ P , and

I(H,Cx) , log det
(

I +HCxH
†
)

. (6)

We may interpretI(H,Cx) as the maximal mutual informa-
tion that can be attained using an input covariance matrixCx,
which is achievable by a Gaussian inputx.

In order to achieve a rate approaching this mutual informa-
tion, optimal codes of long block length are needed. However,
as pointed out in the introduction, we take an approach
which decouples the signal-processing aspects from these of
coding. We thus omit the time index throughout the paper; for
example, when referring to an input vectorx, we mean the
input at any time instant within the coding block. In a practical
setting using encoder/decpder pairs of some given quality,one
may easily bound the error probability of the scheme using the
parameters of the codes.

When coding over a domain different than the input domain
(e.g., time or space), one may start with a virtual input vector
x̃, related to the physical input by the linear transformation:

x =
√

CxV x̃ . (7)

We form the vector̃x in turn by taking one symbol from each
of Nt parallel codebooks, of equal power1/Nt. The matrix
V is a unitary linear precoder. See Figure 1.

Recalling the GTD (1), one may suggest to chooseV by
applying a unitary triangularization to

F , H
√

Cx . (8)

After the receiver applies the transformationU †, it is left
with an equivalent triangular channelT , over which it may
decode the codebooks using SIC. Unfortunately, while this
“conserves” the determinant ofHCxH

†, it fails to do so
when the identity matrix is added as in the mutual information
I(H,Cx) (6). Thus, this is optimal in the high SNR limit
only, and an MMSE variation is needed in general, as next
described.

We start by applying a unitary triangularization (as in
definition 4) to an augmented matrix:

(

F
I

)

, G = UTV †, (9)
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ỹ1

y′Nt

y′Nt−1

y′1

U †

−
−−

−

Dec.Nt

Dec.Nt − 1

Dec. 1

T̃Nt−1,Nt

T̃1,Nt

T̃1,Nt−1

T̃1,2

Fig. 2. SIC-based receiver.

where the identity matrixI has dimensionsNt×Nt. Note that,
by construction,G is of proper dimensions, regardless of the
dimension and rank of the channel matrixH . That is, it has
dimensions(Nt+Nr)×Nt andfull rank. The square matrices
U andV have dimensionsNt+Nr andNt, respectively. This
allows to decompose the total rate into terms associated with
the diagonal values of the matrixT , as follows:

I(H,Cx) = log det
(

INr
+ FF †

)

(10)

= log det
(

INt
+ F †F

)

(11)

= log det
(

G†G
)

(12)

=

Nt
∑

j=1

log(Tj,j)
2 ,

Nt
∑

j=1

Rj , (13)

where (10) follows by the definitions (6) and (8), (11) is
justified by Sylvester’s determinant Theorem (see e.g. [15]),
(12) is a direct application of the definition (9), and the
equality (13) is due to (3). Using the matrices obtained by
this decomposition, the following scheme communicates scalar
codebooks of rates{Rj}.

The transmitted signal is formed using (7). At the receiver,
we use a matrixW , consisting of the upper-leftNr×Nt block
of U : ỹ = W †

y. This results in an equivalent channel:

ỹ = W †(FV x̃+ z) = W †FV x̃+W †
z , T̃ x̃+ z̃. (14)

Note that sinceW is not unitary, the statistics of̃z differ from
those ofz. We denote the covariance matrix of the equivalent
noise byCz̃ = WW †. Finally, SIC is performed, i.e., the
codebooks are decoded from last to first, where each codebook
is decoded from:

y′j = ỹj −
Nt
∑

l=j+1

T̃j,l
ˆ̃xl , (15)

where ˆ̃xl is the decoded symbol from thel-th codebook; see
Figure 2. Assuming correct decoding of “past” symbols, i.e.



ˆ̃xl = x̃l for all l > j, the scalar channel for decoding of the
j-th codebook is given by:

y′j = T̃j,j x̃j +

j−1
∑

l=1

T̃j,lx̃l + z̃j . (16)

SinceT̃ is not triangular, the second term in this scalar channel
(resulting from elements below the diagonal ofT̃ ) acts as in-
terference. The signal-to-intereference-and-noise ratio (SINR)
is given by:

Sj = Var
(

x̃j

∣

∣

∣ỹ, x̃Nt

j+1

)

=
(T̃j,j)

2

Cz̃;j,j +
∑j−1

l=1 (T̃j,l)2
, (17)

whereCz̃;i,j denotes the(i, j) entry ofCz̃ .
The following, which is equivalent to Lemma III.3 in [13],

shows optimality of the scheme.

Proposition 1: For any channelH and input covariance
matrix Cx, the SINRsSj (17) of the transmission scheme
above satisfy:

log(1 + Sj) = Rj , ∀j = 1, . . . , Nt . (18)

where the ratesRj are given by (13).

This completes the recipe for a digital transmission scheme
which achievesI(H,Cx): for a given input covariance matrix
Cx, choose the individual codebook rates to approach{Rj},
the sum of which equals the mutual information afforded
by the MIMO channel (6). By (18), the successive decoding
procedure will succeed with arbitrarily low probability oferror
for these rates (asymptotically for high-dimensional optimal
scalar AWGN codes). TakingCx be the covariance matrix
maximizing (5), capacity can be achieved.

The above exposition proves the optimality of the “scalar
coding” approach - the combination of scalar AWGN code-
books, linear processing, and SIC. This approach offers re-
duced complexity and easy-to-analyze performance when the
channel is known at both ends (“closed loop”). Indeed, special
cases of this approach have been suggested and used. In partic-
ular, using the SVD results in adiagonalequivalent channel
matrix T , establishing parallel virtual AWGN channels (no
SIC is needed), see [15]. Other schemes, such as generalized
decision feedback equalization (GDFE) and Vertical Bell-
Laboratories Space-Time coding (V-BLAST), see [10], [16],
are based on the QR decomposition. These do not require
linear precoding, i.e.,V = I. The UCD [13] uses both a
linear precoder and SIC, in order to achieveT with diagonal
elements that are all equal.

All of these schemes have significant advantages over direct
capacity-achieving implementation for MIMO channels. Such
high-complexity schemes, e.g., using bit-interleaved coded
modulation (BICM) in conjunction with sphere detection,
essentially require the same resources as if working in an
“open loop” mode. Thus, the complexity involved is similar to
that required for approaching the isotropic mutual information
of the channel, when only the receiver knows the channel.

We conclude this section by pointing out a simple extension
to a unitary transformation which induces ablock-traingular
matrix rather than a strictly triangular one. That is, if thematrix
R in (9) is of the block generalized upper-triangular form:

T =















T1,1 T1,2 · · · T1,K

0 T2,2 · · · T2,K

...
. . .

...
0 · · · 0 TK,K

0 · · · 0 0















, (19)

where Tk,l is a block of dimensionsNk × Nl, such that
∑K

k=1 Nk = Nt (thus the last row of blocks consists ofNr

all-zero rows). In that case, we employK ≤ Nt codes in
parallel, each over an equivalentNk × Nk MIMO channel,
achieved by “block-SIC”:

y
′
j =

j
∑

l=1

T̃j,lx̃l + z̃j , j = 1, . . . ,K , (20)

where T̃j,l si of dimensionsNj × Nl. Seen as Gaussian
MIMO channels (i.e., seeing residual interference as noise)
we achieve, as an extension to Proposition 1, a rate

Rj = log det
(

Tj,j(Tj,j)
†
)

(21)

over each such block channel.

III. JOINT TRIANGULARIZATION WITH SHAPED

DIAGONAL RATIO

In this section we prove the necessary and sufficient condi-
tion for the existence of the joint triangularization (2), formally
defined as follows.

Definition 5 (Joint Unitary Triangularization):Let A1 and
A2 be matrices of proper dimensions with the same number
of columns. A decomposition:

Ai = UiTiV
†, i = 1, 2

is called a joint unitary triangularization if it consists of a
unitary triangularization (as in Definition 4) for bothA1 and
A2.

In order to state the condition, we need the following
definitions.

Definition 6 (Generalized singular values [9]):For any
(ordered) matrix pair(A1, A2), the generalized singular
values (GSVs) are the positive solutionsa of the equation

det
{

A†
1A1 − a2A†

2A2

}

= 0 .

Let the GSV vectorµ(A1, A2) be the vector composed of
all GSVs (including their algebraic multiplicity), ordered non-
increasingly.3

3 The number of GSVs is alwaysn, even if the number of finite solutions
is smaller. We define a GSV to be infinite, if the correspondingGSV of the
matrices in reverse order is zero. If the number of finite and infinite solutions
is smaller thann, this suggests that the column rank can be reduced without
changing the problem; we shall assume the problem is in its reduced form.



Remark 2:For matrices of proper dimensions,µ is of
lengthn.

Remark 3:WhenA1 andA2 are square and non-singular,
µ(A1, A2) consists of the singular values ofA1A

−1
2 .

Definition 7 (Diagonal ratios vector):Let T1 and T2 be
two generalized upper-triangular matrices of proper dimen-
sionsm1 × n and m2 × n, respectively, with non-negative
diagonal elements. The diagonal ratios vectorr(T1, T2) =
r([T1], [T2]) is the n-length vector which contains all ratios
T1;j,j/T2;j,j, ordered non-increasingly, whereTi;j,k denotes
the (j, k) entry ofTi (i = 1, 2).

Definition 8 (Multiplicative majorization (see [4])):Let x

andy be twon-dimensional vectors satisfying
n
∏

j=1

|xj | =
n
∏

j=1

|yj | .

Then we say thatx majorizesy (x � y) if for any 1 ≤ k < n,

k
∏

j=1

|xj | ≥
k
∏

j=1

|yj | .

We are now ready to prove the main result of this section.

Theorem 1:Let A1 and A2 be two matrices of proper
dimensionsm1 × n andm2 × n, respectively. Then the joint
unitary triangularization of Definition 5 exists if and onlyif

µ(A1, A2) � r(T1, T2) . (22)

Proof: Achievability part. We present here the proof for
case when the matrices are square (m1 = m2 = n). The
extension to the general proper-dimension case is relegated
to Appendix A.

In the square case,A1 andA2 must be invertible. Define
the matrixB = A1A

−1
2 . The vector composed of the singular

values of B ordered non-decreasingly coincides with the
GSV vector of(A1, A2), µ(A1, A2) (see [9], [17]). Thus, it
majorizesr(T1, T2), by assumption. Hence, according to the
GTD [1], the matrixB can be decomposed as

B = Ũ1RŨ †
2 , (23)

whereŨ1 and Ũ2 are unitary andR is upper-triangular with
a diagonal which equals the absolute values of the entries of
r(T1, T2). Now, apply RQ decompositions tõU †

i Ai (i = 1, 2)
to achieve

Ũ †
i Ai = TiV

†
i , (24)

whereTi are upper-triangular with positive diagonal entries
andVi are unitary. By substituting (24) into (23) we have

Ũ1T1V
†
1 V2T

−1
2 Ũ †

2 = Ũ1RŨ †
2 ,

which is equivalent to

V †
1 V2 = T−1

1 RT2 . (25)

We note that the l.h.s. of (25) is unitary, whereas its r.h.s.is
an upper-triangular matrix with positive diagonal entries. An
equality between such matrices can hold only if both matrices
are equal to the identity matrix of the appropriate dimensions
(n× n). Thus, we have

V , V1 = V2 .

T1;i,i = Ri,iT2;i,i , i = 1, ..., n .

Since the diagonal ofR is equal tor(T1, T2), this estab-
lishes the desired decomposition (2).

Converse part. Assume, in contradiction, thatA1 andA2

can be decomposed as in (2) such thatµ(A1, A2) � r(T1, T2).
Note thatµ(T1, T2) = µ(A1, A2). Moreover,[T1] and[T2] are
non-singular square matrices of dimensionsn×n with a GSV
vector that is equal to the GSV vector of(T1, T2), i.e.,

µ([T1], [T2]) = µ(T1, T2) = µ(A1, A2) ,

r([T1], [T2]) = r(T1, T2) .

Thusµ([T1], [T2]) � r([T1], [T2]), which in turn implies that
the upper-triangular matrixB , [T1][T2]

−1 has a diagonal
r([T1], [T2]) and a singular values vectorµ([T1], [T2]). But
according to Weyl’s condition [2]:

µ(A1, A2) = µ([T1], [T2]) � r([T1], [T2]) = r(T1, T2) ,

in contradiction to the assumption.

Remark 4:By the unitarity ofU andV , the products ofµ
andr are equal. Thus, the majorization relations mean that the
diagonal ratios are always “less spread” than the generalized
singular values.

Remark 5 (Relation to GSVD):The GSVD [9] can be
stated in a triangular form (2), with diagonals ratio
r(T1, T2) = µ(A1, A2). Thus, the GSVD is a limiting case
with maximal ratio spread.

Remark 6 (Relation to GTD):Taking in the joint decom-
position H2 = I yields the GTD ofH1 [1]; further, the
GSV become the singular values vector ofH1. The existence
condition, in turn, reduces to the Weyl condition (see e.g. [1]).
In this sense, the condition in Theorem 1 may be seen as a
generalized Weyl condition for joint triangularization.

Remark 7 (Relation to the generalized Schur decomposition):
This decomposition, also called the QZ-decomposition [17],
is a special case of the joint decomposition withU1 = U2.
It can be shown that the diagonal ratio vector induced by
this decomposition is unique, i.e., requiring that the unitary
matrices are the same on both sides prohibits shaping of the
diagonal ratio.

The joint unitary triangularization (and, as a special case,
the GTD) can also be relaxed to a block form. Here we
do not require the matricesTi to be generalized upper-
triangular, but merely in blocks of sizenk,

∑K
k=1 nk = n

as in (19). Let the blocks ofTi be Ti;k,l, of size nk × nl.
We define the block diagonal ratios as the absolute values of
the ratios between the determinants of corresponding blocks,
|det (T1;k,k) / det (T2;k,k)|, where Ti;j,k denotes the(j, k)
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Fig. 3. Two-user MIMO BC channel. Even though both users may have similar
channel quality, the actual channel matricesH1 andH2 differ.

block of Ti (i = 1, 2). Denote by {nkl
}Kk=1 the indices

satisfying:

rk1
≥ rk2

≥ · · · ≥ rkK
,

whererk , n
k

√

|det (T1;k,k) / det (T2;k,k)|. Denote byr the
K-length vector composed of{rnk

k }K
k=1

ordered in decreasing
order of rk (i.e., r is composed of the ratios between deter-
minants of corresponding blocks). Further denote byµ the
K-length vector composed of the products of sizes{kl}Kl=1 of
the GSVs of(A1, A2) ordered non-increasingly, i.e., the first
entry of µ is the product of the largestk1 GSVs, its second
entry is the product of the nextk2 GSVs, etc. Then the desired
block triangularization is possible if and only ifr � µ.

IV. T RANSMISSION SCHEME FORMULTICASTING

In this section we combine the results of Sections II and III
in order to derive an optimal practical communication scheme
for two-user multicasting.

The Gaussian MIMO broadcast (BC) channel has one
transmit and two receive nodes, where each received signal
is related to the transmitted signal through (4) (see Figure3),
i.e.:

yi = Hix+ zi , i = 1, 2 . (26)

This channel has received much attention over the past
decade. Unlike the single-input single-output (SISO) case, the
Gaussian MIMO BC channel is not degraded. Nevertheless,
capacity regions were established for some scenarios, such
as private-messages only, and for a common message with a
single private message, and bounds were derived for others,
see [18]–[22] and references therein.

We focus our attention on the multicast (common-message)
problem, the capacity of which is long known to equal the
(worst-case) capacity of the compound channel [23]–[25], with
the compound parameter being the channel matrix index:

C(H1, H2, P ) = max
Cx

min
i=1,2

I(Hi, Cx) , (27)

where the maximization is under the same conditions as in (5)
andI(H,Cx) was defined in (6).

We wish to use a scalar-coding approach, as applied to the
point-to-point setting in Section II. Indeed, the private-message
MIMO BC capacity can be achieved by scalar-coding (in this
case dirty-paper coding) techniques; see, e.g., [26]. In the
presence of a common message, however, to our knowledge,
no scalar capacity-approaching coding solutions are known.

QR-based schemes fail, since requiring the individual streams
to be simultaneously decodable at all the receivers implies
that the rateper streamis governed by the smallest of the
corresponding diagonal elements, (potentially) inflicting an
unbounded rate penalty. Adapting SVD to this scenario has an
additional problem: the decomposition requires multiplying by
a channel-dependent (unitary) matrix at the transmitter, which
prevents from using this decomposition for more than one
channel simultaneously.4 As a result of these difficulties, other
techniques were proposed, which are suboptimal in general,
see, e.g., [27], [28].

In this section, we present an optimal successive-decoding
(low-complexity) scheme for a two-user common-message
Gaussian MIMO BC channel. Specifically, the proposed
scheme is based upon SIC and goodscalar AWGN codes,
in conjunction with the following special case of the decom-
position in Theorem 1:

Corollary 1: Let A1 and A2 be two matrices of proper
dimensions, with

det
(

A1A
†
1

)

≥ det
(

A2A
†
2

)

. (28)

Then there exists a joint triangularization (2) where

T1;j,j ≥ T2;j,j ∀j = 1, . . . , Nt .

Proof: An equivalent condition to (28) is that the product
of the entries ofµ = µ(A1, A2) is at least one. Let̄µ ≥ 1 be
the geometrical mean ofµ, and let the vectorr be the same
size asµ, with all the elements equal tōµ. By construction,
µ � r, thus by Theorem 1 there exists a joint triangularization
with this ratio. Consequently, there exists a decomposition
such that for all elementsT1;j,j = µ̄T2;j,j ≥ T2;j,j.

Remark 8 (Admissible diagonal ratios):The proof sug-
gests that the diagonal ratios vector be made uniform.
This is always possible, but is not the only choice (unless
I(H1, Cx) = I(H2, Cx)).

For some channelsH1,H2, let Cx be a capacity-achieving
input covariance matrix , and assume without loss of generality
that I(H1, Cx) ≥ I(H2, Cx). Define the augmented matrices
G1 and G2 as in (9). By Corollary 1, there exists a joint
triangularization (2) such that each diagonal element of[T1] is
at least equal to the corresponding element of[T2]. On account
of (10)-(13) we have that:

C(H1, H2) =

Nt
∑

j=1

log(T2;j,j)
2 ,

Nt
∑

j=1

Rj .

This rate can be approached using SIC at each receiver as in
the point-to-point case of Section II. Specifically,x̃ is formed

4Indeed, the GSVD allows to use a single transformation for two different
channels at one of the ends, but for each virtual parallel channel it yields a
different gain for each user, thus not solving the inefficiency mentioned above.
In fact, using GSVD may result inworseperformance than using a QR-based
receiver without any transformation at the transmitter since the spread of the
diagonal ratio is maximal, see Remark 5.



from Nt codebooks of rates{Rj} and power1/Nt each. The
transmitted vector is given by the linear precoding (7) and
the receiveri performs the linear transformation (14) and SIC
(15) (substitutingUi andTi for U andT , respectively). Now
Proposition 1 guarantees correct decoding of all codebooksfor
receiver 2. Since in receiver 1 each SINR can only be greater,
it will be able to decode as well.

Remark 9 (Number of codebooks):If desired, one may
work with any number of codebooks aboveNt, as stated in
[13]. To see that, add “virtual transmit antennas” with corre-
sponding zero channel gains. The capacity remains unchanged,
and the optimal channel input covariance matrix will not
allocate power to these “antennas”. The number of codebooks
is equal to the number of antennas, including the additional
virtual ones.

Remark 10 (Private messages):If, in addition to the com-
mon message intended to both users, there are private mes-
sages (messages intended for individual users), superposition
may be used. That is, part of the transmit power is dedicated
to the private messages. Then, for the purpose of the com-
mon message, the transmission for the private messages is
considered as noise. This approach was shown in [22] to be
capacity-achieving in the presence of a single private message,
and under some conditions on the rate and power - also
in the presence of two private messages (even when these
conditions do not hold, superposition gives the best known
performance). The scheme presented in this section may be
used for the common-message layer of these superposition
schemes as well.

V. HDA T RANSMISSION FORSOURCE MULTICASTING

In this section we turn from the purely digital setting to a
joint source-channel coding (JSCC) problem, where we wish
to multicast an analog source to two destinations, where each
destination should enjoy reconstruction quality according to
the capacity afforded by its channel.

The transmission of a source over a BC channel is one
of the main applications of JSCC. In this setting, JSCC may
be greatly superior to transmission based upon source-channel
separation. In a classical example, a white Gaussian source
needs to be transmitted over a two-user AWGN BC channel,
with one channel use per source sample, under mean-squared
error (MSE) distortion. Analog transmission [29] achievesthe
optimal performance for each user as if the other user did not
exist. In contrast, the separation-based scheme (concatenation
of successive-refinment and broadcast codes) yields a tradeoff,
where if we wish to be optimal for the user with worse signal-
to-noise ratio (SNR), then both users have the same distortion,
while optimality for the user with better SNR means that
the distortion for the other user is trivial (equals the source
variance). See, e.g., [30, App. A].

We focus on the transmission of an i.i.d. circularly-
symmetric Gaussian sourceS to two destinations over a
MIMO-BC channel (26), with one channel use per source
sample. We measure the quality of the reproductionsŜi using
the MSE distortion measure. Thus, we wish to maximize the

tradeoff between the signal-to-distortion ratios (SDRs),defined
as

SDRi ,
Var (S)

Var
(

Ŝi − S
) , i = 1, 2 . (29)

The achievable SDR regionS(H1, H2) is defined as the
closure of all pairs which can be achieved by some encoding-
decoding scheme.

This general problem of describingS(H1, H2) has not
received much attention. Nevertheless, in the special cases
of diagonal or Toeplitz channel matrices, it reduces to the
better known problem of transmission over a colored and/or
bandwidth-mismatched Gaussian BC channel, for which dif-
ferent schemes which outperform the separation approach have
been presented, see e.g. [31]–[34]. However, even for these
cases optimality claims are not abundant. In [33], Kochman
and Zamir show asymptotic optimality for high SNR, where
the channels have the same bandwidth as the source, and one
user enjoys a better channel than the other at all frequencies.
In [34], Taherzadeh and Khandani show that optimality in the
slope sense (weaker than high-SNR asymptotic optimality) is
possible for white channels where the bandwidth (BW) is an
integer multiple of the source BW. A similar slope argument
applies to the general MIMO case as well.

A simple outer bound on the achievable SDR region is given
by the following.

Proposition 2: S(H1, H2) ⊆ S̄(H1, H2), where the bound-
ing regionS̄(H1, H2) is given by:

⋃

Cx

{

(SDR1,SDR2) : log(SDRi) ≤ I(Hi, Cx)
}

,

where the union is over all matricesCx ≥ 0 such that
trace (Cx) ≤ P , and whereI(H,Cx) was defined in (6).

The proof follows that of the classical source-channel converse
[35], taking into account that both users share the same
channel input.

In Section V-A we find sufficient conditions for achieving
points on the boundary of this region. Then, in Section V-B we
present, for the case of up to two transmit antennas, a simple
sufficient condition such that all of the region̄S(H1, H2) can
be achieved. Unlike previous work, this proves strict, non-
asymptotic optimality; it applies to some cases of color and
bandwidth mismatch, although not to the white BW-expansion
case.

A. Optimality by HDA Transmission

We give a constructive achievability proof, which combines
a hybrid digital-analog (HDA) scheme by Mittal and Phamdo
[31] with the joint triangularization approach; the optimum
is achievable whenever the diagonal ratio can be shaped
according to the needs of the HDA scheme. In order to
understand the function of the HDA scheme, we need to
consider the following related scenario. In a JSCC multicasting
problem as above, the BC channel is SISO, i.e.,Nt = Nr = 1



and the channel matrices reduce to scalarshi. However, in
addition, the transmitter node may send some digital data to
the users (identical for both) over a digital channel of rate
Rdigital nats per use of the BC channel.

Proposition 3: In the setting above, the optimal perfor-
mance is given by:

SDRi = (1 + h2
iP ) · exp{Rdigital}.

Proof: We use a vector quantizer which decomposes each
sample of the Gaussian sourceS as

S = S̃ +Q. (30)

The first term is the quantized source, while the second is
the quantization error. By quadratic-Gaussian rate-distortion
theory (see e.g. [36]), in the limit of high quantizer dimension,
a quantizer of rateRdigital may achieve:

SDRdigital ,
Var (S)

Var (Q)
= exp{Rdigital}.

Now the quantizer output representingS̃ is sent over the digital
channel, thusS̃ can be reconstructed exactly. GiveñS, the
reconstruction error ofS becomes that ofQ. That is,

SDRi =
Var (S)

Var
(

Q̂i −Q
) =

Var (Q)

Var
(

Q̂i −Q
) · SDRdigital

, SDRanalog,iSDRdigital,

where Q̂i is the reconstruction ofQ at receiveri using the
SISO BC channel. Finally by [29], analog transmission ofQ
achieves SDRanalog,i = 1 + h2

iP , yielding the desired SDRs.
No scheme can achieve better performance, by considerations
similar to those leading to Proposition 2.

We use this HDA approach to prove the following.

Theorem 2:Denote byµ the GSV vector of the augmented
matrices (9) of the channels with some input covariance matrix
Cx. If

Nt
∏

j=1

µj ≤ 1 ≤
Nt−1
∏

j=1

µj , (31)

then any pair(SDR1,SDR2) such thatlogSDRi ≤ I(Hi, Cx)
is achievable.

Proof: It follows by Theorem 1 that there exists a joint
unitary triangularization with diagonal ratios vector which is
all one except for the last element. The diagonal ofTi can
thus be made to satisfy

T1;j,j = T2;j,j , tj , ∀j = 1, . . . , Nt − 1 .

If we were to send digital data over the MIMO-BC channel
using this particular triangularization, then by (13) we could
send over theseNt − 1 channels a rate of:

Rdigital ,

Nt
∑

j=2

Rj =

Nt
∑

j=2

log t2j .

This does not change if we replace, in the transmission
scheme,̃x1 by a different signal of the same varianceP/Nt.
Furthermore, regardless of the signalx̃1, if the codebooks
of subchannels2, . . . , Nt − 1 are correctly decoded then the
receiveri can obtain the equivalent channel (recall (16)):

y
′
i;1 = T̃1;1,1 + zi;1

which must have by Proposition 1, a signal-to-noise ratio of

SNRanalog,i = (Ti;1,1)
2 − 1 .

At this stage we have turned the MIMO BC channel into the
combination of a digital channel of rateRdigital and a SISO
BC channel of signal-to-noise ratios SNRanalog,i. On account
of Proposition 3, one can achieve

logSDRi = log(1 + SNRanalog) +Rdigital

=

Nt
∑

j=1

log(Ti;j,j)
2

= I(Hi, Cx) , i = 1, 2 ,

where the last equality is on behalf of (10)-(13).
Remark 11:In fact, full triagularization is not needed.

It would have been sufficient to achieve a block-triangular
structure, where the interference between the firstNt − 1
channels is arbitrary (conserving the determinant of the block
in Ti). However, as indicated at the end of Section III, this does
not allow to relax the condition (31). Moreover, the triangular
form is advantageous from the point of view of complexity
(see Section III).

Theorem 2 does not imply that̄S(H1, H2) is fully achiev-
able, since the conditions on the GSVs should be verified sep-
arately for each optimal input covariance matrixCx. However,
in the sequel we show that forNt ≤ 2, the condition can be
verified directly on the channel matricesH1 andH2. Similarly,
if the channel matrices are of (any) proper dimensions, then
at the limit of high SNR (as the choiceCx = I becomes
optimal), the GSVs of the augmented matrices approach those
of (H1, H2), thus the condition may be applied to the channel
matrices directly, verifying achievability of the whole region
at once.

B. Two Transmit Antennas

In this section we consider the case whereNt = 2. In that
case, the GSV vectorµ(H1, H2) has two elements. We say
that the GSV vector ismixed, if one of the elements is at least
one, and the other is at most one. The following is proven in
Appendix B.

Lemma 1:Let H1 and H2 be two matrices of proper
dimensions, withn = 2 columns. Let

Gi =

(

Hi

√
C

I

)

be the augmented matrices (as in (9)) for some Hermitian
matrix C ≥ 0. Then if µ(H1, H2) is mixed,µ(G1, G2) is
mixed as well.



We use this lemma and Theorem 2 to prove the following.

Corollary 2: Let H1, H2 be channel matrices withNt = 2.
If µ(H1, H2) is mixed, then the bounding region̄S(H1, H2)
of Proposition 2 is achievable.

Proof: For any point on the boundary of̄S(H1, H2), let
µ be the GSV vector of the augmented matrices with the
correspondingCx. By Lemma 1,µ is mixed as well. Now if
the product ofµ is at most one, we can apply Theorem 2. If
it is greater than one, we switch the indices betweenH1 and
H2, and then apply Theorem 2.

Unfortunately, this result cannot be generalized to the case
Nt > 2: although at any dimension it remains true that the
number of GSVs smaller or greater than one is not changed
by the augmentation, this property does not hold forproducts
of GSVs as required for applying Theorem 2.

In order to demonstrate this result, consider the the simplest
example, a diagonal two-input two-output case:5

Hi =

(

αi 0
0 βi

)

, i = 1, 2. (32)

The bounding SDR region̄S(H1, H2) now becomes:
⋃

0≤γ≤1

{

(SDR1,SDR2) : (33)

SDRi ≤
(

1 + |αi|2γP
)(

1 + |βi|2(1 − γ)P
)

}

.

In this expression,γ is the portion of the transmit power sent
over the first band.

We point out a few special cases where points on the surface
of this region are achievable by known strategies.

1) No BW expansion: analog transmission. If one of the
bands has zero capacity, e.g.,β1 = β2 = 0, (33) reduces
to: SDRi ≤ 1 + |αi|2P , which is achievable via analog
transmission [29]. If for each user a different band is
usable, e.g.,α1 = β2 = 0, any transmission (digital or
analog) which is orthogonal between users is optimal.

2) Equal SDRs: digital transmission. A point on the bound-
ary which satisfies SDR1 = SDR2 may be achieved by
quantizing the source and then using a digital common-
message code for the BC channel.

3) One equal band: HDA transmission. If for one of the
bands the gains are equal, e.g.,|β1| = |β2| = β, we can
use that band for digital transmission with rateRdigital =
log(1+β2P ) and then apply Proposition 3 to achieve the
bound (33).

Using network modulation, we can extend the HDA trans-
mission (case 3 above), by transforming a diagonal channel
where none of the gains is equal between users, to an equiv-
alent triangular channel where for one of the bands the gain
is equal. This can be done under the condition (31), which
specializes to (allowing to swap roles between matrices):

|α1|2 ≥ |α2|2 and |β1|2 ≤ |β2|2 (34)

5Being diagonal, this channel may be obtained from a single-input single-
output Gaussian inter-symbol interference channel which has a two-step
frequency response, by applying the discrete Fourier transform.
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Fig. 4. Performance comparison forα1 = 1, β1 = 10,α2 = β2 = 2,P = 1.

or vice versa. This is an “anti-degradedness” condition: nouser
can have better SNR on both bands. This condition subsumes
all the cases mentioned above. It is not known whether it is
a necessary condition, but at least for the case where both
channels are white (αi = βi), it was shown in [37] that
simultaneous optimality isnot possible.

Figure 4 shows a numerical evaluation of performance for
some gain values. It can be appreciated that the optimal
performance imposes almost no tradeoff between users. Indeed
the only tradeoff comes from the need to choose the sameCx.
Thus, in of high SNR, both users attain their optimal single-
user performance. For comparison, we show the performance
of a separation-based scheme, where a successive-refinement
source code is transmitted over a digital broadcast channel
code, as well as that of a “naı̈ve” HDA scheme, where
transmission is digital over one band and analog over the other.

APPENDIX A
JOINT DECOMPOSITION FORNON-SQUARE MATRICES

In this Appendix we complete the proof of the direct part
of Theorem 1, by considering the general proper-dimension
case.

We start by decomposingAi using the QR decomposition:

Ai = QiRi , i = 1, 2 ,

where Qi is unitary andRi is upper-triangular with non-
negative diagonal entries. Moreover, the GSV vectors of
(A1, A2) and (R1, R2) are equal, sinceAi andRi are equal
up to a unitary transformation on the left, i.e.,µ(A1, A2) =
µ(R1, R2).

SinceAi is full-rank andmi ≥ n, the diagonal elements
of Ri are all (strictly) positive and the entries on its lower
(mi − n) rows are all zeros. Note that the square parts[R1]
and[R2] are non-singular, withµ([R1], [R2]) = µ(R1, R2) =
µ(A1, A2). Thusµ(R̃1, R̃2) � r(A1, A2). Invoking the proof
for the square case in Section III, we may decompose[R1]
and [R2] simultaneously as:

[R1] = Ũ1T̃1V
†

[R2] = Ũ2T̃2V
† ,



wherer(T̃1, T̃2) = r(A1, A2). Now, construct the augmented
unitary matricesYi:

Yi ,

(

Ũi 0
0 Imi−n

)

,

and the generalized triangular matricesTi of dimensions
mi × n:

Ti ,

(

T̃i

0

)

.

Thus, we arrive at the desired decomposition ofA1 andA2

(2), with Ui , QiYi.

APPENDIX B
PROOF OFLEMMA 1

Let Fi = Hi

√
C for i = 1, 2. We first claim thatµ(F1, F2)

must be mixed. This is true, since ifC is non-singular then
µ(F1, F2) = µ(H1, H2), and ifC is singular then at least one
of the elements ofµ(F1, F2) equals one. It is left to show
that if µ(F1, F2) is mixed, then so isµ(G1, G2). To that end,
define the quadratic functions:

p(x) , det
(

F †
1F1 − xF †

2F2

)

,

q(x) , det
(

G†
1G1 − xG†

2G2

)

.

By Definition 6, the roots ofp(x) andq(x) equal the square of
the elements ofµ(F1, F2) andµ(G1, G2), respectively. Thus
it suffices to prove that if the roots ofp(x) are not on the same
side ofx = 1, then so are the roots ofq(x). By the positive
semi-definitiveness ofFi andGi, both functions are convex

⋃

with p(0), q(0), p(∞), q(∞) ≥ 0. By the assumption on the
roots ofp(x), it must be thatp(1) ≤ 0. But since

G†
1G1 −G†

2G2 = F †
1F1 − F †

2F2

we have thatq(1) = p(1), and thusq(1) ≤ 0. Finally, a convex
⋃

continuous function which is non-negative atx = 0 and for
x → ∞ and non-positive atx = 1 cannot have both roots at
the same side of1.
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