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Abstract—This work considers communication networks where channels, by a receiver which performr@ngularization of
individual links can be described as MIMO channels. Unlike the channfl (rather than diagonalization) and then decision-
orthogonal modulation methods (such as the singular-valugle-  faaqpack equalization or successive interference cauticell

composition), we allow interference between sub-channelghich SIC). This is d ithout f . i f i
can be removed by the receivers via successive cancellatjon( )- IS IS done without pertorming any {ranstormation

The degrees of freedom earned by this relaxation are used at the transmitter. It is therefore natural to aSk, what can b

for obtaining a basis which is simultaneously good for more achieved by allowingboth a transmitter transformation (in
than one link. Specifically, we derive necessary and suffisi addition to the receiver one) and SIC.

conditions for shaping the ratio vector of sub-channel gais One such direction, pursued by Jiang, Hager and'Li [1], is

of two broadcast-channel receivers. We then apply this to te . . . ° .
scenarios: First, in digital multicasting we present a pratical e generalized triangular decompositigGTD): A matrix A

capacity-achieving scheme which only uses scalar codes andS decomposed as

linear processing. Then, we consider the joint source-charel A=UTV", (1)
problem of transmitting a Gaussian source over a two-user

MIMO channel, where we show the existence of non-trivial cass, \wherel7 andV are unitary matricesyt denotes the complex

where the optimal distortion pair (which for high signal-to-noise . . . . .
ratios equals the point-to-point distortions of the individual users) conjugate ofV and T' is upper triangular. It is shown in

may be achieved by employing a hybrid digital-analog scheme [2]. [3] that the transforming matrice§ and V' exist if and
over the induced equivalent channel. Since in this approacthe only if the diagonal elements Gf obey Weyl's multiplicative
choice of modulation basis depends upon multiple links in ta  majorization relation with the singular values df (see also
network, we coin it “network modulation”. [@]). Since the product of these diagonal elements equals
Index Terms—Broadcast channel, MIMO, multicasting, gen- the product of the singular values of, the decomposition
eralized triangular decomposition, GSVD, GDFE, multiplicative ~ performsdiagonal shapingit distributes the total gain between

majorization, joint source-channel coding. the diagonal elements in a desired way. An important special
case is where it is desired to have balanced gains, i.e., the
|. INTRODUCTION diagonal elements of" should all be equal. In that case,

The choice of modulation domain plays a major role if@med thegeometric mean decompositigGMD) [5], the
communication, both in deriving performance limits and iftajorization condition holds for anyl. When applied to
the design of practical schemes which decouple the sighiMO communication, GMD has an advantage over SVD,
processing task of channel equalization from coding. Thubat all subchannels enjoy the same gain, and thus may suppor
choosing the “right” basis is of central importance. For exc0debooks of the same rate, avoiding the need for a bit+igadi
ample, the capacity of the Gaussian inter-symbol interfeze mechanlsm. This comes at th_e price of performing SI_C at the
(ISI) channel is given by the water-filling solution, applisn  f€Ceiver. The GMD has _recelve_d c_onS|derabIe attention; see
the frequency domain; the same transformation also allows&:9-: [6]8] for some of its applications.
use popular schemes such as Orthogonal Frequency-DivisioNVe take a different path, in which we wish to jointly
Multiplexing (OFDM) which employs the discrete Fourieshape the diagonals of two matrices, for the purpose of muli
transform. The singular value decomposition (SVD) plays f&'minal communication. Since with this approach the ahoic
similar role for multiple-input multiple-output (MIMO) - ©f basis depends upon more than one communication link,
nels. Common to both cases dsagonalization They yield We call it network modulationWe jointly triangularize two
parallel independent equivalent channels. But do we realRatricesA; and A, as
need such orthogonality? Capgcny can be achleve_d for both A= ULV =12, @
the ISI and MIMO channels usingon-orthogonakquivalent

where Uy, U; and V' are unitary andl; and T, are upper
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2011. performed as an optimal balance between residual inteiderand noise.
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the decomposition corresponds to applying the same transWe will need the following notation:
formation, and is thus suitable to two links originating (or o )
terminating) at the same node. It turns out that in different Definition 2 (Square part)Let A be a matrix of proper
network applications, it is important to shape the vector gimensionsn xn. The square part o, denoted 4], consists
ratios between the diagonals. We show that the sufficieRi the firstn rows of A.
and necessary condition for achievability of a ratio vector For decomposing non-square matrices, we need to refine the
is a multiplicative majorization relation with the genézatl efinition of triangularity.
singular values]9] of the paifA;, As).
In Section[Il we present known results, recalling how Definition 3 (Generalized triangular matrix)tet 7" be a
to achieve the point-to-point MIMO capacity using unitarynatrix of proper dimensions. We cdll a generalized trian-
triangularization. In Sectiof ]Il we prove the necessarg amular matrix, if it has the block structure
sufficient conditions for joint unitary triangularizatiaf two
matrices. In the rest of the paper we apply this result in T = ( 7] )
two different scenarios, where in one we present an optimal 0
practical scheme for a problem for which the capacity ighere the square paff] is upper-triangular.
known, and in the second we derive the (hitherto unknown) ) ) o )
optimal performance. Def|n|t|oq 4 (Urjltary trlangularlzappn):Let A be a matrix
Namely, for multicasting digital data over two MIMO ©f Proper dimensions. A decomposition:
channels, we present in Sectionl IV a scheme which employs A—urvt
linear processing of scalar codebooks, much like what can
be achieved in point-to-point MIMO communications usings called a unitary triangularization & and V' are unitary
schemes such as V-BLAST [110]. This can be achieved usingatrices, andl" is generalized triangular matrix of the same
a uniform ratios vector, for which the majorization conadliti dimensions asi.

is satisfied for any channels pair. In Sectloh V, we addressR K 1:Th h h i ith
the problem of transmission of aanalog source over two emark L: Throughout the paper, we will assume without

MIMO links, where we show that a ratios vector of all-onegos_s 9f g_en_erality that aI_I t_he diagonal elemefi}s are real.
except for one element creates an equivalent channel ;)rgaglls is similar to the definition of the SVD; any phase can be

which a hybrid digital-analog scheme can achieve the opti sorbed i/ and V.

tradeoff between user distortions; thus we derive the agtim Note that for any unitary triangularization of a matrixof

performance whenever the channels are such that this rapgsper dimensions: x n,

vector is feasible, and argue that this is the case for a wide N

class of channels with two transmit antennas. _det (ATA) = det (T'T) = (det[T])? = H(Tj.j)Q- ©)
We note that the decomposition may equally be applied ’

to cases where two transmitters communicate with a joint

receiver via MIMO links (a MIMO-MAC channel). In this caseB. SIC for MIMO Channels

the roles of thel/ and V" matrices in[() are interchanged. An  The exposition below follows that of the universal matrix
application of the decomposition in such a setting is a MIM@ecomposition (UCD)[23], which is in turn based upon the
extension of the “physical network coding” approach to bierivation of the MMSE version of V-BLAST, see, e.d., [14].
directional relays[[11]. This application is beyond the 20 | ater in the paper we take the triangularization to be one
of this paper, and appears in [12]. which is simultaneously good for two users. This is supgess

Il. BACKGROUND: UNITARY TRIANGULARIZATION FOR for now. We assume throughout the paper perfect channel

MIMO CHANNELS knowledge_everywh_ere. _
We consider a point-to-point (complex) MIMO channel:

j=1

In this section we recall how the single-user Gaussian
MIMO capacity may be achieved using multiple codebooks y=Hx + z, 4)
(each designed for a scalar AWGN channel) with SIC over
an equivalent channel obtained by unitary triangularirati Wherez is the channel input of dimensiom; x 1 subject to
of the form [1). To that end, we must first formalize tha@n average power constraiftfd y is the channel output vector

decomposition. of dimensionsV, x 1; H is the channel matrix of dimensions
) ) o N, x N and z is an additive circularly-symmetric Gaussian
A. Unitary Triangularization noise vector of dimensions, x 1. Without loss of generality,
Throughout the work, we will only need to decomposwee assume that the noise elements are mutually-independent
matrices which belong to the following class. identically-distributed with unit variance.

Definition 1 (Proper dimensions)An m x n matrix A is 2Alternatively, one can consider an input covariance caistrCy 2

said to have proper dimensions if it is full-rank and> n.  E [zzf] < C, where byC1 < C2 we mean that the matrixCz — C1)
is positive semi-definite.
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The capacity of this channel is given by — é) e ;1 Dec. N, — i|_J_>
O(va) :HéaXI(H,Cm), (5) A
xr =
where the maximization is over all channel input covari- 4, N, Yn, (T—NL ot IN,
ance matricesC'y > 0, subject to the power constraint — »Dec. N, R
trace (Cg) < P, and
I(H,Cyg) £ logdet (I + HCxHT) . (6)

Fig. 2. SIC-based receiver.
We may interpret/ (H, Cz) as the maximal mutual informa-
tion that can be attained using an input covariance matgx
which is achievable by a Gaussian input

In order to achieve a rate approaching this mutual inform . o
tion, optimal codes of long blo?:i length gre needed. Howev jmension and rank of the channel matfik That is, it h_as
as pointed out in the introduction, we take an approa mensiong N; + N,.) x N, andfull rank. The square matrices

which decouples the signal-processing aspects from thlese@‘ﬁ)andv have dimensionsV; + N and Vi, respectively. This

where the identity matrix has dimensiong/; x ;. Note that,
y construction( is of proper dimensions, regardless of the

coding. We thus omit the time index throughout the paper; ft OV(\j/TQ‘ 0 delcorr|1pose ftr,:s totaltrrgte m:co”term.s associate wit
example, when referring to an input vectar we mean the € diagonal vaiues ot the matrix, as Toflows.

input at any time instant within the coding block. In a preati I(H,Cg) = logdet (In, + FFT) (10)
setting using encoder/decpder pairs of some given quaf_nty, — log det (IN, i FTF) (11)
may easily bound the error probability of the scheme usieg th ;
parameters of the codes. = logdet (G'G) (12)

When coding over a domain different than the input domain Ne - Nt
(e.g., time or space), one may start with a virtual input @ect = Zlog(Tj,j) = Z R;, (13)
z, related to the physical input by the linear transformation J=1 J=1

v = \/CaVi. @ where [I0) follows by the definitiond](6) anf] (8L 11) is

justified by Sylvester's determinant Theorem (see €é.g.)[15]
We form the vectott in turn by taking one symbol from each(I2) is a direct application of the definitiof](9), and the
of N, parallel codebooks, of equal pow&fN;. The matrix equality [I3) is due to[{3). Using the matrices obtained by

V is a unitary linear precoder. See Figlie 1. this decomposition, the following scheme communicatefasca
Recalling the GTD[{l1), one may suggest to chodsdy codebooks of rate$R;}.
applying a unitary triangularization to The transmitted signal is formed usirig (7). At the receiver,
a we use a matriX/, consisting of the upper-lefv,. x N, block
F=HyCy . @) of U: y = Wy, This results in an equivalent channel:

After the receiver apphes the transformatldiﬁ,_ it is left G=WHFViE+2) = WIFVa+ Wiz 2 Te+3 (14)
with an equivalent triangular channl, over which it may . . . o .

decode the codebooks using SIC. Unfortunately, while thi¥ote that sincéV’ is not unitary, the statistics of differ from
“conserves” the determinant aff CxHT, it fails to do so those ofz. We denote the covariance matrix of the equivalent

when the identity matrix is added as in the mutual infornmationoise by Cy = WW1. Finally, SIC is performed, i.e., the
I(H,Cy) ). Thus, this is optimal in the high SNR limit codebooks are decoded from last to first, where each codebook

only, and an MMSE variation is needed in general, as neigtdecoded from:

described. Ne oo
We start by applying a unitary triangularization (as in y; =yj— Z T2, (15)
definition[4) to an augmented matrix: l=j+1

F\ & a— UV 9 where; is the decoded symbol from tHeth codebook; see
) ’ ©) Figure[2. Assuming correct decoding of “past” symbols, i.e.



#; = & for all | > j, the scalar channel for decoding of the We conclude this section by pointing out a simple extension

j-th codebook is given by: to a unitary transformation which inducesbéck-traingular
- matrix rather than a strictly triangular one. That s, if thatrix
R = T R in (@) is of the block generalized upper-triangular form:
y; =1Tj;2; + ZT'le + zj . (16) ’
1=1 Ty Tie - Tix
SinceT is not triangular, the second term in this scalar channel 0 Toz -+ Tox
(resulting from elements below the diagonalf acts as in- T= : : ; (19)
terference. The signal-to-intereference-and-noise I(&INR) 0 e 0 Trx
is given by: o -~ 0 0

< o &N (T;,4)? where T}, ; is a block of dimensionsV;, x N;, such that
Sj = Var (XJ’y’XjH) T o ST (17) S | N = N; (thus the last row of blocks consists .
Zibd =1 all-zero rows). In that case, we empldy < N, codes in
whereC3 ; ; denotes thdi, j) entry of C'. parallel, each over an equivalent, x N, MIMO channel,
The following, which is equivalent to Lemma I11.3 i [113], achieved by “block-SIC”:
shows optimality of the scheme. »

J
/o ol > . .
Proposition 1: For any channelH and input covariance Yj = IZTJ‘BZ T2 j=1...K, (20)
=1

matrix Cz, the SINRsS; (I7) of the transmission scheme .
above satisfy: where T;,; si of dimensionsN; x N;. Seen as Gaussian
MIMO channels (i.e., seeing residual interference as foise

log(1+5;)=R;, Vj=1,...,N;. (18) we achieve, as an extension to Proposifibn 1, a rate

where the ratef?; are given by[(I3). R; = logdet (Tj ;(T; ;)" (21)

This completes the recipe for a digital transmission schergger each such block channel.
which achieved (H, Cy): for a given input covariance matrix
Cz, choose the individual codebook rates to approggh}, 1. JOINT TRIANGULARIZATION WITH SHAPED
the sum of which equals the mutual information afforded DIAGONAL RATIO
by the MIMO channel[{6). By[(18), the successive decoding In this section we prove the necessary and sufficient condi-
procedure will succeed with arbitrarily low probability efror tion for the existence of the joint triangularizatidh (2)rhally
for these rates (asymptotically for high-dimensional wati defined as follows.

scalar AWGN codes). Taking'zz be the covariance matrix o . . ) o
maximizing [3), capacity can be achieved. Definition 5 (Joint Unitary Triangularization)Let A; and

The above exposition proves the optimality of the “scalaf2 P& matrices of proper dimensions with the same number
coding” approach - the combination of scalar AWGN codé?f columns. A decomposition:
books, linear processing, and SIC. This approach offers re- A, =UTV i=1,2
duced complexity and easy-to-analyze performance when the
channel is known at both ends (“closed loop”). Indeed, sajecis called a joint unitary triangularization if it consists a
cases of this approach have been suggested and used. ¢a patitary triangularization (as in Definitidd 4) for both; and
ular, using the SVD results in diagonal equivalent channel Az.
matrix T, establishing parallel virtual AWGN channels (nq In order to state the condition, we need the following
SIC is needed), seé [115]. Other schemes, such as generalggghitions.
decision feedback equalization (GDFE) and Vertical Bell-
Laboratories Space-Time coding (V-BLAST), séel[10],1[16], Definition 6 (Generalized singular values| [9]For  any
are based on the QR decomposition. These do not requioedered) matrix pair(A;, A3), the generalized singular
linear precoding, i.e.)/ = I. The UCD [13] uses both a values (GSVs) are the positive solution®f the equation
linear precoder and SIC, in order to achiéVewith diagonal i 2 f
elements that are all equal. det {AlAl —a A2A2} =0.

All of these schemes have significant advantages over dirggt the sV vectoru(A;, As) be the vector composed of
capacity-achieving implementation for MIMO channels. Bucy| sy (including their algebraic multiplicity), ordet@on-
high-complexity schemes, e.g., using b|t—|nterleavedecbdincreasing|
modulation (BICM) in conjunction with sphere detection,
essentially require the same resources as if working in arf The number of GSVs is always, even if the number of finite solutions

“open |00p” mode. Thus. the complexity involved is similar t is smaller. We define a GSV to be infinite, if the correspondsfV of the
' matrices in reverse order is zero. If the number of finite anfithite solutions

that requwed for approachlng the |sqtrop|c mutual infotioTa is smaller tham, this suggests that the column rank can be reduced without
of the channel, when only the receiver knows the channel. changing the problem; we shall assume the problem is in itsaed form.



Remark 2:For matrices of proper dimensiong, is of We note that the l.h.s. of.(R5) is unitary, whereas its r.is.s.

lengthn. an upper-triangular matrix with positive diagonal entrids
Remark 3:When A; and A; are square and non-singulargquality between such matrices can hold only if both madrice
u(Aq, Ap) consists of the singular values df A5 *. are equal to the identity matrix of the appropriate dimemsio

I . ) (n x n). Thus, we have
Definition 7 (Diagonal ratios vector)iet 77 and Ty be

two generalized upper-triangular matrices of proper dimen VEV =V,.

sionsm; x n andmy x n, respectively, with non-negative Tyii = RiiThii, i=1,..,n.

diagonal elements. The diagonal ratios vect¢ty,7>) =

r([T1], [T»]) is the n-length vector which contains all ratios Since the diagonal of? is equal tor(73,73), this estab-
Ti.;.;/ T2, ordered non-increasingly, whefg.;, denotes lishes the desired decompositidn (2).

the (4, k) entry of T; (i = 1,2). Converse part. Assume, in contradiction, that; and A,

can be decomposed aslifi (2) such thatl,, As) % r(11,T5).

Note thatu (T4, T2) = u(Aq, A2). Moreover,[T] and[T] are
non-singular square matrices of dimensiansn with a GSV

Definition 8 (Multiplicative majorization (seé][4]))Let x
andy be twon-dimensional vectors satisfying

n n vector that is equal to the GSV vector @fy, T3), i.e
[T 1esl =TT 1wl -
=1 =1 p([Th], [15]) = u(Th, T2) = p(Ar, As),
Then we say that majorizesy (x = y) ifforany 1 < k < n, r([Th], [Ts]) = v(T1, T2) .
b - b Thus ([T3], [T2]) # 7([T3], [T2]), which in turn implies that
H ;1 H vl - the upper-triangular matrix3 £ [T3][T»]~' has a diagonal

r([T1],[T2]) and a singular values vectqr([7}], [T2]). But
according to Weyl's conditiori [2]:
We are now ready to prove the main result of this section.
p(Ar, A2) = p([T1], [T3]) = r([T1], [T2]) = r(T1, T3) ,

Theorem 1:Let A; and A; be two matrices of proper

dimensionsn; x n andms, x n, respectively. Then the joint in contradiction to the assumption. [
unitary triangularization of Definitioh]l5 exists if and orily Remark 4:By the unitarity of andV/, the products ofs
w(Ay, Ay) = r(Ty, Ts) . (22) andr are equal. Thus, the majorization relations mean that the

diagonal ratios are always “less spread” than the generliz
singular values.

Proof: Achievability part. We present here the proof for Remark 5 (Relation to GSVD)fthe GSVD [9] can be
case when the matrices are squane, (= m, = n). The stated in a triangular form[J2), with diagonals ratio
extension to the general proper-dimension case is relégaté?1,72) = p(A1, A2). Thus, the GSVD is a limiting case
to AppendixA. with maximal ratio spread.

In the square caseAl and A» must be invertible. Define Remark 6 (Relation to GTD)Taking in the joint decom-
the matrix B = A; A, . The vector composed of the singulaposition H, = I yields the GTD of H, [dI; further, the
values of B ordered non-decreasingly coincides with th&SV become the singular values vector/éf. The existence
GSV vector of (A, As), (A1, As) (see [9], [17]). Thus, it condition, in turn, reduces to the Weyl condition (see €. [
majorizesr (1, T»), by assumption. Hence, according to thén this sense, the condition in Theoréh 1 may be seen as a
GTD [1]], the matrix B can be decomposed as generalized Weyl condition for joint triangularization.
S Remark 7 (Relation to the generalized Schur decomposition)
B =URU; , (23) This decomposition, also called the QZ-decomposition ,[17]

whereU; and Us are unitary andR is upper-triangular with is @ special case of the joint decomposition with = Us.
a diagonal which equals the absolute values of the entrieslofan be shown that the diagonal ratio vector induced by
r(Ty,T). Now, apply RQ decompositions @-TAi (i =1,2) this decomposition is unique, i.e., requiring that the anyit
to achieve matrices are the same on both sides prohibits shaping of the
i i diagonal ratio.

Uidi =TV;', (24) The joint unitary triangularization (and, as a special case
whereT; are upper-triangular with positive diagonal entriee GTD) can also be relaxed to a block form. Here we

andV; are unitary. By substituting (24) int6 (23) we have do not require the matrice§; to be generahzed upper-
triangular, but merely in blocks of sizey, Zk 1Mk =N

UlTlVl VQT{ U2 = UlRU? g as in [19). Let the blocks of; be T;.;;, of size ny x n;.
which is equivalent to We define the block diagonal ratios as the absolute values of
i . the ratios between the determinants of corresponding bjock
ViVa =Ty RT;. (25) |det (T1.5,x) / det (T2 k)|, Where T;.;, denotes the(j, k)



H, T T H, QR-based schemes fail, since requiring the individuabstiee
4} % to be simultaneously decodable at all the receivers implies
Tx that the rateper streamis governed by the smallest of the
corresponding diagonal elements, (potentially) infligtian
unbounded rate penalty. Adapting SVD to this scenario has an
additional problem: the decomposition requires multipdyby
a channel-dependent (unitary) matrix at the transmittlrcky
prevents from using this decomposition for more than one
channel simultaneousﬂ/As a result of these difficulties, other
techniques were proposed, which are suboptimal in general,
see, e.g.[127]/[128].
block of T; (: = 1,2). Denote by{nkl},ﬁ{:1 the indices In this section, we present an optimal successive-decoding
satisfying: (low-complexity) scheme for a two-user common-message
Gaussian MIMO BC channel. Specifically, the proposed
Thy 2 Thy 2000 2 Thic scheme is based upon SIC and gcsmhlar AWGN codes,
wherery, £ "¢/[det (T1,,x) / det (To;r, )] Denote byr the in c_o.njur_1ction with the following special case of the decom-
K-length vector composed ¢f;"* }** | ordered in decreasing POsition in Theorerill1:
order ofry (i.e., » is composed of the ratios between deter-
minants of corresponding blocks). Further denotebyhe
K-length vector composed of the products of sigkg £, of
the GSVs of(4;, A2) ordered non-increasingly, i.e., the first det (AIAI) > det (AQAQ) ) (28)
entry of u is the product of the largedt; GSVs, its second
entry is the product of the nekt GSVs, etc. Then the desiredThen there exists a joint triangularizatidd (2) where
block triangularization is possible if and only#f = p. Tiy; > Ty Yi=1,...,N;.

Rx 1 Rx 2

Fig. 3. Two-user MIMO BC channel. Even though both users naaelsimilar
channel quality, the actual channel matridés and H» differ.

Corollary 1: Let A; and A; be two matrices of proper
dimensions, with

IV. TRANSMISSION SCHEME FORMULTICASTING

In this section we combine the results of Sectiohs I [and I11
in order to derive an optimal practical communication scaem  Proof: An equivalent condition td (28) is that the product
for two-user multicasting. of the entries ofu = (A4, As) is at least one. Leti > 1 be
The Gaussian MIMO broadcast (BC) channel has or@e geometrical mean qf, and let the vector be the same
transmit and two receive nodes, where each received sigh@€e asu, with all the elements equal to. By construction,

is related to the transmitted signal through (4) (see Fif)re # = 7. thus by Theorerl1 there exists a joint triangularization
ie.: with this ratio. Consequently, there exists a decompasitio

y, = Hix + z;, i=1,2. (26) such that for all element$,; ; = uTb;; > T ;. [ |

. ) ] Remark 8 (Admissible diagonal ratiosThe proof sug-
This channel has received much attention over the pgglsts that the diagonal ratios vector be made uniform.
decade. Unlike the single-input single-output (SISO) ct% Thjs js always possible, but is not the only choice (unless
Gaussian MIMO BC channel is not degraded. Nevertheleiﬁ,Hwa) = I(Hs,Cg)).
capacity regions were established for some scenarios, suckqyr some channel#,H>, let Cy be a capacity-achieving
as private-messages only, and for a common message Wity &t covariance matrix , and assume without loss of geitgral
single private message, and bounds were derived for Oth‘?ﬁ%ItI(Hl, Cg) > I(H,, Cg). Define the augmented matrices
see [18]-{22] and references therein. G, and G, as in [9). By Corollany[11, there exists a joint

We focus our attention on the multicast (Commo”'messaQﬁgnguIarizationIIIZ) such that each diagonal elemerfofis

problem, the capacity of which is long known to equal thg; |east equal to the corresponding elemerifZsf. On account
(worst-case) capacity of the compound channel [23]-[28h w ¢ (T0)-(I3) we have that;
the compound parameter being the channel matrix index:

Ny Ny
C(Hy, Hp, P) = max min I(H;, Cz), — (27) C(Hy, Hy) = Z;log@m)? 2 Z;Rj-
J= J=

where the maximization is under the same conditions dg in
andI(H,Cy) was defined in[{6).

We wish to use a scalar-coding approach, as applied to
point-to-point set'_ung In SeCtI_II. Indeed, the pr'vmssage ~ “Indeed, the GSVD allows to use a single transformation far different
MIMO BC capacity can be achieved by scalar-coding (in thisiannels at one of the ends, but for each virtual parallehroblait yields a

case dirty-paper coding) techniqueS' see e@ [26]. i tpfferent gain for each user, thus not solving the inefficiementioned above.
’ ' fact, using GSVD may result ivorseperformance than using a QR-based

n
presence of a Cc_)mmon mes;age, hqwever’ t(? our knOWIedggeiver without any transformation at the transmittecsithe spread of the
no scalar capacity-approaching coding solutions are knowdiagonal ratio is maximal, see Reméik 5.

(Fl)lis rate can be approached using SIC at each receiver as in
{ﬁlg point-to-point case of Sectidn 1. Specificallyjs formed



from N, codebooks of rate§R;} and powerl /N, each. The tradeoff between the signal-to-distortion ratios (SDRsfjned

transmitted vector is given by the linear precodif§ (7) arab

the receiveri performs the linear transformatidn {14) and SIC SDR: 2 L(S) ’

(I9) (substituting/; andT; for U andT', respectively). Now Var (é;i — S)

Propositior ]l guarantees correct decoding of all codebforks

receiver 2. Since in receiver 1 each SINR can only be greatéfe achievable SDR regio(H1, H») is defined as the

it will be able to decode as well. closure of all pairs which can be achieved by some encoding-
Remark 9 (Number of codebookdj: desired, one may decoding scheme.

work with any number of codebooks aboyé, as stated in ~ This general problem of describing(H1, H2) has not

[13]. To see that, add “virtual transmit antennas” with eerr received much attention. Nevertheless, in the specialscase

sponding zero channel gains. The capacity remains unctandg¥ diagonal or Toeplitz channel matrices, it reduces to the

and the optimal channel input covariance matrix will nogetter known problem of transmission over a colored and/or

allocate power to these “antennas”. The number of codebodi@dwidth-mismatched Gaussian BC channel, for which dif-

is equal to the number of antennas, including the additiorfgrent schemes which outperform the separation approaeh ha

virtual ones. been presented, see e.g.1[3M]+{34]. However, even for these
Remark 10 (Private messagedj; in addition to the com- cases optimality claims are not abundant.[Inl [33], Kochman

mon message intended to both users, there are private nf¥l Zamir show asymptotic optimality for high SNR, where

sages (messages intended for individual users), supéguosithe channels have the same bandwidth as the source, and one

may be used. That is, part of the transmit power is dedicate8er enjoys a better channel than the other at all frequencie

to the private messages. Then, for the purpose of the colt{34], Taherzadeh and Khandani show that optimality in the

mon message, the transmission for the private message§!@pe sense (weaker than high-SNR asymptotic optimabty) i

considered as noise. This approach was ShOWEh [22] to @@SSIble for white channels where the bandwidth (BW) is an

capacity-achieving in the presence of a single private agess integer multiple of the source BW. A similar slope argument

and under some conditions on the rate and power - al@Bplies to the general MIMO case as well.

in the presence of two private messages (even when thesé simple outer bound on the achievable SDR region is given

conditions do not hold, superposition gives the best knowly the following.

performance). The scheme presented in this section may b

used for the common-message layer of these superpositio roppsng)r}fz:z(H_l,H?) < g(_Hl’HQ)’ where the bouna-
schemes as well. INg regionS(H;, Ho) is given by:

|J {(SDR:,SDR,) : log(SDR)) < I(H,;,Cz)},
C

i=1,2. (29)

V. HDA TRANSMISSION FORSOURCE MULTICASTING

In this section we turn from the purely digital setting to a . ,
joint source-channel coding (JSCC) problem, where we wideré the union is over all matriceSy > 0 such that
to multicast an analog source to two destinations, wherh ed&ace (Cz) < P, and wherel(H, Cz) was defined in[(6).
destination should enjoy reconstruction quality accaydio

the capacity afforded by its channel. The proof follows that of the classical source-channel eosw
The transmission of a source over a BC channel is of85], taking into account that both users share the same
of the main applications of JSCC. In this setting, JSCC mapannel input.
be greatly superior to transmission based upon sourcerehan |n Section[V-A we find sufficient conditions for achieving
separation. In a classical example, a white Gaussian sougeints on the boundary of this region. Then, in SedfionlV-B we
needs to be transmitted over a two-user AWGN BC channglesent, for the case of up to two transmit antennas, a simple
with one channel use per source sample, under mean-squaigicient condition such that all of the regidt{H,, H,) can
error (MSE) distortion. Analog transmissidn [29] achie#es be achieved. Unlike previous work, this proves strict, non-
optimal performance for each user as if the other user did ngfymptotic optimality; it applies to some cases of color and

exist. In contrast, the separation-based scheme (corataten pandwidth mismatch, although not to the white BW-expansion
of successive-refinment and broadcast codes) yields aofifadecase.

where if we wish to be optimal for the user with worse signal- S o

to-noise ratio (SNR), then both users have the same distortiA- Optimality by HDA Transmission

while optimality for the user with better SNR means that We give a constructive achievability proof, which combines

the distortion for the other user is trivial (equals the seur a hybrid digital-analog (HDA) scheme by Mittal and Phamdo

variance). See, e.gl, [0, App. A]. [31] with the joint triangularization approach; the optimu
We focus on the transmission of an i.i.d. circularlyis achievable whenever the diagonal ratio can be shaped

symmetric Gaussian sourc€ to two destinations over aaccording to the needs of the HDA scheme. In order to

MIMO-BC channel [[Z6), with one channel use per souraenderstand the function of the HDA scheme, we need to

sample. We measure the quality of the reproducti$nssing consider the following related scenario. In a JSCC multings

the MSE distortion measure. Thus, we wish to maximize throblem as above, the BC channel is SISO, Ng.= N,. = 1



and the channel matrices reduce to scafarsHowever, in This does not change if we replace, in the transmission
addition, the transmitter node may send some digital datagcheme,z; by a different signal of the same variant¥N;.

the users (identical for both) over a digital channel of rateurthermore, regardless of the signal, if the codebooks
Ryigial Nats per use of the BC channel. of subchannelg,..., N, — 1 are correctly decoded then the

. . . receiveri can obtain the equivalent channel (recklll (16)):
Proposition 3:In the setting above, the optimal perfor-

mance is given by: Yiy = Ti1 + Zin
SDR; = (1 + h?P) - exp{ Rigital} - which must have by Propositidn 1, a signal-to-noise ratio of
SNRanalogi = (Ti;1,1)2 —1.

Proof: We use a vector quantizer which decomposes eagh this stage we have turned the MIMO BC channel into the
sample of the Gaussian sourSeas combination of a digital channel of ratBgigi and a SISO
S=35+0Q. (30) BC channel of signal-to-noise ratios SiRog:. On account

of Propositior B, one can achieve
The first term is the quantized source, while the second is

the quantization error. By quadratic-Gaussian rate-disto log SDR; = log(1 + SNRanalog) + Raigtal
theory (see e.gl [36]), in the limit of high quantizer dimiems Nt 5
a quantizer of rateRgigial May achieve: = Z log(T;5,5)
j=1
SDRugra 2 ) o Regra} —JI(H-C) i=1,2
igital — Var (Q) = €XP Lidigital s - = i,ba), = 1,4,
where the last equality is on behalf 6f {10)413). [ |

Now the quantizer output representifigs sent over the digital
channel, thusS can be reconstructed exactly. Givéh the
reconstruction error of becomes that of). That is,

Remark 11:In fact, full triagularization is not needed.
It would have been sufficient to achieve a block-triangular
structure, where the interference between the fivst— 1
Var(S) Var(Q) - SDRyq channels is arbitrary (conserving the determinant of tielbl
Var (Ql - Q) Var (Ql - Q) el in ;). However, as indicated at the end of Secfioh Il1, this does

N not allow to relax the conditio (31). Moreover, the triatagu
= SDRanalogi SDRuigital, form is advantageous from the point of view of complexity

where Q; is the reconstruction of) at receiveri using the (see Sectiof.Tl). ) . . .
SISO BC channel. Finally by [29], analog transmissioniof TheqrenDZ does not imply that(H;, Hs) is fully ach@v-
achieves SDRuiogi = 1 + h2P, yielding the desired SDRs. able, since the conditions on the GSVs should be verified sep-

No scheme can achieve better performance, by considesatigffite!y for éach optimal input covariance mattlg. However,
similar to those leading to PropositiGh 2. in the sequel we show that fav, < 2, the condition can be

We use this HDA approach to prove the following. verified directly on the channel matricég and H,. Similarly,
if the channel matrices are of (any) proper dimensions, then
Theorem 2:Denote byu the GSV vector of the augmentedat the limit of high SNR (as the choic€y = I becomes
matrices[(P) of the channels with some input covarianceimatoptimal), the GSVs of the augmented matrices approach those

SDR; =

Cg. If of (Hy, H>), thus the condition may be applied to the channel
N, N;—1 ; ; e ; i .
¢ : matrices directly, verifying achievability of the wholegien
H pysls H Hjs (31)  at once.
j=1 j=1 .
then any paiSDR;, SDR,) such thatog SDR; < I(H;,Cx) B. Two Transmit Antennas
is achievable. In this section we consider the case whéfe= 2. In that

case, the GSV vecton(Hq, Hy) has two elements. We say

. Proof: It follqws _by Theorgnl]l that t_here exists a,Jo'mthat the GSV vector isnixed if one of the elements is at least
unitary triangularization with diagonal ratios vector whiis one, and the other is at most one. The following is proven in
all one except for the last element. The diagonallpfcan Appendix(B

thus be made to satisfy
. Lemma 1l:Let H; and H, be two matrices of proper
Tiii=Toi 2t Vi=1,...,N,—1. _ _ - 2
A EA J K dimensions, withn, = 2 columns. Let
If we were to send digital data over the MIMO-BC channel

using this particular triangularization, then By (13) weaulkb G; = ( HVC )
send over thes&/; — 1 channels a rate of: I
Ny N, be the augmented matrices (as [ (9)) for some Hermitian
Reigital & ZRJ - ZlOgt.?' matrix C > 0. Then if u(Hy, Hs) is mixed, u(G1,G2) is

=2 =2 mixed as well.



We use this lemma and Theoréin 2 to prove the followini
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Corollary 2: Let H,, H, be channel matrices with, = 2.

.......
-~
-
-
-
~
~

If w(Hy, Hs) is mixed, then the bounding regia®(H,, H>) o
of Propositior[ P is achievable. asp :
Proof: For any point on the boundary &f(H,, Hs), let g 7
p be the GSV vector of the augmented matrices with tt £
corresponding’z:. By Lemmall,u is mixed as well. Now if B e
the product ofu is at most one, we can apply TheorEin 2. | o5t oo modiaton ot
it is greater than one, we switch the indices betwégnand of - - - Separation
H,, and then apply Theorem 2. [ | sl - MNaive” HDA

Unfortunately, this result cannot be generalized to theca ‘
N; > 2: although at any dimension it remains true that th SOR, [dB]
number of GSVs smaller or greater than one is not changfeg 4- Performance comparison faf = 1, 51 = 10,02 = f2 = 2,P = L.
by the augmentation, this property does not holdgmducts
of GSVs as required for applying Theoréin 2.

In order to demonstrate this result, consider the the sistpl
example, a diagonal two-input two-output chse:

5 L
10 12

M
20 22

or vice versa. This is an “anti-degradedness” conditionuser

gan have better SNR on both bands. This condition subsumes
all the cases mentioned above. It is not known whether it is
a necessary condition, but at least for the case where both

H; = ( a 0 ) i=1,2. (32) channels are whiteof = £3;), it was shown in[[3]7] that
0 B simultaneous optimality isot possible.
The bounding SDR regioS§(H;, H;) now becomes: Figure[4 shows a numerical evaluation of performance for
some gain values. It can be appreciated that the optimal
U {(SDRl, SDR,) : (33)  performance imposes almost no tradeoff between usersednde
0svy=l the only tradeoff comes from the need to choose the sagme

SDR, < (1 n |04i|2'7p) (1 1820 - 7)p)}_ Thus, in of high SNR, both users attain their optimal single-
) . ) . ] user performance. For comparison, we show the performance
In this expressiony is the portion of the transmit power seniyf 5 separation-based scheme, where a successive-refinemen

over the first band. _ _ source code is transmitted over a digital broadcast channel
We point out a few special cases where points on the surfaggje  as well as that of a “naive” HDA scheme. where

of this region are achievable by known strategies. transmission is digital over one band and analog over theroth
1) No BW expansion: analog transmission. If one of the

bands has zero capacity, e.gi,= 52 = 0, (33) reduces APPENDIX A

to: SDR < 1 + |oy|?P, which is achievable via analog  JoiNT DECOMPOSITION FORNON-SQUARE MATRICES
transmission[[29]. If for each user a different band is ) ) )
usable, e.g.a; = f» = 0, any transmission (digital or In this Appendix we complete the proof of the direct part

analog) which is orthogonal between users is optimal, ©f TheoremLL, by considering the general proper-dimension
2) Equal SDRs: digital transmission. A point on the bound3S€- _ _ N

ary which satisfies SDR= SDR, may be achieved by We start by decomposing; using the QR decomposition:

guantizing the source and then using a digital common- A; = QiR i=1.9

message code for the BC channel. ’ Y
3) One equal band: HDA transmission. If for one of thQ‘/here Qz is unitary andR; is upper-triangu|ar with non-

bands the gains are equal, e/g| = |32| = 8, we can negative diagonal entries. Moreover, the GSV vectors of

use that band for digital transmissiqr_w with rdf&git_m = (A, As) and (R, Ry) are equal, sincel; and R; are equal
log(1+p%P) and then apply Propositi¢d 3 to achieve thep to a unitary transformation on the left, i.gu(A;, As) =
bound KEB) [J,(Rl,Rg).

Using network modulation, we can extend the HDA trans- Since A, is full-rank andm; > n, the diagonal elements
mission (case 3 above), by transforming a diagonal changgl z, are all (strictly) positive and the entries on its lower
where none of the gains is equal between users, to an eqlq'wl-i —n) rows are all zeros. Note that the square péRg
alent triangular channel where for one of the bands the gaifd|R,] are non-singular, withu([R1], [R2]) = (R, Ra) =
is equal. This can be done under the condition (31), whigl( A, A,). ThuSu(R1,R2) = 7(Ay, Ay). Invoking the proof
specializes to (allowing to swap roles between matrices): for the square case in Sectinl Ill, we may decompld®g

1|2 > |ao|? and|Bi]? < | (34) and[R;] simultaneously as:
5Being diagonal, this channel may be obtained from a singeti single- [Rl] = ﬁITIVT

output Gaussian inter-symbol interference channel whiek b two-step Rl — U T VT
frequency response, by applying the discrete Fourier foams [ 2] — Y2+i2 )



wherer (T}, T,) = r(A;, Ay). Now, construct the augmented [9]

unitary matricesy;:
[10]

2 (U 0
ve (G0,
and the generalized triangular matric€s of dimensions (11
m; X n:
- [12]
o T
ne (%)

[13]

Thus, we arrive at the desired decompositioMefand A,

@), with U; e sz; [14]

APPENDIXB
PROOF OFLEMMA [1]

Let F; = H;+/C fori = 1,2. We first claim thatu(F}, F3)
must be mixed. This is true, since @ is non-singular then
w(F1, Fy) = p(Hy, Ho), and if C is singular then at least one
of the elements ofu(F1, F») equals one. It is left to show
that if u(Fy, F») is mixed, then so ig.(G1, G2). To that end,
define the quadratic functions:

[15]

[16]

p@géda(ﬂﬁa—xﬂﬁg,

a(2) £ det (G1G1 — 261Gy ) | 20
By Definition[8, the roots ofi(x) andq(z) equal the square of
the elements ofs(F1, F2) and u(G1, G2), respectively. Thus [21]
it suffices to prove that if the roots pfx) are not on the same
side ofz = 1, then so are the roots af(x). By the positive 55
semi-definitiveness af; andG;, both functions are convey

with p(0), ¢(0), p(c0), ¢(c0) > 0. By the assumption on the

roots of p(z), it must be thaip(1) < 0. But since 23]

GG, — GiGy = FI P, — FiF,

we have that(1) = p(1), and thusy(1) < 0. Finally, a convex 24
(J continuous function which is non-negativeaat= 0 and for [25]
x — oo and non-positive at: = 1 cannot have both roots at[26l
the same side of.

[27]
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