Geometry of $C R$ submanifolds of maximal $C R$ dimension in complex space forms

Mirjana Milijević
Faculty of Architecture and Civil Engineering
University of Banja Luka
Stepe Stepanovića 77, 78000 Banja Luka
Bosnia and Herzegovina
E-mail: mirjana_milijevic@yahoo.com

Summary

Abstract

On real hypersurfaces in complex space forms many results are proven. In this paper we generalize some results concerning extrinsic geometry of real hypersurfaces, to $C R$ submanifolds of maximal $C R$ dimension in complex space forms.

Key words and phrases. Complex space form, $C R$ submanifold of maximal $C R$ dimension, shape operator, second fundamental form.
AMS Subject Classification. 53C15, 53C40, 53B20.

1 Introduction

Let $\overline{\mathbf{M}}$ be an $(n+p)$-dimensional complex space form, i.e. a Kaehler manifold of constant holomorphic sectional curvature $4 c$, endowed with metric \bar{g}. Let \mathbf{M} be an n-dimensional real submanifold of $\overline{\mathbf{M}}$ and J be the complex structure of $\overline{\mathbf{M}}$. For a tangent space $T_{x}(\mathbf{M})$ of \mathbf{M} at x, we put $H_{x}(\mathbf{M})=J T_{x}(\mathbf{M}) \cap T_{x}(\mathbf{M})$. Then, $H_{x}(\mathbf{M})$ is the maximal complex subspace of $T_{x}(\mathbf{M})$ and is called the holomorphic tangent space to \mathbf{M} at x. If the complex dimension $\operatorname{dim}_{\mathbf{C}} H_{x}(\mathbf{M})$ is constant over \mathbf{M}, \mathbf{M} is called a Cauchy-Riemann submanifold or briefly a $C R$ submanifold and the constant $\operatorname{dim}_{\mathbf{C}} H_{x}(\mathbf{M})$ is called the $C R$ dimension of \mathbf{M}. If, for any $x \in \mathbf{M}, H_{x}(\mathbf{M})$ satisfies $\operatorname{dim}_{\mathbf{C}} H_{x}(\mathbf{M})=\frac{n-1}{2}$, then \mathbf{M} is called a $C R$ submanifold of maximal $C R$ dimension. It follows that there exists a unit vector field ξ normal to \mathbf{M} such that $J T_{x}(\mathbf{M}) \subset T_{x}(\mathbf{M}) \oplus \operatorname{span}\left\{\xi_{x}\right\}$, for any $x \in \mathbf{M}$.

A real hypersurface is a typical example of a $C R$ submanifold of maximal $C R$ dimension. The study of real hypersurfaces in complex space forms is a classical topic in differential geometry and the generalization of some results which are valid for real hypersurfaces to $C R$ submanifolds of maximal $C R$ dimension may be expected.

For instance, nonexistence of real hypersurfaces with the parallel shape operator ([1], [2]) and real hypersurfaces with the second fundamental form satisfying $h(J X, Y)-J h(X, Y)=0([3])$, in nonflat complex space forms, is proven.

In this paper we study the conditions that the shape operator of the distinguished vector field ξ is parallel and that the second fundamental form satisfies $h(J X, Y)-J h(X, Y)=0$, on $C R$ submanifolds of maximal $C R$ dimension in complex space forms.

The author wishes to express her gratitude to Professor Mirjana Djorić for her useful advice.

$2 \quad C R$ submanifolds of maximal $C R$ dimension of a complex space form

Let $\overline{\mathbf{M}}$ be an $(n+p)$-dimensional complex space form with Kaehler structure (J, \bar{g}) and of constant holomorphic sectional curvature $4 c$. Let \mathbf{M} be an n dimensional $C R$ submanifold of maximal $C R$ dimension in $\overline{\mathbf{M}}$ and $\iota: \mathbf{M} \rightarrow$ $\overline{\mathbf{M}}$ immersion. Also, we denote by ι the differential of the immersion. The Riemannian metric g of \mathbf{M} is induced from the Riemannian metric \bar{g} of $\overline{\mathbf{M}}$ in such a way that $g(X, Y)=\bar{g}(\iota X, \iota Y)$, where $X, Y \in T(\mathbf{M})$. We denote by $T(\mathbf{M})$ and $T^{\perp}(\mathbf{M})$ the tangent bundle and the normal bundle of \mathbf{M}, respectively.

On $\overline{\mathbf{M}}$ we have the following decomposition into tangential and normal components:

$$
\begin{equation*}
J \iota X=\iota F X+u(X) \xi, \quad X \in T(\mathbf{M}) \tag{1}
\end{equation*}
$$

Here F is a skew-symmetric endomorphism acting on $T(\mathbf{M})$ and u in one-form on \mathbf{M}.

Since $T_{1}^{\perp}(\mathbf{M})=\left\{\eta \in T^{\perp}(\mathbf{M}) \mid \bar{g}(\eta, \xi)=0\right\}$ is J-invariant, from now on we will denote the orthonormal basis of $T^{\perp}(\mathbf{M})$ by $\xi, \xi_{1}, \cdots, \xi_{q}, \xi_{1^{*}}, \cdots, \xi_{q^{*}}$, where $\xi_{a^{*}}=J \xi_{a}$ and $q=\frac{p-1}{2}$. Also, $J \xi$ is the vector field tangent to \mathbf{M} and we write

$$
\begin{equation*}
J \xi=-\iota U \tag{2}
\end{equation*}
$$

Furthermore, using (1), (2) and the Hermitian property of J implies

$$
\begin{gather*}
F^{2} X=-X+u(X) U \tag{3}\\
F U=0 \tag{4}\\
g(X, U)=u(X) \tag{5}
\end{gather*}
$$

Next, we denote by $\bar{\nabla}$ and ∇ the Riemannian connection of $\overline{\mathbf{M}}$ and \mathbf{M}, respectively, and by D the normal connection induced from $\bar{\nabla}$ in the normal bundle of \mathbf{M}. They are related by the following Gauss equation

$$
\begin{equation*}
\bar{\nabla}_{\iota X} \iota Y=\iota \nabla_{X} Y+h(X, Y) \tag{6}
\end{equation*}
$$

where h denotes the second fundamental form, and by Weingarten equations

$$
\begin{align*}
\bar{\nabla}_{\iota X} \xi & =-\iota A X+D_{X} \xi \tag{7}\\
& =-\iota A X+\sum_{a=1}^{q}\left\{s_{a}(X) \xi_{a}+s_{a^{*}}(X) \xi_{a^{*}}\right\}, \\
\bar{\nabla}_{\iota X} \xi_{a} & =-\iota A_{a} X+D_{X} \xi_{a}=-\iota A_{a} X-s_{a}(X) \xi \tag{8}\\
& +\sum_{b=1}^{q}\left\{s_{a b}(X) \xi_{b}+s_{a b^{*}}(X) \xi_{b^{*}}\right\}, \\
\bar{\nabla}_{\iota X} \xi_{a^{*}} & =-\iota A_{a^{*}} X+D_{X} \xi_{a^{*}}=-\iota A_{a^{*}} X-s_{a^{*}}(X) \xi \tag{9}\\
& +\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) \xi_{b}+s_{a^{*} b^{*}}(X) \xi_{b^{*}}\right\},
\end{align*}
$$

where the s 's are the coefficients of the normal connection D and $A, A_{a}, A_{a^{*}} ; a=$ $1, \cdots, q$, are the shape operators corresponding to the normals $\xi, \xi_{a}, \xi_{a^{*}}$, respectively. They are related to the second fundamental form by

$$
\begin{align*}
h(X, Y) & =g(A X, Y) \xi \tag{10}\\
& +\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) \xi_{a}+g\left(A_{a^{*}} X, Y\right) \xi_{a^{*}}\right\} .
\end{align*}
$$

Since the ambient manifold is a Kaehler manifold, using (17), (2), (8) and (9), it follows that

$$
\begin{gather*}
A_{a^{*}} X=F A_{a} X-s_{a}(X) U \tag{11}\\
A_{a} X=-F A_{a^{*}} X+s_{a^{*}}(X) U \tag{12}\\
s_{a^{*}}(X)=u\left(A_{a} X\right) \tag{13}\\
s_{a}(X)=-u\left(A_{a^{*}} X\right) \tag{14}
\end{gather*}
$$

for all X, Y tangent to \mathbf{M} and $a=1, \cdots, q$.
Moreover, since F is skew-symmetric and A_{a} and $A_{a^{*}} ; a=1, \cdots, q$, are symmetric, (11) and (12) imply

$$
\begin{align*}
g\left(\left(A_{a} F+F A_{a}\right) X, Y\right) & =u(Y) s_{a}(X)-u(X) s_{a}(Y) \tag{15}\\
g\left(\left(A_{a^{*}} F+F A_{a^{*}}\right) X, Y\right) & =u(Y) s_{a^{*}}(X)-u(X) s_{a^{*}}(Y) \tag{16}
\end{align*}
$$

for all $a=1, \cdots, q$.
Finally, the Codazzi equation for the distinguished vector field ξ becomes

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{u(X) F Y-u(Y) F X-2 g(F X, Y) U\} \tag{17}\\
& +\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} Y-s_{a}(Y) A_{a} X\right\}+\sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} Y-s_{a^{*}}(Y) A_{a^{*}} X\right\}
\end{align*}
$$

for all X, Y tangent to \mathbf{M}.

3 Shape operator A is parallel

Here, we will give one well known result about hypersurfaces with the parallel shape operator.

Theorem 1. [1], [2] Let \boldsymbol{M} be an n-dimensional, where $n \geq 3$, hypersurface in a complex space form of constant holomorphic sectional curvature $4 c \neq 0$. Then the shape operator A of \boldsymbol{M} cannot be parallel.

We will study the same condition on $C R$ submanifolds of maximal $C R$ dimension in complex space forms. Therefore, we have the next two theorems.

Theorem 2. Let \boldsymbol{M} be an n-dimensional $C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$, where $n \geq$ 3 and the constant holomorphic sectional curvature of $\overline{\boldsymbol{M}}$ equals $4 c$. Let the distinguished vector field ξ be parallel with respect to the normal connection D and A be the shape operator of ξ. If $\nabla A=0$ on \boldsymbol{M}, then $\overline{\boldsymbol{M}}$ is an Euclidean space.

Proof. Putting $Y=U$ in the Codazzi equation (17), we get

$$
\begin{aligned}
& \left(\nabla_{X} A\right) U-\left(\nabla_{U} A\right) X=-c F X+\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} U-s_{a}(U) A_{a} X\right\}+ \\
& \sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} U-s_{a^{*}}(U) A_{a^{*}} X\right\}
\end{aligned}
$$

From the assumption of the Theorem 2 and the last equation we get

$$
\begin{equation*}
c F X=0 \tag{18}
\end{equation*}
$$

From the equation (18) we conclude that $c=0$.
Theorem 3. Let M be an n-dimensional $C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form (\bar{M}, J, \bar{g}), where $n \geq 3$ and the constant holomorphic sectional curvature of $\overline{\boldsymbol{M}}$ equals $4 c$. Let $p<n$ and A be the shape operator of the distinguished vector field ξ. If $\nabla A=0$ on \boldsymbol{M}, then $\overline{\boldsymbol{M}}$ is an Euclidean space.

Proof. After putting $Y=U$ in (17) and using the assumption of the Theorem 3, we get

$$
\begin{align*}
& -c F X+\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} U-s_{a}(U) A_{a} X\right\}+ \\
& \sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} U-s_{a^{*}}(U) A_{a^{*}} X\right\}=0 . \tag{19}
\end{align*}
$$

Multiplying the equation (19) with an arbitrary vector field $Y \in T(\mathbf{M})$, we get

$$
\begin{align*}
& -c g(F X, Y)+\sum_{a=1}^{q}\left\{s_{a}(X) g\left(A_{a} U, Y\right)-s_{a}(U) g\left(A_{a} X, Y\right)\right\}+ \tag{20}\\
& \sum_{a=1}^{q}\left\{s_{a^{*}}(X) g\left(A_{a^{*}} U, Y\right)-s_{a^{*}}(U) g\left(A_{a^{*}} X, Y\right)\right\}=0 .
\end{align*}
$$

Interchanging X and Y in (20) and subtracting (20) and the resulting equation, we get

$$
\begin{aligned}
& -2 c g(F X, Y)+\sum_{a=1}^{q}\left\{s_{a}(X) g\left(A_{a} U, Y\right)+s_{a^{*}}(X) g\left(A_{a^{*}} U, Y\right)\right\}- \\
& \sum_{a=1}^{q}\left\{s_{a}(Y) g\left(A_{a} U, X\right)+s_{a^{*}}(Y) g\left(A_{a^{*}} U, X\right)\right\}=0 .
\end{aligned}
$$

Now, using (5), (13) and (14), from the last equation it follows that

$$
\begin{equation*}
c F X=\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} U+s_{a^{*}}(X) A_{a^{*}} U\right\} . \tag{21}
\end{equation*}
$$

From (21) it follows that $F X$ is a linear combination of $A_{a} U$ and $A_{a^{*}} U$; $a=1, \cdots, q$.
Since every tangent vector Y orthogonal to U can be expressed as $Y=F X$, for $n-1>2 q=p-1$, i.e. $n>p$, it follows that there exists a unit vector field $Y=F X$ which is orthogonal to $\operatorname{span}\left\{A_{a} U, A_{a^{*}} U\right\} ; a=1, \cdots, q$. For such $Y=F X$ it follows $s_{a}(Y)=0=s_{a^{*}}(Y) ; a=1, \cdots, q$, using (13) and (14).
Consequently, using (21), we obtain

$$
c F^{2} X=\sum_{a=1}^{q}\left\{s_{a}(F X) A_{a} U+s_{a^{*}}(F X) A_{a^{*}} U\right\} .
$$

Finally, using (3), we conclude $c=0$.

$4 C R$ submanifolds of maximal $C R$ dimension satisfying $h(J X, Y)=J h(X, Y)$

On real hypersurfaces the next theorem is proven.

Theorem 4. [3] Let \boldsymbol{M} be an n-dimensional, $n \geq 3$, real hypersurface in a complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$. If the second fundamental form satisfies condition $h(J X, Y)=J h(X, Y) ; X, Y \in T(\boldsymbol{M})$, then $\overline{\boldsymbol{M}}$ is an Euclidean space.

In the next theorem we will see if the same result is true on $C R$ submanifolds of maximal $C R$ dimension.

Theorem 5. Let M be an n-dimensional, $n \geq 3, C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$ and the constant holomorphic sectional curvature of $\overline{\boldsymbol{M}}$ equals $4 c$. If the second fundamental form satisfies condition $h(J X, Y)=J h(X, Y) ; X, Y \in T(\boldsymbol{M})$, then $\overline{\boldsymbol{M}}$ is an Euclidean space.

Proof. Using (10), we have the next two equations

$$
\begin{equation*}
h(J X, Y)=g(A J X, Y) \xi+\sum_{a=1}^{q}\left\{g\left(A_{a} J X, Y\right) \xi_{a}+g\left(A_{a^{*}} J X, Y\right) \xi_{a^{*}}\right\} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
J h(X, Y)=-g(A X, Y) \iota U+\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) \xi_{a^{*}}-g\left(A_{a^{*}} X, Y\right) \xi_{a}\right\} \tag{23}
\end{equation*}
$$

From (22), (23) and the assumption of the Theorem 5, we have

$$
\begin{align*}
& g(A X, Y) \iota U+g(J X, A Y) \xi+\sum_{a=1}^{q}\left\{g\left(J X, A_{a} Y\right)+g\left(A_{a^{*}} X, Y\right)\right\} \xi_{a}+ \tag{24}\\
& \sum_{a=1}^{q}\left\{g\left(J X, A_{a^{*}} Y\right)-g\left(A_{a} X, Y\right)\right\} \xi_{a^{*}}=0
\end{align*}
$$

where we used the symmetry of the shape operators $A, A_{a}, A_{a^{*}} ; a=1, \cdots, q$. From (1) and (24), we have

$$
\begin{align*}
& g(A X, Y) \iota U+g(A F X, Y) \xi+\sum_{a=1}^{q}\left\{g\left(A_{a} F X, Y\right)+g\left(A_{a^{*}} X, Y\right)\right\} \xi_{a}+ \tag{25}\\
& \sum_{a=1}^{q}\left\{g\left(A_{a^{*}} F X, Y\right)-g\left(A_{a} X, Y\right)\right\} \xi_{a^{*}}=0
\end{align*}
$$

Because of the linear independence of the vectors

$$
\iota U, \xi, \xi_{a}, \xi_{a^{*}} ; a=1, \cdots, q
$$

from (25) we get the next equations

$$
\begin{equation*}
A=0 \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
A_{a} F=-A_{a^{*}} ; \quad a=1, \cdots, q \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{a^{*}} F=A_{a} ; \quad a=1, \cdots, q \tag{28}
\end{equation*}
$$

From the Codazzi equation (17) and (26), we conclude that

$$
\begin{align*}
& 0=c\{u(X) F Y-u(Y) F X-2 g(F X, Y) U\} \tag{29}\\
& +\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} Y-s_{a}(Y) A_{a} X\right\}+\sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} Y-s_{a^{*}}(Y) A_{a^{*}} X\right\}
\end{align*}
$$

Now, from the equations (11) and (27) we get

$$
\left(F A_{a}+A_{a} F\right) X=s_{a}(X) U ; a=1, \cdots, q
$$

By scalar multiplication of the last equation with an arbitrary $Y \in T(\mathbf{M})$, and using (15), we get

$$
\begin{equation*}
s_{a}(Y)=0 ; a=1, \cdots, q \tag{30}
\end{equation*}
$$

From (12) and (28) we get

$$
\left(A_{a^{*}} F+F A_{a^{*}}\right) X=s_{a^{*}}(X) U ; a=1, \cdots, q
$$

By scalar multiplication of the last equation with an arbitrary $Y \in T(\mathbf{M})$, and using (16), we get

$$
\begin{equation*}
s_{a^{*}}(Y)=0 ; a=1, \cdots, q \tag{31}
\end{equation*}
$$

From (29), (30) and (31), we get

$$
0=c\{g(X, U) F Y-g(Y, U) F X-2 g(F X, Y) U\}
$$

Multiplying the last equation with U, we get

$$
\begin{equation*}
0=-2 c g(F X, Y) \tag{32}
\end{equation*}
$$

From (32) we conclude that $c=0$.
Now, using (30) and (31), we get the next proposition.
Proposition 1. Let \boldsymbol{M} be an n-dimensional, $n \geq 3, C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$. If on \boldsymbol{M} the second fundamental form satisfies condition $h(J X, Y)=J h(X, Y) ; X, Y \in T(\boldsymbol{M})$, then the distinguished vector field ξ is parallel with respect to the normal connection D.

References

[1] M. Djorić and M. Okumura, CR submanifolds of complex projective space, Developments in Mathematics, vol. 19, Springer, Berlin, 2009.
[2] R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, MSRI Publications 32 (1997), 233-305.
[3] Y. Matsuyama, Real hypersurfaces in complex projective space satisfying a certain condition on the second fundamental form, Yokohama Math. J. 49 (2001), 79-87.

Geometry of $C R$ submanifolds of maximal $C R$ dimension in complex space forms

Mirjana Milijević
Faculty of Architecture and Civil Engineering
University of Banja Luka
Stepe Stepanovića 77, 78000 Banja Luka
Bosnia and Herzegovina
E-mail: mirjana_milijevic@yahoo.com

Summary

Abstract

On real hypersurfaces in complex space forms many results are proven. In this paper we generalize some results concerning extrinsic geometry of real hypersurfaces, to $C R$ submanifolds of maximal $C R$ dimension in complex space forms.

Key words and phrases. Complex space form, $C R$ submanifold of maximal $C R$ dimension, shape operator, second fundamental form.
AMS Subject Classification. 53C15, 53C40, 53B20.

1 Introduction

Let $\overline{\mathbf{M}}$ be an $(n+p)$-dimensional complex space form, i.e. a Kaehler manifold of constant holomorphic sectional curvature $4 c$, endowed with metric \bar{g}. Let \mathbf{M} be an n-dimensional real submanifold of $\overline{\mathbf{M}}$ and J be the complex structure of $\overline{\mathbf{M}}$. For a tangent space $T_{x}(\mathbf{M})$ of \mathbf{M} at x, we put $H_{x}(\mathbf{M})=J T_{x}(\mathbf{M}) \cap T_{x}(\mathbf{M})$. Then, $H_{x}(\mathbf{M})$ is the maximal complex subspace of $T_{x}(\mathbf{M})$ and is called the holomorphic tangent space to \mathbf{M} at x. If the complex dimension $\operatorname{dim}_{\mathbf{C}} H_{x}(\mathbf{M})$ is constant over \mathbf{M}, \mathbf{M} is called a Cauchy-Riemann submanifold or briefly a $C R$ submanifold and the constant $\operatorname{dim}_{\mathbf{C}} H_{x}(\mathbf{M})$ is called the $C R$ dimension of \mathbf{M}. If, for any $x \in \mathbf{M}, H_{x}(\mathbf{M})$ satisfies $\operatorname{dim}_{\mathbf{C}} H_{x}(\mathbf{M})=\frac{n-1}{2}$, then \mathbf{M} is called a $C R$ submanifold of maximal $C R$ dimension. It follows that there exists a unit vector field ξ normal to \mathbf{M} such that $J T_{x}(\mathbf{M}) \subset T_{x}(\mathbf{M}) \oplus \operatorname{span}\left\{\xi_{x}\right\}$, for any $x \in \mathbf{M}$.

A real hypersurface is a typical example of a $C R$ submanifold of maximal $C R$ dimension. The study of real hypersurfaces in complex space forms is a classical topic in differential geometry and the generalization of some results which are valid for real hypersurfaces to $C R$ submanifolds of maximal $C R$ dimension may be expected.

For instance, nonexistence of real hypersurfaces with the parallel shape operator ([1], [2]) and real hypersurfaces with the second fundamental form satisfying $h(J X, Y)-J h(X, Y)=0([3])$, in nonflat complex space forms, is proven.

In this paper we study the conditions that the shape operator of the distinguished vector field ξ is parallel and that the second fundamental form satisfies $h(J X, Y)-J h(X, Y)=0$, on $C R$ submanifolds of maximal $C R$ dimension in complex space forms.

The author wishes to express her gratitude to Professor Mirjana Djorić for her useful advice.

$2 C R$ submanifolds of maximal $C R$ dimension of a complex space form

Let $\overline{\mathbf{M}}$ be an $(n+p)$-dimensional complex space form with Kaehler structure (J, \bar{g}) and of constant holomorphic sectional curvature $4 c$. Let \mathbf{M} be an n dimensional $C R$ submanifold of maximal $C R$ dimension in $\overline{\mathbf{M}}$ and $\iota: \mathbf{M} \rightarrow$ $\overline{\mathbf{M}}$ immersion. Also, we denote by ι the differential of the immersion. The Riemannian metric g of \mathbf{M} is induced from the Riemannian metric \bar{g} of $\overline{\mathbf{M}}$ in such a way that $g(X, Y)=\bar{g}(\iota X, \iota Y)$, where $X, Y \in T(\mathbf{M})$. We denote by $T(\mathbf{M})$ and $T^{\perp}(\mathbf{M})$ the tangent bundle and the normal bundle of \mathbf{M}, respectively.

On $\overline{\mathbf{M}}$ we have the following decomposition into tangential and normal components:

$$
\begin{equation*}
J \iota X=\iota F X+u(X) \xi, \quad X \in T(\mathbf{M}) \tag{1}
\end{equation*}
$$

Here F is a skew-symmetric endomorphism acting on $T(\mathbf{M})$ and $u: T(M) \rightarrow$ $T^{\perp}(M)$.

Since $T_{1}^{\perp}(\mathbf{M})=\left\{\eta \in T^{\perp}(\mathbf{M}) \mid \bar{g}(\eta, \xi)=0\right\}$ is J-invariant, from now on we will denote the orthonormal basis of $T^{\perp}(\mathbf{M})$ by $\xi, \xi_{1}, \cdots, \xi_{q}, \xi_{1^{*}}, \cdots, \xi_{q^{*}}$, where $\xi_{a^{*}}=J \xi_{a}$ and $q=\frac{p-1}{2}$. Also, $J \xi$ is the vector field tangent to \mathbf{M} and we write

$$
\begin{equation*}
J \xi=-\iota U \tag{2}
\end{equation*}
$$

Furthermore, using (1), (2) and the Hermitian property of J implies

$$
\begin{gather*}
F^{2} X=-X+u(X) U \tag{3}\\
F U=0 \tag{4}\\
g(X, U)=u(X) \tag{5}
\end{gather*}
$$

Next, we denote by $\bar{\nabla}$ and ∇ the Riemannian connection of $\overline{\mathbf{M}}$ and \mathbf{M}, respectively, and by D the normal connection induced from $\bar{\nabla}$ in the normal bundle of \mathbf{M}. They are related by the following Gauss equation

$$
\begin{equation*}
\bar{\nabla}_{\iota X} \iota Y=\iota \nabla_{X} Y+h(X, Y) \tag{6}
\end{equation*}
$$

where h denotes the second fundamental form, and by Weingarten equations

$$
\begin{align*}
\bar{\nabla}_{\iota X} \xi & =-\iota A X+D_{X} \xi \tag{7}\\
& =-\iota A X+\sum_{a=1}^{q}\left\{s_{a}(X) \xi_{a}+s_{a^{*}}(X) \xi_{a^{*}}\right\}, \\
\bar{\nabla}_{\iota X} \xi_{a} & =-\iota A_{a} X+D_{X} \xi_{a}=-\iota A_{a} X-s_{a}(X) \xi \tag{8}\\
& +\sum_{b=1}^{q}\left\{s_{a b}(X) \xi_{b}+s_{a b^{*}}(X) \xi_{b^{*}}\right\}, \\
\bar{\nabla}_{\iota X} \xi_{a^{*}} & =-\iota A_{a^{*}} X+D_{X} \xi_{a^{*}}=-\iota A_{a^{*}} X-s_{a^{*}}(X) \xi \tag{9}\\
& +\sum_{b=1}^{q}\left\{s_{a^{*} b}(X) \xi_{b}+s_{a^{*} b^{*}}(X) \xi_{b^{*}}\right\},
\end{align*}
$$

where the s 's are the coefficients of the normal connection D and $A, A_{a}, A_{a^{*}} ; a=$ $1, \cdots, q$, are the shape operators corresponding to the normals $\xi, \xi_{a}, \xi_{a^{*}}$, respectively. They are related to the second fundamental form by

$$
\begin{align*}
h(X, Y) & =g(A X, Y) \xi \tag{10}\\
& +\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) \xi_{a}+g\left(A_{a^{*}} X, Y\right) \xi_{a^{*}}\right\} .
\end{align*}
$$

Since the ambient manifold is a Kaehler manifold, using (17), (2), (8) and (9), it follows that

$$
\begin{gather*}
A_{a^{*}} X=F A_{a} X-s_{a}(X) U \tag{11}\\
A_{a} X=-F A_{a^{*}} X+s_{a^{*}}(X) U \tag{12}\\
s_{a^{*}}(X)=u\left(A_{a} X\right) \tag{13}\\
s_{a}(X)=-u\left(A_{a^{*}} X\right) \tag{14}
\end{gather*}
$$

for all X, Y tangent to \mathbf{M} and $a=1, \cdots, q$.
Moreover, since F is skew-symmetric and A_{a} and $A_{a^{*}} ; a=1, \cdots, q$, are symmetric, (11) and (12) imply

$$
\begin{align*}
g\left(\left(A_{a} F+F A_{a}\right) X, Y\right) & =u(Y) s_{a}(X)-u(X) s_{a}(Y) \tag{15}\\
g\left(\left(A_{a^{*}} F+F A_{a^{*}}\right) X, Y\right) & =u(Y) s_{a^{*}}(X)-u(X) s_{a^{*}}(Y) \tag{16}
\end{align*}
$$

for all $a=1, \cdots, q$.
Finally, the Codazzi equation for the distinguished vector field ξ become

$$
\begin{align*}
& \left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c\{u(X) F Y-u(Y) F X-2 g(F X, Y) U\} \tag{17}\\
& +\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} Y-s_{a}(Y) A_{a} X\right\}+\sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} Y-s_{a^{*}}(Y) A_{a^{*}} X\right\}
\end{align*}
$$

for all X, Y tangent to \mathbf{M}.

3 Shape operator A is parallel

Here, we will give one well known result about hypersurfaces with the parallel shape operator.

Theorem 1. Let \boldsymbol{M} be an n-dimensional, where $n \geq 3$, hypersurface in a complex space form of constant holomorphic sectional curvature $4 c \neq 0$. Then the shape operator A of \boldsymbol{M} cannot be parallel.

We will study the same condition on $C R$ submanifolds of maximal $C R$ dimension in complex space forms. Therefore, we have the next two theorems.

Theorem 2. Let \boldsymbol{M} be an n-dimensional $C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$, where $n \geq$ 3 and the constant holomorphic sectional curvature of $\overline{\boldsymbol{M}}$ equals $4 c$. Let the distinguished vector field ξ be parallel with respect to the normal connection D and A be the shape operator of ξ. If $\nabla A=0$ on \boldsymbol{M}, then $\overline{\boldsymbol{M}}$ is an Euclidian space.

Proof. Putting $Y=U$ in Codazzi equation (17), we get

$$
\begin{aligned}
& \left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=-c F X+\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} U-s_{a}(U) A_{a} X\right\}+ \\
& \sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} U-s_{a^{*}}(U) A_{a^{*}} X\right\} .
\end{aligned}
$$

From the assumption of the Theorem 2 and the last equation we get

$$
\begin{equation*}
c F X=0 \tag{18}
\end{equation*}
$$

From the equation (18) we conclude that $c=0$.
Theorem 3. Let \boldsymbol{M} be an n-dimensional $C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form (\bar{M}, J, \bar{g}), where $n \geq 3$ and the constant holomorphic sectional curvature of $\overline{\boldsymbol{M}}$ equals $4 c$. Let $p<n$ and A be the shape operator of the distinguished vector field ξ. If $\nabla A=0$ on \boldsymbol{M}, then $\overline{\boldsymbol{M}}$ is an Euclidian space.

Proof. After putting $Y=U$ in (17) and using the assumption of the Theorem 3, we get

$$
\begin{align*}
& -c F X+\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} U-s_{a}(U) A_{a} X\right\}+ \\
& \sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} U-s_{a^{*}}(U) A_{a^{*}} X\right\}=0 \tag{19}
\end{align*}
$$

Multiplying the equation (19) with an arbitrary vector field $Y \in T(\mathbf{M})$, we get

$$
\begin{align*}
& -c g(F X, Y)+\sum_{a=1}^{q}\left\{s_{a}(X) g\left(A_{a} U, Y\right)-s_{a}(U) g\left(A_{a} X, Y\right)\right\}+ \tag{20}\\
& \sum_{a=1}^{q}\left\{s_{a^{*}}(X) g\left(A_{a^{*}} U, Y\right)-s_{a^{*}}(U) g\left(A_{a^{*}} X, Y\right)\right\}=0
\end{align*}
$$

Interchanging X and Y in (20) and subtracting (20) and the resulting equation, we get

$$
\begin{aligned}
& -2 c g(F X, Y)+\sum_{a=1}^{q}\left\{s_{a}(X) g\left(A_{a} U, Y\right)+s_{a^{*}}(X) g\left(A_{a^{*}} U, Y\right)\right\}- \\
& \sum_{a=1}^{q}\left\{s_{a}(Y) g\left(A_{a} U, X\right)+s_{a^{*}}(Y) g\left(A_{a^{*}} U, X\right)\right\}=0
\end{aligned}
$$

Now, using (5), (13) and (14), from the last equation it follows that

$$
\begin{equation*}
c F X=\sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} U+s_{a}(X) A_{a} U\right\} \tag{21}
\end{equation*}
$$

On the other hand, if we put

$$
\begin{equation*}
0=\sum_{a=1}^{q}\left\{c_{a^{*}} A_{a^{*}} U+c_{a} A_{a} U\right\} \tag{22}
\end{equation*}
$$

where $c_{a^{*}}$ and c_{a} are constants; $a=1, \cdots q$, by scalar multiplication of (22) with an arbitrary $X \in T(\mathbf{M})$, using $\bar{g}\left(\iota A_{a} X, \iota Y\right)=\bar{g}\left(h(X, Y), \xi_{a}\right)$, $\bar{g}\left(\iota A_{a^{*}} X, \iota Y\right)=\bar{g}\left(h(X, Y), \xi_{a^{*}}\right) ; a=1, \cdots, q$, and (6), it follows that

$$
0=\sum_{a=1}^{q}\left\{c_{a^{*}} \bar{g}\left(\bar{\nabla}_{\iota U} \iota X, \xi_{a^{*}}\right)+c_{a} \bar{g}\left(\bar{\nabla}_{\iota U} \iota X, \xi_{a}\right)\right\}
$$

i.e.

$$
0=\sum_{a=1}^{q}\left\{c_{a^{*}} \xi_{a^{*}}+c_{a} \xi_{a}\right\}
$$

From the last equation and the fact that $\xi_{a^{*}}, \xi_{a}, a=1, \cdots q$, are linearly independent, it follows that $c_{a^{*}}=c_{a}=0 ; a=1, \cdots q$. Then, we can conclude that $A_{a^{*}} U, A_{a} U ; a=1, \cdots q$, are linearly independent vector fields.
It is known that rankF $=n-1$ (see [1]), that's why from (21) it follows that there exist a vector field $Y \in T(\mathbf{M})$ such that $Y=F X$ and that Y is orthogonal to the vector fields $A_{a} U, A_{a^{*}} U ; a=1, \cdots, q$.
Multiplying (21) with $Y=F X$, we get

$$
\begin{equation*}
c g(F X, F X)=0 . \tag{23}
\end{equation*}
$$

From (23) we conclude that $c=0$.

$4 \quad C R$ submanifolds of maximal $C R$ dimension satisfying $h(J X, Y)=\operatorname{Jh}(X, Y)$

On real hypersurfaces the next theorem is proven.
Theorem 4. Let \boldsymbol{M} be an n-dimensional, $n \geq 3$, real hypersurface in a complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$. If the second fundamental form satisfies condition $h(J X, Y)=J h(X, Y) ; X, Y \in T(\boldsymbol{M})$, then $\overline{\boldsymbol{M}}$ is an Euclidian space.

In the next theorem we will see if the same result is true on $C R$ submanifolds of maximal $C R$ dimension.

Theorem 5. Let M be an n-dimensional, $n \geq 3, C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$ and the constant holomorphic sectional curvature of $\overline{\boldsymbol{M}}$ equals $4 c$. If the second fundamental form satisfies condition $h(J X, Y)=J h(X, Y) ; X, Y \in T(\boldsymbol{M})$, then $\overline{\boldsymbol{M}}$ is an Euclidian space.

Proof. Using (10), we have the next two equations

$$
\begin{equation*}
h(J X, Y)=g(A J X, Y) \xi+\sum_{a=1}^{q}\left\{g\left(A_{a} J X, Y\right) \xi_{a}+g\left(A_{a^{*}} J X, Y\right) \xi_{a^{*}}\right\} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
J h(X, Y)=-g(A X, Y) \iota U+\sum_{a=1}^{q}\left\{g\left(A_{a} X, Y\right) \xi_{a^{*}}-g\left(A_{a^{*}} X, Y\right) \xi_{a}\right\} \tag{25}
\end{equation*}
$$

From (24), (25) and the assumption of the Theorem 5, we have

$$
\begin{align*}
& g(A X, Y) \iota U+g(J X, A Y) \xi+\sum_{a=1}^{q}\left\{g\left(J X, A_{a} Y\right)+g\left(A_{a^{*}} X, Y\right)\right\} \xi_{a}+ \tag{26}\\
& \sum_{a=1}^{q}\left\{g\left(J X, A_{a^{*}} Y\right)-g\left(A_{a} X, Y\right)\right\} \xi_{a^{*}}=0
\end{align*}
$$

where we used the symmetry of the shape operators $A, A_{a}, A_{a^{*}} ; a=1, \cdots, q$. From (11) and (26), we have

$$
\begin{align*}
& g(A X, Y) \iota U+g(A F X, Y) \xi+\sum_{a=1}^{q}\left\{g\left(A_{a} F X, Y\right)+g\left(A_{a^{*}} X, Y\right)\right\} \xi_{a}+ \tag{27}\\
& \sum_{a=1}^{q}\left\{g\left(A_{a^{*}} F X, Y\right)-g\left(A_{a} X, Y\right)\right\} \xi_{a^{*}}=0
\end{align*}
$$

Because of the linear independence of the vectors

$$
\iota U, \xi, \xi_{a}, \xi_{a^{*}} ; a=1, \cdots, q
$$

from (27) we get the next equations

$$
\begin{equation*}
A=0 \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
A_{a} F=-A_{a^{*}} ; \quad a=1, \cdots, q \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{a^{*}} F=A_{a} ; a=1, \cdots, q \tag{30}
\end{equation*}
$$

From the Codazzi equation (17) and (28), we conclude that

$$
\begin{align*}
& 0=c\{u(X) F Y-u(Y) F X-2 g(F X, Y) U\} \tag{31}\\
& +\sum_{a=1}^{q}\left\{s_{a}(X) A_{a} Y-s_{a}(Y) A_{a} X\right\}+\sum_{a=1}^{q}\left\{s_{a^{*}}(X) A_{a^{*}} Y-s_{a^{*}}(Y) A_{a^{*}} X\right\}
\end{align*}
$$

Now, from the equations (11) and (29) we get

$$
\left(F A_{a}+A_{a} F\right) X=s_{a}(X) U ; a=1, \cdots, q
$$

By scalar multiplication of the last equation with an arbitrary $Y \in T(\mathbf{M})$, and using (15), we get

$$
\begin{equation*}
s_{a}(Y)=0 ; a=1, \cdots, q \tag{32}
\end{equation*}
$$

From (12) and (30) we get

$$
\left(A_{a^{*}} F+F A_{a^{*}}\right) X=s_{a^{*}}(X) U ; a=1, \cdots, q
$$

By scalar multiplication of the last equation with an arbitrary $Y \in T(\mathbf{M})$, and using (16), we get

$$
\begin{equation*}
s_{a^{*}}(Y)=0 ; a=1, \cdots, q \tag{33}
\end{equation*}
$$

From (31), (32) and (33), we get

$$
0=c\{g(X, U) F Y-g(Y, U) F X-2 g(F X, Y) U\}
$$

Multiplying the last equation with U, we get

$$
\begin{equation*}
0=-2 c g(F X, Y) \tag{34}
\end{equation*}
$$

From (34) we conclude that $c=0$.
Now, using (32) and (33), we get the next lemma.
Lemma 1. Let M be an n-dimensional, $n \geq 3, C R$ submanifold of maximal $C R$ dimension in an $(n+p)$-dimensional complex space form $(\overline{\boldsymbol{M}}, J, \bar{g})$. If on \boldsymbol{M} the second fundamental form satisfies condition $h(J X, Y)=J h(X, Y)$; $X, Y \in T(\boldsymbol{M})$, then the distinguished vector field ξ is parallel with respect to the normal connection D.

References

[1] M. Djorić and M. Okumura, CR submanifolds of complex projective space, Developments in Mathematics, vol. 19, Springer, Berlin, 2009.
[2] R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space forms, Tight and Taut Submanifolds, MSRI Publications 32 (1997), 233-305.
[3] Y. Matsuyama, Real hypersurfaces in complex projective space satisfying a certain condition on the second fundamental form, Yokohama Math. J. 49 (2001), 79-87.

