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Abstract

It is stated equicontinuity and normality of families FΦ of the so–called homeomorphisms with

finite distortion on conditions that Kf (z) has finite mean oscillation, singularities of logarithmic

type or integral constraints of the type
∫
Φ (Kf (z)) dx dy < ∞ in a domain D ⊂ C. It is

shown that the found conditions on the function Φ are not only sufficient but also necessary for

equicontinuity and normality of such families of mappings.

1 Introduction

In the theory of mappings called quasiconformal in the mean, conditions of the type
∫

D

Φ(Q(z)) dx dy < ∞ (1.1)

are standard for various characteristics Q of these mappings, see e.g. [1], [4], [8], [9],

[14]–[18], [21], [22], [23] and [31]. The study of classes with the integral conditions
(1.1) is also actual in the connection with the recent development of the theory of

degenerate Beltrami equations and the so–called mappings with finite distortion, see
e.g. related references in the monographs [11] and [20].

In the present paper we study the problems of equicontinuity and normality for

wide classes of the homeomorphisms with finite distortion on conditions that Kf(z)
has finite mean oscillation, singularities of logarithmic type or integral constraints of
the type (1.1) in a domain D ⊂ C.

The concept of the generalized derivative was introduced by Sobolev in [29]. Given
a domain D in the complex plane C the Sobolev class W 1,1(D) consists of all func-
tions f : D → C in L1(D) with first partial generalized derivatives which are integrable
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in D. A function f : D → C belongs to W 1,1
loc (D) if f ∈ W 1,1(D∗) for every open set

D∗ with compact closure D∗ ⊂ D.

Recall that a homeomorphism f between domains D and D′ in C is called of

finite distortion if f ∈ W 1,1
loc and

||f ′(z)||2 6 K(z) · Jf(z) (1.2)

with a.e. finite function K where ||f ′(z)|| denotes the matrix norm of the Jacobian
matrix f ′ of f at z ∈ D and Jf(z) = det f ′(z), see [11]. Later on, we use the notion

Kf(z) for the minimal function K(z) > 1 in (1.2). Note that ||f ′(z)|| = |fz| + |fz̄|
and Jf(z) = |fz|

2 − |fz̄|
2 at the points of total differentiability of f . Thus, Kf(z) =

||f ′(z)||2

|Jf (z)|
= |fz|+|fz̄|

|fz|−|fz̄|
if Jf(z) 6= 0, Kf(z) = 1 if f ′(z) = 0, i.e. |fz| = |fz̄| = 0, and

Kf(z) = ∞ at the rest points.

Recall that the (conformal) modulus of a family Γ of curves γ in C is the

quantity

M(Γ) = inf
ρ∈ admΓ

∫

C

ρ2(z) dx dy (1.3)

where a Borel function ρ : C → [0,∞] is admissible for Γ, write ρ ∈ admΓ, if
∫

γ

ρ ds ≥ 1 ∀ γ ∈ Γ , (1.4)

where s is a natural parameter of the length on γ.

One of the equivalent geometric definitions of K−quasiconformal mappings

f with K ∈ [1,∞) given in a domain D in C is reduced to the inequality

M(fΓ) ≤ KM(Γ) (1.5)

that holds for an arbitrary family Γ of curves γ in the domain D.

Similarly, given a domain D in C and a (Lebesgue) measurable function Q : D →

[1,∞], a homeomorphism f : D → C, C = C ∪ {∞}, is called Q(z) – homeomor-
phism if

M(fΓ) ≤

∫

D

Q(z) · ρ2(z) dx dy (1.6)

for every family Γ of curves γ in D and every ρ ∈ admΓ, see e.g. [20].

In the case Q(z) ≤ K a.e., we again come to the inequality (1.5). In the general
case, the latter inequality means that the conformal modulus of the family fΓ is

2



estimated by the modulus MQ of Γ with the weight Q, M(fΓ) ≤ MQ(Γ), see e.g.

[3]. The inequality of the type (1.6) was first stated by O. Lehto and K. Virtanen for
quasiconformal mappings in the plane, see Section V.6.3 in [19].

Throughout this paper, B(z0, r) = {z ∈ C : |z0 − z| < r}, S(z0, r) = {z ∈
C : |z0 − z| = r}, S(r) = S(0, r), D = B(0, 1), R(r1, r2, z0) = {z ∈ C : r1 <
|z− z0| < r2} and S2(x, r) = {y ∈ R3 : |x− y| = r}. Let E, F ⊂ C be arbitrary sets.

Denote by Γ(E, F,D) a family of all curves γ : [a, b] → C joining E and F in D, i.e.
γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D as t ∈ (a, b).

The following notion generalizes and localizes the above notion of a Q–homeomor-
phism. It is motivated by the ring definition of Gehring for quasiconformal mappings,

see e.g. [7], introduced first in the plane, see [27], and extended later on to the space
case in [25], see also Chapters 7 and 11 in [20].

Given a domain D in C a (Lebesgue) measurable function Q : D → [0,∞],

z0 ∈ D, a homeomorphism f : D → C is said to be a ring Q–homeomorphism at
the point z0 if

M (f (Γ (S1, S2, R(r1, r2, z0)))) ≤

∫

R(r1,r2,z0)

Q(z) · η2(|z − z0|) dx dy (1.7)

for every ring R(r1, r2, z0) and the circles Si = S(z0, ri), where 0 < r1 < r2 < r0 : =

dist (z0, ∂D), and every measurable function η : (r1, r2) → [0,∞] such that

r2∫

r1

η(r) dr ≥ 1 .

f is called a ring Q–homeomorphism in the domainD if f is a ring Q–homeomor-
phism at every point z0 ∈ D. Note that, in particular, homeomorphisms f : D → C in

the classW 1,2
loc with Kf(z) ∈ L1

loc(D) are ring Q–homeomorphisms with Q(z) = Kf(z),
see e.g. Theorem 4.1 in [20]. A regular homeomorphism of the Sobolev class W 1,1

loc in

the plane is a ring Q-homeomorphism with Q(z) is equal to the so-called tangential
dilatation, see Theorem 3.1. in [28], cf. Lemma 20.9.1 in [2].

The notion of ring Q–homeomorphism can be extended in the natural way to ∞.

More precisely, under ∞ ∈ D ⊆ C a homeomorphism f : D → C is called a ring

Q–homeomorphism at ∞ if the mapping f̃ = f
(

z
|z|2

)
is a ring Q ′–homeomorphism

at the origin with Q ′(z) = Q
(

z
|z|2

)
. In other words, a mapping f : C → C is a ring
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Q–homeomorphism at ∞ iff

M (f (Γ (S(R1), S(R2), R(R1, R2, 0)))) ≤

∫

R(R1,R2,0)

Q(w) · η2 (|w|) du dv

holds for every ring R(R1, R2, 0) in D with 0 < R1 < R2 < ∞, S(Ri) and for every

measurable function η : (R1, R2) → [0,∞] with
R2∫
R1

η(r) dr ≥ 1 .

A continuous mappings γ of an open subset ∆ of the real axis R or a circle into D

is called a dashed line, see e.g. 6.3 in [20]. The notion of the modulus of the family
Γ of dashed lines γ can be given by analogy, see (1.3). We say that a property P holds

for a.e. (almost every) γ ∈ Γ if a subfamily of all lines in Γ for which P fails has
the modulus zero, cf. [6]. Later on, we also say that a Lebesgue measurable function

̺ : C → [0,∞] is extensively admissible for Γ, write ̺ ∈ ext admΓ, if (1.3) holds
for a.e. γ ∈ Γ, see e.g. 9.2 in [20].

Given domains D and D′ in C = C ∪ {∞}, z0 ∈ D \ {∞}, and a measurable

function Q : D → (0,∞), we say that a homeomorphism f : D → D′ is a lower
Q-homeomorphism at the point z0 if

M(fΣε) > inf
̺∈ext admΣε

∫

D∩R(ε, ε0, z0)

̺2(z)

Q(z)
dx dy (1.8)

for every ring R(ε, ε0, z0), ε ∈ (0, ε0), ε0 ∈ (0, d0) , where d0 = sup
z∈D

|z − z0| , and Σε

denotes the family of all intersections of the circles S(z0, r), r ∈ (ε, ε0) , with D.

The notion can be extended to the case z0 = ∞ ∈ D in the standard way by
applying the inversion T with respect to the unit circle in C, T (z) = z/|z|2, T (∞) = 0,

T (0) = ∞. Namely, a homeomorphism f : D → D′ is a lower Q-homeomorphism
at ∞ ∈ D if F = f ◦ T is a lower Q∗-homeomorphism with Q∗ = Q ◦ T at 0. We

also say that a homeomorphism f : D → C is a lower Q-homeomorphism in ∂D if
f is a lower Q-homeomorphism at every point z0 ∈ ∂D. Further we show that every

homeomorphism of finite distortion in the plane is a lower Q-homeomorphism with
Q(z) = Kf(z) and, thus, the whole theory of the boundary behavior in [13], see also

Chapter 9 in [20] can be applied.

The following term was introduced in [10]. Let D be a domain in the complex
plane C. Recall that a function ϕ : D → R has finite mean oscillation at a point

z0 ∈ D if

lim
ε→0

−

∫

D(z0,ε)

|ϕ(z)− ϕε(z0)| dxdy < ∞, (1.9)
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where

ϕε(z0) = −

∫

D(z0,ε)

ϕ(z) dxdy < ∞ (1.10)

is the mean value of the function ϕ(z) over the disk D(z0, ε). We also say that a
function ϕ : D → R is of finite mean oscillation in D, abbr. ϕ ∈ FMO(D) or

simply ϕ ∈ FMO, if ϕ has a finite mean oscillation at every point z0 ∈ D.

2 Preliminaries

Recall that the spherical (chordal) metric h(z′, z′′) in C is equal to |π(z′)− π(z′′)|

where π is the stereographic projection of C on the sphere S2(12e3,
1
2) in R

3, i.e., in the
explicit form,

h(z′,∞) =
1√

1 + |z′|2
, h(z′, z′′) =

|z′ − z′′|√
1 + |z′|2

√
1 + |z′′|2

, z′ 6= ∞ 6= z′′ .

The spherical diameter of a set E in C is the quantity h(E) = sup
z′,z′′∈E

h(z′, z′′).

A family F of continuous mappings from C into C is said to be a normal if
every sequence of mappings fm in F has a subsequence fmk

converging to a continuous

mapping f : C → C uniformly on each compact set C ⊂ C. Normality is closely
related to the following notion. A family F of mappings f : C → C is said to be

equicontinuous at a point z0 ∈ C if for every ε > 0 there is δ > 0 such that
h (f(z), f(z0)) < ε for all f ∈ F and z ∈ C with |z − z0| < δ. The family F is called
equicontinuous if F is equicontinuous at every point z0 ∈ C. The following version

of the Arzela – Ascoli theorem will be useful later on, see e.g. Section 20.4 in [30].

Proposition 2.1. A family F of mappings f : C → C is normal if and only if

F is equicontinuous.

For every non-decreasing function Φ : [0,∞] → [0,∞], the inverse function
Φ−1 : [0,∞] → [0,∞] can be well defined by setting

Φ−1(τ) = inf
Φ(t)≥τ

t . (2.1)

As usual, here inf is equal to ∞ if the set of t ∈ [0,∞] such that Φ(t) ≥ τ is empty.

Note that the function Φ−1 is non-decreasing, too.

Remark 2.1. Immediately by the definition it is evident that

Φ−1(Φ(t)) ≤ t ∀ t ∈ [0,∞] (2.2)
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with the equality in (2.2) except intervals of constancy of the function Φ(t).

Since the mapping t 7→ tp for every positive p is a sense–preserving homeomor-
phism [0,∞] onto [0,∞] we may rewrite Theorem 2.1 from [26] in the following form
which is more convenient for further applications. Here, in (2.4) and (2.5), we complete

the definition of integrals by ∞ if Φp(t) = ∞, correspondingly, Hp(t) = ∞, for all
t ≥ T ∈ [0,∞). The integral in (2.5) is understood as the Lebesgue–Stieltjes integral

and the integrals in (2.4) and (2.6)–(2.9) as the ordinary Lebesgue integrals.

Proposition 2.2. Let Φ : [0,∞] → [0,∞] be a non-decreasing function. Set

Hp(t) = log Φp(t) , Φp(t) = Φ (tp) , p ∈ (0,∞) . (2.3)

Then the equality
∞∫

δ

H ′
p(t)

dt

t
= ∞ (2.4)

implies the equality
∞∫

δ

dHp(t)

t
= ∞ (2.5)

and (2.5) is equivalent to
∞∫

δ

Hp(t)
dt

t2
= ∞ (2.6)

for some δ > 0, and (2.6) is equivalent to every of the equalities:

∆∫

0

Hp

(
1

t

)
dt = ∞ (2.7)

for some ∆ > 0,
∞∫

δ∗

dη

H−1
p (η)

= ∞ (2.8)

for some δ∗ > H(+0),
∞∫

δ∗

dτ

τΦ−1
p (τ)

= ∞ (2.9)

for some δ∗ > Φ(+0).
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Moreover, (2.4) is equivalent to (2.5) and hence (2.4)–(2.9) are equivalent each

to other if Φ is in addition absolutely continuous. In particular, all the conditions
(2.4)–(2.9) are equivalent if Φ is convex and non–decreasing.

It is easy to see that conditions (2.4)–(2.9) become weaker as p increases, see e.g.

(2.6). It is necessary to give one more explanation. From the right hand sides in the
conditions (2.4)–(2.9) we have in mind +∞. If Φp(t) = 0 for t ∈ [0, t∗], then Hp(t) =

−∞ for t ∈ [0, t∗] and we complete the definition H ′
p(t) = 0 for t ∈ [0, t∗]. Note, the

conditions (2.5) and (2.6) exclude that t∗ belongs to the interval of integrability because

in the contrary case the left hand sides in (2.5) and (2.6) are either equal to −∞ or
indeterminate. Hence we may assume in (2.4)–(2.7) that δ > t0, correspondingly,
∆ < 1/t0 where t0 : = sup

Φp(t)=0

t, t0 = 0 if Φp(0) > 0.

3 The main results

Proposition 3.1. Let f : D → C be a homeomorphism with finite distortion. Then

f is a lower Q-homeomorphism at each point z0 ∈ D with Q(z) = Kf(z), see Theorem
3.1. in [12].

Proposition 3.2. Let D and D′ be domains in C, let z0 ∈ D \ {∞}, and let

Q : D → (0,∞) be a measurable function. A homeomorphism f : D → D′ is a lower
Q-homeomorphism at z0 if and only if

M(fΣε) ≥

ε0∫

ε

dr

||Q|| 1(r)
∀ ε ∈ (0, ε0) , ε0 ∈ (0, d0), (3.1)

where

d0 = sup
z∈D

|z − z0|, (3.2)

Σε denotes the family of all the intersections of the circles S(z0, r), r ∈ (ε, ε0), with
D, and

||Q|| 1(r) =

∫

D(z0,r)

Q(z) ds (3.3)

is the L1-norm of Q over D(z0, r) = {z ∈ D : | z − z0| = r} = D ∩ S(z0, r). The

infimum of the expression from the right-hand side in (1.8) is attained only for the
function

̺0(z) =
Q(z)

||Q||1(| z|)
,
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see Theorem 2.1 in [13].

Proposition 3.3. Let D be a domain in C and Q : D → [0,∞] a measurable
function. A homeomorphism f : D → C is a ring Q-homeomorphism at a point z0 if

and only if, for every 0 < r1 < r2 < d0 = dist (z0, ∂D),

M(∆(fS1, fS2, fD)) ≤
2π

I
, (3.4)

where ω is the area of the unit circle in C, qz0(r) is the mean value of Q(z) over the
circle |z − z0| = r, Sj = S(z0, rj), j = 1, 2, and

I = I(r1, r2) =

r2∫

r1

dr

rqz0(r)

Moreover, the infimum from the right-hand side in (1.7) holds for the function

η0(r) =
1

Irqz0(r)
, (3.5)

see Theorem 3.15 in [25].

The above results now yield the following.

Lemma 3.1. Let D and D′ be domains in C, let z0 ∈ D \ {∞}, and let

Q : D → (0,∞) be a measurable function. A homeomorphism f : D → D′ is a
lower Q-homeomorphism at z0. Then f is a ring Q–homeomorphism at z0.

Proof of Lemma 3.1. Denote by Σε the family of all circles S(z0, r), r ∈ (ε, ε0),

ε0 ∈ (0, d0) . By Theorem 3.13 in [32], we have

M (∆ (fSε, fSε0, f(D))) ≤
1

M (fΣε)
≤

2π
ε0∫
ε

dr
rqz0(r)

(3.6)

because fΣε ⊂ Σ (fSε, fSε0), where Σ (fSε, fSε0) consists of all closed curves in f(D)
that separate fSε and fSε0.

Proposition 3.1 and Lemma 3.1 imply the following result.

Theorem 3.1. Let f : D → C be a homeomorphism with finite distortion. Then
f is a ring Q-homeomorphism at each point z0 ∈ D with Q(z) = Kf(z).
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4 Estimates of Distortion

The results of the following section can be obtained on the base of theorem 3.1 and
the correspondent theorems of work [25].

Lemma 4.1. Let D be a domain in C, let D′ be a domain in C with h(C\D′) ≥
∆ > 0, and let f : D → D′ be a homeomorphism with finite distortion at a point

z0 ∈ D. If, for 0 < ε0 < dist(z0, ∂D),
∫

ε<|z−z0| < ε0

Kf(z) · ψ
2
ε(|z − z0|) dx dy ≤ c · Ip(ε) , ε ∈ (0, ε0), (4.7)

where p ≤ 2 and ψε(t) is nonnegative function on (0,∞) such that

0 < I(ε) =

ε0∫

ε

ψε(t) dt <∞, ε ∈ (0, ε0), (4.8)

then

h(f(z), f(z0)) ≤
32

∆
exp

{
−

(
2π

c

)
I2−p(|z − z0|)

}
(4.9)

for all z ∈ B(z0, ε0).

Corollary 4.1. Under the conditions of Lemma 4.1 and for p = 1,

h(f(z), f(z0)) ≤
32

∆
exp

{
−

(
2π

c

)
I(|z − z0|)

}
. (4.10)

Theorem 4.1. Let D be a domain in C, letD′ be a domain in C with h(C\D′) ≥
∆ > 0, and let f : D → D′ be a homeomorphism with finite distortion at a point
z0 ∈ D. Then

h(f(z), f(z0)) ≤
32

∆
exp




−

ε(z0)∫

|z−z0|

dr

rqz0(r)





(4.11)

for z ∈ B(z0, ε(z0)), where ε(z0) < dist(z0, ∂D) and qz0(r) is the mean integral value

of Kf(z) over the circle |z − z0| = r.

Corollary 4.2. If

qz0(r) ≤ log
1

r
(4.12)

for r < ε(z0) < dist(z0, ∂D), then

h(f(z), f(z0)) ≤
32

∆

log 1
ε0

log 1
|z−z0|

(4.13)
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for all z ∈ B(z0, ε(z0)).

Corollary 4.3. If

Kf(z) ≤ log
1

|z − z0|
, z ∈ B(z0, ε(z0)), (4.14)

then (4.13) holds in the ball B(z0, ε(z0)).

Remark 4.1. If, instead of (4.12) and (4.14), we have the conditions

qz0(r) ≤ c · log
1

r
(4.15)

and, correspondingly,

Kf(z) ≤ c · log
1

|z − z0|
, (4.16)

then

h(f(z), f(z0)) ≤
32

∆

[
log 1

ε0

log 1
|z−z0|

]1/c

. (4.17)

Choosing in Lemma 4.1 ψ(t) = 1/t and p = 1, we also have the following conclu-
sion.

Corollary 4.4. Let f : D → D be a homeomorphism with finite distortion such

that f(0) = 0 and
∫

ε<|z|<1

Kf(z)
dx dy

|z|2
≤ c log

1

ε
, ε ∈ (0, 1). (4.18)

Then

|f(z)| ≤ 64 · |z|
2π
c . (4.19)

Theorem 4.2. Let D be a domain in C, letD′ be a domain in C with h(C\D′) ≥
∆ > 0, and let f : D → D′ be a homeomorphism with finite distortion at a point

z0 ∈ D. If Kf(z) has finite mean oscillation at the point z0 ∈ D, then

h(f(z), f(z0)) ≤
32

∆

{
log 1

ε0

log 1
|z−z0|

}β0

(4.20)

for some ε0 < dist(z0, ∂D) and every z ∈ B(z0, ε0), where β0 > 0 depends only on the
function Kf .
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5 On Normal Families of homeomorphisms with finite distor-

tion

The results stated bellow can be proved by theorem 3.1 and the correspondent criteria
of normality from the paper [25].

Given a domain D in C, let FKf ,∆(D) be the class of all homeomorphisms f with

finite distortion Kf in D with h(C \ f(D)) ≥ ∆ > 0.

Theorem 5.1. If Kf ∈ FMO, then FKf ,∆(D) is a normal family.

Corollary 5.1. The class FKf ,∆(D) is normal if

lim
ε→0

−

∫

B(z0,ε)

Kf(z) dx dy < ∞ ∀ z0 ∈ D. (5.21)

Corollary 5.2. The class FKf ,∆(D) is normal if every z0 ∈ D is a Lebesgue point
of Kf(z).

Theorem 5.2. Let ∆ > 0 and let Q : D → [0,∞] be a measurable function such

that
ε(z0)∫

0

dr

rqz0(r)
= ∞ (5.22)

holds at every point z0 ∈ D, where ε(z0) = dist(z0, ∂D) and qz0(r) denotes the mean

integral value of Kf(z) over the circle |z−z0| = r. Then FKf ,∆ forms a normal family.

Corollary 5.3. The class FKf ,∆(D) is normal if Kf(z) has singularities of the

logarithmic type of order not greater than 1 at every point z ∈ D.

6 On some integral conditions

The following results can be found in [24].

Recall that a function Φ : [0,∞] → [0,∞] is called convex if

Φ(λt1 + (1− λ)t2) ≤ λ Φ(t1) + (1− λ) Φ(t2)

for all t1 and t2 ∈ [0,∞] and λ ∈ [0, 1].

In what follows, R(ε), ε ∈ (0, 1) denotes the ring in the space C,

R(ε) = R (ε, 1, 0). (6.1)
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The following statement is a generalization and strengthening of Lemma 3.1 from [26].

Lemma 6.1. Let Q : D → [0,∞] be a measurable function and let Φ : [0,∞] →
(0,∞] be a non-decreasing convex function. Suppose that the mean value M(ε) of the

function Φ ◦Q over the ring R(ε), ε ∈ (0, 1), is finite. Then

1∫

ε

dr

rq
1
p (r)

≥
1

2

M(ε)

ε2∫

eM(ε)

dτ

τ [Φ−1(τ)]
1
p

∀ p ∈ (0,∞) (6.2)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Remark 6.1. Note that (6.2) is equivalent for each p ∈ (0,∞) to the inequality

1∫

ε

dr

rq
1
p (r)

≥
1

2

M(ε)

ε2∫

eM(ε)

dτ

τΦ−1
p (τ)

, Φp(t) : = Φ(tp) . (6.3)

Note also that M(ε) converges as ε→ 0 to the average of Φ ◦Q over the unit disk B.

Corollary 6.1. Let Φ : [0,∞] → (0,∞] be a non-decreasing convex function,
Q : B → [0,∞] a measurable function, Q∗(z) = 1 if Q(z) < 1 and Q∗(z) = Q(z) if

Q(z) ≥ 1. Suppose that the mean M∗(ε) of the function Φ ◦ Q over the ring R(ε),
ε ∈ (0, 1), is finite. Then

1∫

ε

dr

rq
λ
p (r)

≥
1

2

M∗(ε)

ε2∫

eM∗(ε)

dτ

τ [Φ−1(τ)]
1
p

∀ λ ∈ (0, 1), p ∈ (0,∞) (6.4)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Indeed, let q∗(r) be the average of the function Q∗(z) over the circle |z| = r. Then

q(r) ≤ q∗(r) and, moreover, q∗(r) ≥ 1 for all r ∈ (0, 1). Thus, q
λ
p (r) ≤ q

λ
p

∗ (r) ≤ q
1
p

∗ (r)
for all λ ∈ (0, 1) and hence by Lemma 6.1 applied to Q∗(z) we obtain (6.4).

Theorem 6.1. Let Q : D → [0,∞] be a measurable function such that
∫

B

Φ(Q(z)) dx dy < ∞ (6.5)

where Φ : [0,∞] → [0,∞] is a non-decreasing convex function such that
∞∫

δ0

dτ

τ [Φ−1(τ)]
1
p

= ∞ , p ∈ (0,∞) , (6.6)

12



for some δ0 > τ0 : = Φ(0). Then

1∫

0

dr

rq
1
p (r)

= ∞ (6.7)

where q(r) is the average of the function Q(z) over the circle |z| = r.

Remark 6.2. Since
[
Φ−1(τ)

]1
p = Φ−1

p (τ) where Φp(t) = Φ(tp), (6.6) implies

that
∞∫

δ

dτ

τΦ−1
p (τ)

= ∞ ∀ δ ∈ [0,∞) (6.8)

but (6.8) for some δ ∈ [0,∞), generally speaking, does not imply (6.6). Indeed, for

δ ∈ [0, δ0), (6.6) evidently implies (6.8) and, for δ ∈ (δ0,∞), we have that

0 ≤

δ∫

δ0

dτ

τΦ−1
p (τ)

≤
1

Φ−1
p (δ0)

log
δ

δ0
< ∞ (6.9)

because Φ−1
p is non-decreasing and Φ−1

p (δ0) > 0. Moreover, by the definition of the
inverse function Φ−1

p (τ) ≡ 0 for all τ ∈ [0, τ0], τ0 = Φp(0), and hence (6.8) for

δ ∈ [0, τ0), generally speaking, does not imply (6.6). If τ0 > 0, then
τ0∫

δ

dτ

τΦ−1
p (τ)

= ∞ ∀ δ ∈ [0, τ0) (6.10)

However, (6.10) gives no information on the function Q(z) itself and, consequently,

(6.8) for δ < Φ(0) cannot imply (6.7) at all.

In view of (6.8), Theorem 6.1 follows immediately from Lemma 6.1.

Corollary 6.2. If Φ : [0,∞] → [0,∞] is a non-decreasing convex function and

Q satisfies the condition (6.5), then each of the conditions (2.4)–(2.9) for p ∈ (0,∞)
implies (6.7). Moreover, if in addition Φ(1) <∞ or q(r) ≥ 1 on a subset of (0, 1) of
a positive measure, then each of the conditions (2.4)–(2.9) for p ∈ (0,∞) implies

1∫

0

dr

rq
λ
p (r)

= ∞ ∀ λ ∈ (0, 1) (6.11)

and also
1∫

0

dr

rαq
β
p (r)

= ∞ ∀ α ≥ 1, β ∈ (0, α] . (6.12)
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7 Sufficient conditions for equicontinuity

Let D be a fixed domain in the extended space C = C ∪ {∞}. Given a function Φ :
[0,∞] → [0,∞], M > 0, ∆ > 0, FΦ

M,∆ denotes the collection of all homeomorphisms

with finite distortion in D such that h
(
C \ f(D)

)
≥ ∆ and

∫

D

Φ (Kf(z))
dx dy

(1 + |z|2)2
≤ M . (7.1)

Theorem 7.1. Let Φ : [0,∞] → [0,∞] be non-decreasing convex function. If
∞∫

δ0

dτ

τΦ−1(τ)
= ∞ (7.2)

for some δ0 > τ0 := Φ(0), then the class FΦ
M,∆ is equicontinuous and, consequently,

forms a normal family of mappings for every M ∈ (0,∞) and ∆ ∈ (0, 1).

Remark 7.1. Note that the condition∫

D

Φ (Kf(z)) dx dy ≤M (7.3)

implies (7.1). Thus, the condition (7.1) is more general than (7.3) and homeomor-
phisms with finite distortion satisfying (7.3) form a subclass of FΦ

M,∆. Conversely, if

the domain D is bounded, then (7.1) implies the condition∫

D

Φ (Kf(z)) dx dy ≤M∗ (7.4)

where M∗ =M ·
(
1 + δ2∗

)
, δ∗ = sup

z∈D
|z|.

Corollary 7.1.Each of the conditions (2.4)–(2.9) for p ∈ (0, n − 1] implies

equicontinuity and normality of the classes FΦ
M,∆ for all M ∈ (0,∞) and ∆ ∈ (0, 1).

Given a function Φ : [0,∞] → [0,∞], M > 0 and ∆ > 0, SΦ
M,∆ denotes the

class of all homeomorphisms f of D in the Sobolev class W 1,2
loc with a locally integrable

Kf(z) such that h
(
C \ f(D)

)
≥ ∆ and (7.1) holds for Kf(z). Note that if Φ is non-

decreasing, convex and non–constant on [0,∞), then (7.1) itself implies that Kf(z) ∈

L1
loc. Note also that SΦ

M,∆ ⊂ FΦ
M,∆, see e.g. Theorem 4.1 in [20]. Thus, we have the

following consequence.

Corollary 7.2.Each of the conditions (2.4)–(2.9) for p ∈ (0, 1] implies equicon-
tinuity and normality of the class SΦ

M,∆ for all M ∈ (0,∞) and ∆ ∈ (0, 1).
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8 Necessary conditions for equicontinuity

Theorem 8.1. If the classes SΦ
M,∆ ⊂ FΦ

M,∆ are equicontinuous (normal) for a non–
decreasing convex function Φ : [0,∞] → [0,∞], all M ∈ (0,∞) and ∆ ∈ (0, 1).

Then
∞∫

δ∗

dτ

τΦ−1(τ)
= ∞ (8.1)

for all δ∗ ∈ (τ0,∞) where τ0 : = Φ(0).

It is evident that the function Φ(t) in Theorem 8.1 cannot be constant because
in the contrary case we would have no real restrictions for KI except Φ(t) ≡ ∞ when
the classes SΦ

M,∆ are empty. Moreover, by the known criterion of convexity, see e.g.

Proposition 5 in I.4.3 of [5], the slope [Φ(t) − Φ(0)]/t is nondecreasing. Hence the
proof of Theorem 8.1 follows from the next statement.

Lemma 8.1. Let a function Φ : [0,∞] → [0,∞] be non-decreasing and

Φ(t) ≥ C · t ∀ t ∈ [T,∞] (8.2)

for some C > 0 and T ∈ (0,∞). If the classes SΦ
M,∆ ⊂ FΦ

M,∆ are equicontinuous
(normal) for all M ∈ (0,∞) and ∆ ∈ (0, 1), then (8.1) holds for all δ∗ ∈ (τ0,∞)
where τ0 : = Φ(+0).

Remark 8.1. Theorem 8.1 shows that the condition (7.2) in Theorem 7.1 is
not only sufficient but also necessary for equicontinuity (normality) of classes with the
integral constraints of the type either (7.1) or (7.4) with a convex non–decreasing Φ.

In view of Proposition 2.2, the same concerns to all the conditions (2.4)–(2.9) with
p = 1.

Corollary 8.1. The equicontinuity (normality) of the classes SΦ
M,∆ ⊂ FΦ

M,∆ for

M ∈ (0,∞), ∆ ∈ (0, 1) and non–decreasing convex Φ implies that

∞∫

δ

log Φ(t)
dt

t2
= ∞ (8.3)

for all δ > t0 where t0 := sup
Φ(t)=0

t, t0 = 0 if Φ(0) > 0.

The condition (8.3) is also sufficient for equicontinuity (normality) of the classes
SΦ
M,∆ and FΦ

M,∆.
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