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DETERMINANT LINE BUNDLE ON MODULI SPACE OF

PARABOLIC BUNDLES

INDRANIL BISWAS

Abstract. In [BR1], [BR2], a parabolic determinant line bundle on a moduli space
of stable parabolic bundles was constructed, along with a Hermitian structure on it.
The construction of the Hermitian structure was indirect: The parabolic determinant
line bundle was identified with the pullback of the determinant line bundle on a moduli
space of usual vector bundles over a covering curve. The Hermitian structure on the
parabolic determinant bundle was taken to be the pullback of the Quillen metric on
the determinant line bundle on the moduli space of usual vector bundles. Here a direct
construction of the Hermitian structure is given. For that we need to establish a version
of the correspondence between the stable parabolic bundles and the Hermitian–Einstein
connections in the context of conical metrics. Also, a recently obtained parabolic analog
of Faltings’ criterion of semistability plays a crucial role.

1. Introduction

Let X be a compact connected Riemann surface of genus g and S ⊂ X a finite

nonempty subset; if g = 0, then #S ≥ 3. Fix a positive integer r. For each point

s ∈ S, fix sequences

r = rs,1 > rs,2 > · · · > rs,ℓs > rs,ℓs+1 = 0 .

and 0 ≤ α1(s) < α2(s) < · · · < αℓs(s) < 1. Let MP be the moduli space of sable

parabolic vector bundles of rank r and degree d over X associated to this data.

In [BR1], [BR2], generalizing the determinant line bundle over the moduli space of

usual vector bundles, a parabolic determinant line bundle was constructed which is a

holomorphic Hermitian line bundle over MP . Fix a ramified Galois covering

f : Y −→ X

such that MP is identified with a moduli space MY (Γ) of stable Γ–linearized vector

bundles, where Γ = Gal(f), over Y .

It was shown that the parabolic determinant line bundle is holomorphically identified

with the usual determinant line bundle over MY (Γ). The Hermitian structure on the

parabolic determinant line bundle was obtained by pulling back the Quillen metric on the

usual determinant line bundle over MY (Γ). Our aim here is to give a direct construction

of the Hermitian structure on the parabolic determinant line bundle.
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2 I. BISWAS

Fix a conical metric h on X . We show that any stable parabolic vector bundle E∗ ∈

MP admits a unique Hermitian–Einstein connection with respect to h (see Theorem 3.2).

This Hermitian–Einstein structure plays a crucial role in the construction of the Hermitian

structure on the parabolic determinant line bundle.

Faltings’ semistability criterion says that a vector bundle E on a smooth complex

projective curve C is semistable if and only if there is a vector bundle F −→ C such that

H i(C, E ⊗ F ) = 0 for i = 0, 1 [Fa]. This criterion has the following generalization for

parabolic vector bundles.

Fix X and parabolic divisor S as above. Fix a positive integer N ; all the parabolic

weights will be assumed to be integral multiples of 1/N . There is a parabolic vector bundle

V 0
∗ with the following property: a parabolic vector bundle E∗ is parabolic semistable if

and only if there is another parabolic vector bundle F∗ such that

H i(X, (E∗ ⊗ F∗ ⊗ V 0
∗ )0) = 0

for i = 0, 1, where (E∗ ⊗ F∗ ⊗ V 0
∗ )0 is the vector bundle underlying the parabolic tensor

product E∗ ⊗ F∗ ⊗ V 0
∗ . (See [Bi2].)

The above parabolic vector bundle V 0
∗ is the other key input in the construction of the

Hermitian structure on the parabolic determinant line bundle.

2. Preliminaries

Let X be a compact connected Riemann surface. Fix a finite subset

(2.1) ∅ 6= S ⊂ X .

A parabolic vector bundle over X with S as the parabolic divisor is a vector bundle E on

X equipped with a parabolic structure over S, meaning for each point s ∈ S, we have

• a filtration

(2.2) Es = Es,1 ⊃ Es,2 ⊃ · · · ⊃ Es,ℓs ⊃ Es,ℓs+1 = 0 .

of subspaces of the fiber Es, and

• rational numbers

(2.3) 0 ≤ α1(s) < α2(s) < · · · < αℓs(s) < 1 .

The sequence in (2.2) is called the quasiparabolic filtration, and the sequence in (2.3) is

called the parabolic weights. The points of S are called parabolic points. For notational

convenience, a vector bundle E with a parabolic structure will be denoted by E∗.

The parabolic degree of E∗ is defined to be

par-deg(E∗) := degree(E) +
∑

s∈S

ℓs∑

i=1

αℓs(s) · dimEs,i/Es,i+1 .

Any subbundle F of E has an induced parabolic structure. We recall that a parabolic

vector bundle E∗ is called semistable if for all proper subbundles F ⊂ E of positive rank,
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the inequality
par-deg(F∗)

rank(F∗)
≤

par-deg(E∗)

rank(E∗)

holds, where F∗ is the parabolic vector bundle defined by the induced parabolic structure

on F . If the strict inequality

par-deg(F∗)

rank(F∗)
<

par-deg(E∗)

rank(E∗)

holds then E∗ is called stable.

A semistable parabolic vector bundle is called polystable if it is a direct sum of stable

parabolic vector bundles.

Fix a positive integer r, and also fix an integer d. Let MP denote the moduli space of

stable parabolic vector bundles of rank r and degree d with a fixed type of quasiparabolic

filtration and fixed parabolic weights. (See [MS] for the construction of MP as well as

some of its properties.)

We will assume that S and the parabolic data are such that dimMP > 0. Note that

this assumption rules out the case where X = CP
1 and #S = 1. Indeed, if X = CP

1

with #S = {s}, then using the Grothendieck’s theorem that any vector bundle over CP1

splits into a direct sum of line bundles it follows that any semistable parabolic vector

bundle E∗ must be of the following form:

E = L⊕r ,

where L −→ CP1 is a line bundle, and the quasiparabolic filtration is the trivial filtration

0 ⊂ Es .

A theorem due to Faltings says that a vector bundle E over X is semistable if and only

if there is another vector bundle E ′ such that E ⊗E ′ is cohomologically trivial, meaning

H0(X, E ⊗ E ′) = 0 = H1(X, E ⊗ E ′)

[Fa]. This criterion can be generalized to the context of parabolic vector bundles in the

following way. Fix a positive integer N . Consider parabolic vector bundles with parabolic

weights integral multiples of 1/N (with arbitrary quasiparabolic structure and rank).

Lemma 2.1 ([Bi2]). Then there is a parabolic vector bundle V 0
∗ with the following prop-

erty: A parabolic vector bundle E∗ is semistable if and only if there is a parabolic vector

bundle E ′
∗ such that the vector bundle (E∗ ⊗ E ′

∗ ⊗ V 0
∗ )0 underlying the parabolic tensor

product E∗ ⊗E ′
∗ ⊗ V 0

∗ is cohomologically trivial.

It should be emphasized that such a parabolic vector bundle V 0
∗ can be explicitly

constructed. We recall a construction of a parabolic vector bundle V 0
∗ that satisfies the

above condition.

Fix a Galois covering

(2.4) f : Y −→ X
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such that

• f is ramified exactly over S, and

• the ramification index of each point in f−1(S) is N − 1, where N is the fixed

integer such that all the parabolic weights are integral multiples of 1/N .

See [Na, p. 26, Proposition 1.2.12] for the existence of f satisfying these conditions. Let

(2.5) Γ := Gal(f)

be the Galois group for the covering f . There is a natural bijective correspondence between

the following two classes:

(1) all Γ–linearized vector bundles on Y , and

(2) the parabolic vector bundles over X for which the parabolic divisor in contained

in S and all the parabolic weights are integral multiples of 1/N .

(See [Bi1].)

Consider the trivial vector bundle over Y

(2.6) Ṽ := OY ⊗C C(Γ) ,

where C(Γ) is the group algebra of Γ defined in (2.5). The action of Γ on Y produces an

action of Γ on OY . The natural action of Γ on C(Γ) and the action of Γ on OY together

define a Γ–linearization on the vector bundle Ṽ in (2.6). Let

(2.7) V 0
∗ −→ X

be the parabolic vector bundle over X corresponding to the Γ–linearized vector bundle Ṽ .

This parabolic vector bundle V 0
∗ satisfies the condition in Lemma 2.1. (See [Bi2], [BH].)

3. Conical metric on X

Fix a positive integer N .

Let S be the subset in (2.1). Set

X ′ := X \ S .

Let D := {z ∈ C | |z| < 1} be the unit disk. For a point x ∈ X , a holomorphic

coordinate around x is a holomorphic embedding

ϕ : D −→ X

such that ϕ(x) = 0.

A conical metric on X of order N is a Hermitian metric h on the holomorphic tan-

gent bundle TX ′ satisfying the following condition: For each point x ∈ D, there is a

holomorphic coordinate around x

ϕ : D −→ X
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such that

h|D = f(z)
dz ⊗ dz

|z|2(N−1)/N
,

where f : D −→ R+ is a smooth function; ϕ(D) is identified with D using ϕ.

Let E∗ be a parabolic vector bundle over X . Let E be the vector bundle underlying

the parabolic bundle E∗.

A Hermitian structure on E∗ is a Hermitian structure H on E|X′ satisfying the following

condition: Take any point s ∈ S, and take any holomorphic section σ of E defined around

s. If σ(s) is a nonzero element of Es,i ⊂ Es (see (2.2)), then

‖s‖H = f(z)|z|αi(s)

(see (2.3) for αi(s)), where z is a holomorphic coordinate around s, and f is a smooth

function with values in positive real numbers.

Fix a conical metric of order N on X . Let ω be the corresponding Kähler form on X ′.

Let E∗ be a parabolic vector bundle over X with the property that all the parabolic

weights of E∗ are integral multiples of 1/N .

Definition 3.1. A Hermitian structure H on E∗ is called Hermitian–Einstein if the

curvature of the Chern connection on E|X′ for H is of the form

λ · IdE ⊗ ω ,

where λ is some constant positive real number.

Theorem 3.2. Let E∗ be a stable parabolic vector bundle over X such that all the para-

bolic weights of E∗ are integral multiples of 1/N . Then E∗ admits a Hermitian–Einstein

structure. If H and H1 are two Hermitian–Einstein structures on E∗, then

H1 = c ·H ,

where c is a constant real positive number.

Proof. Let f : Y −→ X be the covering in (2.4). The pullback of the (fixed) conical

metric on X defines a Hermitian structure on f−1(X \ S). From the definition of the

conical metric it follows that this Hermitian metric on f−1(X \S) extends to a Hermitian

metric on Y . Let ω̃ be the Kähler form on Y associated to this Hermitian structure on

Y .

Let

W −→ Y

be the Γ–linearized vector bundle corresponding to the parabolic vector bundle E∗. Since

E∗ is parabolic stable, it follows that the corresponding Γ–linearized vector bundle W is

polystable [BBN, p. 349, Proposition 4.1]. Consequently, W admits a Hermitian–Einstein

structure [Do]. The Hermitian–Einstein structure is not unique, but the Hermitian–

Einstein connection is unique. From the uniqueness of the Hermitian–Einstein connection
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it follows immediately that the action of Γ on W preserves the Hermitian–Einstein con-

nection. Consequently, for any Hermitian–Einstein structure HW on W , the Hermitian

form

H ′
W :=

∑

γ∈Γ

γ∗HW

is Hermitian–Einstein. Clearly, the action of Γ on W preserves the Hermitian form H ′
W .

Therefore, H ′
W descends to a Hermitian structure on E|X\S. It is now straight–forward to

check that this Hermitian structure on E|X\S is a Hermitian structure on the parabolic

vector bundle E∗.

From the definition of a Hermitian–Einstein structure on E∗ it follows that any two

Hermitian–Einstein forms on E∗ differ by an automorphism of the parabolic vector bun-

dle E∗. Since E∗ is parabolic stable, all parabolic automorphisms are constant scalar

multiplications. Hence any two Hermitian–Einstein forms on E∗ differ by multiplication

with a constant real number. This completes the proof of the theorem. �

4. The determinant line bundle

Let E −→ X ×T be a holomorphic vector bundle, where T is a complex manifold. We

will consider E as a holomorphic family of vector bundles over X parametrized by T . Let

(4.1) p : X × T −→ T

be the projection. The direct images R0p∗E and R1p∗E are coherent analytic sheaves on

T . Therefore,

det(Rip∗E) :=
∧top

Rip∗E ,

i = 0 , 1, are holomorphic line bundles over T (see [Ko, Ch. V, § 6] for the construction

of the determinant line bundle of a coherent analytic sheaf). If T is algebraic, and E is

an algebraic vector bundle, then the line bundle det(Rip∗E) is also algebraic.

The determinant of the family E is defined to be the line bundle

(4.2) d(E) := det(R0p∗E)
∗ ⊗ det(R1p∗E) −→ T .

Let

(4.3) E∗ −→ X × T

be a family of parabolic vector bundles of fixed quasiparabolic type and fixed parabolic

weights. Let

(4.4) pX : X × T −→ X

be the natural projection. Consider the parabolic vector bundle V 0
∗ constructed in (2.7).

So p∗XV
0
∗ is a constant family of parabolic vector bundles parametrized by T . Let

(4.5) E∗ ⊗ p∗XV
0
∗ −→ X × T
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be the family of parabolic vector bundles obtained by taking the parabolic tensor product.

Let

(E∗ ⊗ p∗V 0
∗ )0 −→ X × T

be the family of vector bundles underlying the family of parabolic vector bundles in (4.5).

Definition 4.1. The parabolic determinant bundle for the family E∗ is defined to be the

line bundle

d((E∗ ⊗ p∗V 0
∗ )0) −→ T

(see (4.2)). The parabolic determinant bundle for E∗ will be denoted by pd(E∗).

Let MP be a moduli space of stable parabolic vector bundles over X of rank r and

degree d with a fixed type of quasiparabolic filtration and fixed parabolic weights. In

general, there is no universal parabolic vector bundle over X × MP . However, every

point z ∈ MP has an open neighborhood Uz in étale topology such that there is a

universal parabolic vector bundle over X × Uz. Hence there is an open neighborhood

U ′
z of z in analytic topology such that there is a universal parabolic vector bundle over

X × U ′
z.

Using the locally defined universal parabolic vector bundles on MP , we can construct

locally defined parabolic determinant bundles.

Fix a point x0 ∈ X . Let E∗ be a locally defined (in either étale or analytic topology)

universal parabolic vector bundles over X × U . The vector bundle over U obtained by

restricting the underlying vector bundler E to {x0} × U will be denoted by Ex0
.

Assume that T is connected. Hence the function MP −→ Z that sends any E∗ ∈ MP

to

(4.6) χ := dimH0(X, E)− dimH1(X, E)

is a constant one.

Lemma 4.2. The locally defined line bundles

pd(E∗)
⊗r ⊗ (

∧r
Ex0

)⊗χ

(see Definition 4.1) patch together naturally to define an algebraic line bundle over MP .

Proof. Let E∗ be a stable parabolic vector bundle. Take any automorphism τ of the

underlying vector bundle E that preserves the quasiparabolic filtrations. Since E∗ is

stable, we know that τ = λ · IdE for some λ ∈ C∗. Using this it follows that if E∗ and E ′
∗

are two universal parabolic vector bundles over X×U , then there is a natural line bundle

L −→ U and a canonical isomorphism

(4.7) E ′
∗ = E∗ ⊗ f ∗L ,

where φ : X × U −→ U is the projection. In fact, we may take

L := φ∗(Hom(E∗ , E
′
∗))
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(here Hom is the sheaf of parabolic homomorphisms). In this case, the isomorphism in

(4.7) is given by the natural pairing

Hom(E∗ , E
′
∗)⊗ E∗ −→ E ′

∗ .

From (4.7) and the projection formula it follows that

(4.8) pd(E∗) = pd(E ′
∗)⊗ L⊗χ ,

where χ is defined in (4.6). On the other hand, from (4.7),

(4.9)
∧r

E ′
x0

= (
∧r

Ex0
)⊗ L⊗r .

From (4.8) and (4.9),

pd(E∗)
⊗r ⊗ (

∧r ∧r
Ex0

)⊗χ = pd(E ′
∗)

⊗r ⊗ (
∧r ∧r

E ′
x0
)⊗χ .

This completes the proof of the lemma. �

Definition 4.3. Let

D −→ MP

be the holomorphic line bundle obtained from Lemma 4.2.

There is a parabolic determinant line bundle on MP ; see [BR1] and [BR2] for its

construction.

Lemma 4.4. The holomorphic line bundle D in Definition 4.3 coincides with the parabolic

determinant line bundle.

Proof. Take any parabolic vector bundle E∗ ∈ MP . Let

W −→ Y

be the Γ–linearized vector bundle corresponding to E∗, where Y is the Galois covering in

(2.4). For i = 0 , 1, we have

(4.10) H i(X, (E∗ ⊗ p∗V 0
∗ )0) = H i(Y, W )

[BH, p. 252, (15)] (in [BH, p. 252, (15)] it is proved for i = 0, but the proof is identical

for i = 1; see [Bi2, p. 327, (8)]). Using (4.10) it is straight–forward to check that D

coincides with the parabolic determinant line bundle. �

5. Hermitian structures

5.1. Hermitian structure on V 0. Let V 0 denote the vector bundle underlying the par-

abolic bundle V 0
∗ in (2.7). We will first construct a Hermitian structure on the restriction

of V 0 to

(5.1) X ′ := X \ S ⊂ X .
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Consider the group Γ in (2.5). Let hΓ be the inner product on the group algebra C(Γ)

defined by

hΓ(
∑

z∈Γ

cz · z ,
∑

z∈Γ

dz · z) =
∑

z∈Γ

czdz .

This inner product hΓ defines a Hermitian structure on the trivial vector bundle Ṽ =

OY

⊗
C
C(Γ) in (2.6). The action of the Galois group Γ = Gal(f) on Ṽ preserves this

Hermitian structure. The pullback f ∗(V 0|X′) is identified with the restriction of Ṽ to

f−1(X ′) ⊂ Y , where X ′ is the open subset in (5.1). Consequently, there is a unique

Hermitian structure on V 0|X′ such that the identification of f ∗(V 0|X′) with Ṽ |f−1(X′) is

an isometry.

Definition 5.1. Let h0 denote the Hermitian structure on V 0|X′ constructed above.

It is straight–forward to check that h0 is a Hermitian structure on the parabolic vector

bundle V 0
∗ .

The parabolic vector bundle V 0
∗ is polystable. Hence it has a Hermitian–Einstein struc-

ture (see Theorem 3.2). The following proposition is obtained by comparing the construc-

tions of the Hermitian structure h0 (see Definition 5.1) and Hermitian–Einstein structure

in Theorem 3.2.

Proposition 5.2. The Hermitian structure h0 on the polystable parabolic vector bundle

V 0
∗ is a Hermitian–Einstein form.

5.2. Hermitian structure on D. Fix a positive integer N such that all the parabolic

weights in the parabolic data associated to MP are integral multiples of 1/N . Fix a

conical metric h of order N on X .

Let E∗ ∈ MP be a stable parabolic vector bundle. Let H be a Hermitian–Einstein

form on E∗. From Theorem 3.2 we know that H is determined uniquely up to a constant

scalar.

The Hermitian form h0 on V 0|X′ (see (5.1)) and the Hermitian–Einstein form H on

E∗ together define a Hermitian–Einstein structure on (E ⊗ V 0)|X′ , where X ′ is defined

in (5.1). This Hermitian structure on (E ⊗ V 0)|X′ defines a Hermitian structure on the

parabolic tensor product E∗⊗V 0
∗ . Let Ĥ denote the Hermitian structure on the parabolic

vector bundle E∗ ⊗ V 0
∗ given by the above Hermitian structure on (E ⊗ V 0)|X′ .

Let (E∗ ⊗ V 0
∗ )0 be the vector bundle underlying the parabolic vector bundle E∗ ⊗ V 0

∗ .

The Hermitian structure Ĥ and the conical metric h together define a Hermitian struc-

ture on the vector space H0(X, (E∗ ⊗ V 0
∗ )0).

The Hermitian structure Ĥ induces a Hermitian structure on

C∞(X ; (E∗ ⊗ V 0
∗ )0 ⊗ Ω0,1

X ) .

The restriction of it to the orthogonal complement of the image of the Dolbeault operator

for the holomorphic vector bundle (E∗ ⊗ V 0
∗ )0

(5.2) ∂(E∗⊗V 0
∗
)0 : C∞(X ; (E∗ ⊗ V 0

∗ )0) −→ C∞(X ; (E∗ ⊗ V 0
∗ )0 ⊗ Ω0,1

X )
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defines a Hermitian structure on the vector space H1(X, (E∗ ⊗ V 0
∗ )0).

Let

(5.3) ∆(E∗⊗V 0
∗
)0 := (∂(E∗⊗V 0

∗
)0)

∗∂(E∗⊗V 0
∗
)0

be the Laplacian of the operator in (5.2).

Consider the complex line

pd(E∗) :=
∧top

H0(X, (E∗ ⊗ V 0
∗ )0)

∗ ⊗
∧top

H1(X, (E∗ ⊗ V 0
∗ )0)

(compare it with Definition 4.1). The above inner products on H0(X, (E∗ ⊗ V 0
∗ )0) and

H1(X, (E∗⊗V 0
∗ )0) together produce an inner product on pd(E∗). Using the Quillen’s con-

struction, we modify this inner product on pd(E∗) using the eigenvalues of the Laplacian

∆(E∗⊗V 0
∗
)0 defined in (5.3) (see [Qu]). This procedure produces a Hermitian structure on

the holomorphic line bundle pd(E∗) −→ T (see Definition 4.1). Hence we get a Hermitian

structure on the holomorphic line bundle

D −→ MP

constructed in Definition 4.3.

Definition 5.3. The above Hermitian structure on the holomorphic line bundle D −→

MP will be denoted by HpQ.

Consider the covering f in (2.4). As noted in the proof of Theorem 3.2, the pullback of

the conical metric h by f produces a Hermitian metric on Y . As before, the Kähler form

on Y associated to this Hermitian metric will be denoted by ω̃.

Let

W −→ Y

be the Γ–linearized vector bundle corresponding to E∗, where Y is the Galois covering in

(2.4). Let

∂W : C∞(Y ; W ) −→ C∞(Y ; W ⊗ Ω0,1
Y )

be the Dolbeault operator for the holomorphic vector bundle W . Since the vector bundle

W is polystable, it has a Hermitian–Einstein structure. Using this Hermitian–Einstein

structure and the Kähler form ω̃ on Y we define the Laplacian

∆W := ∂
∗

W∂W .

It can be shown that the eigenvalues of ∆W , along with their multiplicities, coincide with

those of the operator ∆(E∗⊗V 0
∗
)0 constructed in (5.3). Indeed,

C∞(Y ; W ) and C∞(Y ; W ⊗ Ω0,1
Y )

are identified with C∞(X ; (E∗⊗V 0
∗ )0⊗Ω0,1

X ) and C∞(X ; (E∗⊗V 0
∗ )0) respectively, and these

identifications preserve the inner products. Furthermore, these identifications take the

differential operator ∂(E∗⊗V 0
∗
)0 to ∂W . Consequently, these identification takes ∆(E∗⊗V 0

∗
)0

to ∆W . Hence the eigenvalues of ∆W , along with their multiplicities, coincide with those

of the operator ∆(E∗⊗V 0
∗
)0 .
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Therefore, we have the following proposition:

Proposition 5.4. The holomorphic isomorphism in Lemma 4.4 between D and the par-

abolic determinant line bundle takes in Hermitian structure HpQ in Definition 5.3 to the

Hermitian structure on the parabolic determinant line bundle.

See [BR1], [BR2] for the construction of the Hermitian structure on the parabolic

determinant line bundle.
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