
On a Fourth Order Lichnerowicz Type Equation

Involving The Paneitz-Branson Operator.

Ali Maalaoui1

February 11, 2011

Abstract In this paper, we study some fourth order singular critical equa-

tions of Lichnerowicz type involving the Paneitz-Branson operator, and we

prove existence and non existence results under given assumptions.

1 Introduction

During the last years there have been effective studies of conformal operators

and their relative invariants due to their application in geometry or mathe-

matical physics. For instance the Yamabe problem played an essential role in

the evolution of the analytical and geometrical tools also it was with crucial

importance for the study of the Einstein-Hilbert functional without forget-

ting the input in relativity for the study of the conformal Einstein constraint

equations (see [9],[8]). And In 1983, Paneitz [20] introduced a conformally

fourth order operator defined on 4-dimensional Riemannian manifolds Bran-
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son [3] generalized the definition to n−dimensional Riemannian manifolds,

n ≥ 5. He introduced another geometric quantity that defines another con-

formal invariant for n > 3 that is the Q− curvature that behaves in a very

similar way to the scalar curvature. And its variation after a conformal

change involves a fourth order operator. That is the Paneitz-Branson Op-

erator. One can think about the Q − curvature and the Branson-Paneitz

operator like the scalar curvature and the conformal laplacian. There was

a lot of published work concerning prescribing the Q−curvature where one

can notice that the conditions that we get are similar to the scalar curva-

ture one modulo some technical assumptions (see [13],[14],[2]). One of the

issues that we meet while dealing with this operator, is the fact that there

is no maximum principle, thus getting good and effective estimate is not as

easy as for the conformal Laplacian. Many authors have studied the posi-

tivity and coercivity of the Paneitz, one can consult [24] or [16] for example.

As interaction with mathematical physics we can see the work of Choquet-

Bruhat in [9] with the Conformal Laplacian, where they study the scalar

field equation that leads to a Lichnerowicz type semi-linear PDE. In this

work we attempt to study another action functional as a proposal for a rela-

tivestic model since it is conformally invariant and we will see a scalar-field

perturbation of it. The study of such functional leads to the resolution of

a Lichnerowicz type equation but it is a fourth order one, with the Paneitz

operator as a differential part. So in this paper we will investigate the ex-

istence of positive solutions under some assumption that we will mention

later to that equation and also we will give a non-existence result.
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2 Preliminaries and Motivations

Let (M, g) be a n−dimensional closed compact manifold with n ≥ 3, recall

that ifRg is the scalar curvature then under the conformal change g̃ = u
4

n−2 g,

one gets the following relation relation the new curvature with the old one :

−∆gu+
(n− 2)

4(n− 1)
Rgu = Rg̃u

n+2
n−2 , (1)

Let −Lgu = −∆gu+ (n−2)
4(n−1)Rgu this operator is called the conformal Lapla-

cian to see more of its property one could check [18]. Similarly if we consider

the following quantity which is the Branson Q − curvature introduced in

[3], defined by

Q : =
n2 − 4

8n(n− 1)2
R2 − 2

(n− 1)2

∣∣∣∣Ric− R

n
g

∣∣∣∣2 +
1

2(n− 1)
∆R

= cnR
2 + dn |Ric|2 +

1

2(n− 1)
∆R.

Then after a conformal change g̃ = u
4

n−4 g of the metric, one gets

Qg̃u
n+4
n−4 = Pu (2)

where

Pu := ∆2
gu− div

((
(n− 2)2 + 4

2 (n− 2) (n− 1)
Rg − 4

n− 2
Ric

)
du

)
+
n− 4

2
Qu.

We will set P0 its differential part, that is

P0u = ∆2
gu− div

((
(n− 2)2 + 4

2 (n− 2) (n− 1)
Rg − 4

n− 2
Ric

)
du

)
,

One can see that if g is an Einstein metric then P is with constant coefficient,

Pu = ∆2
gu+

n2 − 2n− 4

2n(n− 1)
R∆gu+

(n− 4) (n2 − 4)

16n(n− 1)2
R2u
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and satisfies the maximum principle since it can be written as a product of

two second order operator satisfying the maximum principle.

Remark that the natural space to work on for the prescribed scalar cur-

vature problem is H1 (M) and thus (1) is a critical semi-linear problem. Also

the natural space for prescribing the Branson Q-curvature is H2 (M) and

again (2) is a critical problem since we are in the borderline of the Sobolev

embeddings.

There was an extensive work concerning (1) to find a metric with con-

stant scalar curvature, which is a critical point of the Einstein-Hilbert func-

tional

FR : g 7−→
∫
M Rg

V
n−4
n

g

restricted to the conformal Class of a given metric. Same thing can be

applied to the functional

FQ : g 7−→
∫
M Qg

V
n−4
n

g

,

For instance one could check that the functional is Reimannian and

Einstein metrics are critical points of this functional.

There have been many proposal in relativity to replace the Hilbert-

Einstein total curvature functional with a conformally invariant functional,

like for instance the case of Bach relativity where the functional is replaced

by
∫
M |Cg|

2dvg and C is the Weyl tensor (see [4]). In this case we will

consider another proposal consisting of the total Paneitz-Branson curvature

FQ. Therefore one can think about a scalar field perturbation of the previous

one, that is

Fψ (g) =

∫
M
Qg − |∇gψ|2 − V (ψ)dµg,
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this functional was studied in [10] for the case Hilbert-Einstein functional

under conformal change where the authors try to solve a conformal con-

straint for the Einstein scalar field equation also in [15] where the author

studies the problem from a variational point of view.

Now if we take a closer look to this functional, one can see that if we

restrict it to the conformal class of g one have

Fψ

(
u

4
n−4 g

)
=

1

an

∫
M
uPu− an |∇gΨ|2 u2dµg.

Where an = n−4
4 , therefore, the associated Euler-Lagrange equation to this

problem is

Pg,ψu = Pu− an |∇gΨ|2 u =
(
Q̃−

∣∣∇g̃Ψ∣∣2)un+4
n−4 ,

that is

P0u+ an

(
Q− |∇gΨ|2

)
u =

(
Q̃−

∣∣∇g̃Ψ∣∣2)un+4
n−4

and the constant

P [g,Ψ] = inf
u>0,u∈C∞(M)

1

an

∫
M uPu− an |∇gΨ|2 u2(∫

M u
2n
n−4

)n−4
n

,

is a conformal invariant.

Let us recall the following result about the coercivity of the Paneitz-

Branson operator.

Theorem 2.1 ([24]). Let (M, g) be a closed Riemannian manifold of di-

mension at least 6. If the Yamabe invariant of g is non-negative, then with

respect to any conformal metric of positive scalar curvature P0 has a non-

negative first eigenvalue and kerP 0 = {constant}. The last statement also

holds in dimension five, provided we assume the Yamabe metric has positive

Q-curvature.
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Proposition 2.2. Under the assumptions of the previous theorem, then

the sign of P [g,Ψ] is the sign of the first eigenvalue of the Operator Pg̃,Ψ

for every g̃ in the same conformal class.

Proof. Assume P [g,Ψ] > 0, then if we take ϕ1 the first eigenvalue as a test

function, one gets

λ1 ‖ϕ1‖22 = E(ϕ1) ≥ P [g,Ψ] ‖ϕ1‖22]

thus λ1 > 0. Now if we assume that P [g,Ψ] = 0 then using the same

argument we get that λ1 ≥ 0 , but if λ1 > 0 then using Sobolev inequalities

we get P [g,Ψ] > 0 which is not the case, thus λ1 = 0.

Now if P [g,Ψ] < 0 then there exist a function v, such that E(v) < 0

thus we get λ1 < 0.

From now on we will assume that the Yamabe and the Paneitz invariants

are positive and P is positive, therefore we guaranty that the operator Pg,Ψ

is coercive and satisfies the maximum principle and up to a conformal change

we can assume that Qψ = Q− |∇ψ|2g id positive on M.

And if we follow the procedure of the Authors in [10] to find the Einstein-

scalar field conformal constraint equation one gets a a Lichnerowicz type

problem but of fourth order of the following form : Pg,Ψu = A(x)

u2
]+1
−B(x)u2]−1

u > 0
.

where 2] = 2n
n−4 , A and B two smooth functions. Therefore, the object of

the rest of this paper is to investigate the existence of positive solutions to

problem of the following form : Pg,Ψu = A(x)
up −B(x)uq

u > 0
,
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where p > 1 and 1 < q ≤ 2] − 1.

3 Existence Via heat flow

Let E be a Banach space with norm ‖−‖E . E is partially ordered by a

closed cone P ⊂ X, and we assume that it has non-empty interior
◦
P . We

define also
•
P = P − {0}. The element of

•
P are called positive and element

of −
•
P are called negative.

Now, if u, v ∈ E we will use the following notations to distinguish how

they are comparable :


u ≤ v if v − u ∈ P

u < v if v − u ∈
•
P

u� v if v − u ∈
◦
P

.

A map f, we set D(f) ⊂ E its domain. Now a map f : D(f) −→ E is said

order preserving, if for every u, v ∈ D(f) such that u ≤ v then f(u) ≤ f(v).

And we say that

lim
x−→+∞

f(x) = +∞

if for every u ∈ P there exist x ∈ P such that f(v) ≥ u, for every v ≥ x.

And finally we define the set

[u, v] = {w ∈ E;u ≤ w ≤ v}

and sometimes if needed for a set D ⊂ E,

[u, v]D = {w ∈ D;u ≤ w ≤ v} .

An OBS is said normal if there exist δ > 0 such that for every u ≤ v in

E,

‖u‖E ≤ δ ‖v‖E .
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Theorem 3.1 (Krein-Rutman). Let E be a total ordered Banach space and

T : E −→ E a compact order preserving linear operator, then r(T ) is an

eigenvalue with eigenvector u ∈
•
P and if in adition we assume that T is

strongly order preserving (That is Tu >> 0 if u > 0) then r(T ) > 0 and is

a simple eigenvalue with positive eingen vector.

Let us consider the following problem

 d
dtu+Au = F (u)

u(0) = u0

(3)

where F :
◦
P −→ X is a C1map , A is a densely defined compact resolvent

positive operator and u0 ∈
o
P ∩D(A).

Theorem 3.2. Assume that

lim
x−→+∞

F (x) = −∞

and

lim
x−→0+

F (x) = +∞

and for every bounded set K there exist a a constant λ such that F + λI is

order preserving in K, then the problem admits a positive solution.

In the applications we can know more about the solution and we will

deal with that further in this paper.

Proof. First remark that there exist u1 and u2 such that

d

dt
u1 +Au1 ≤ F (u1)

u1(0) ≤ u0

8



and

d

dt
u2 +Au2 ≥ F (u2)

u2(0) ≥ u0

In fact u1 and u2 could be chosen of the form se where e ∈
◦
P and s > 0.

set

K = {u1 ≤ u ≤ u2}

then K is a bounded set, so there exist λ > 0 so that F + λI is order

preserving on K so let Ã and F̃ denote respectively A+ λI and F + λI.

Now let us construct the following sequence : u1 being the unique solu-

tion of
d

dt
u+ Ãu = F̃ (u1)

and uk+1 is the unique solution of

d

dt
u+ Ãu = F̃ (uk)

By induction one can easily show that the sequence
(
uk
)

is monotone

non-decreasing and uk ∈ K, ∀k ≥ 1. Let us show the first step, that is

u1 ≥ u1.

First using the assumptions on A we have the existence of a compact

positive semi-group S(t), generated by Ã (see [21]). So we have

u1 = S(t)u1(0) +

∫ t

0
S(t− s)

(
d

dt
u1 + Ãu1

)
≤ S(t)u0 +

∫ t

0
S(t− s)F̃ (u1(s))ds

≤ u1

Now since A has compact resolvent and K is bounded we can extract for

fixed time a subsequence that we will call also
(
uk
)

such that S(t)uk(s)

9



converges to S(t)u(s), thus by writing

uk+1 = S(t)u0 +

∫ t

0
S(t− s)F̃ (uk),

one can see that u satisfies

u = S(t)u0 +

∫ t

0
S(t− s)F̃ (u)

And this gives a positive solution to (3).

Now notice that u(t) is bounded in D(A) thus there exists a sequence

(tk)k going to infinity such that u(tk) converges to some ũ, and in fact

the convergence occurs in D(A). Thus knowing that lim
∫ t

0 S(t − s)xds =

(−A)−1 x we get by passing to the limit that ũ is a solution of the steady-

state problem.

Now we will consider a problem of the form ut + Pg,Ψu = f(x, u)

u(0) = u0

(4)

where P is the Paneitz-Branson operator and f : M ×R∗+ −→ R is C1 such

that limx−→+∞ f(x, t) = −∞ uniformly on x and limx−→0 f(x, t) = +∞

uniformly on x, Then for every u0 smooth and positive, there exist a positive

solution to (4) moreover there exist a sequence tk going to infinity such that

u(tk) −→ ũ a solution of the steady-state problem.

One also can write the problem as an integral equation using the posi-

tivity preserving flow like in [22].

Corollary 3.3. Take A and B two positive functions defined on M and

consider the singular problem : Pu = A(x)
up −B(x)uq

u > 0
(5)
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then using Theorem (3.2) we have the existence of a solution more than that,

it is the unique solution.

Remark that in this case we can take q ≥ 2] − 1 since we do not need

the compact or continuous embedding in Lp spaces.

Now,if we suppose that B is just non-negative. we can show indeed that

even in that case we have a solution.

Corollary 3.4. Take A > 0 and B ≥ 0, two smooth functions defined on

M and consider the singular problem : Pg,ψu = A(x)
up −B(x)uq

u > 0

where q ≤ 2] − 1, then it has a unique solution.

Let uε be the solution obtained by Corollary (3.3), of

 Pg,ψu = A(x)
up −Bε(x)uq

u > 0

where Bε = B + ε. First remark that uε is uniformly bounded from

bellow (it is by construction of the sub and super solution in the proof of

Theorem (3.2)).

So ∫
M
uPg,ψu =

∫
M

A(x)

up−1
ε

−
∫
M

(B(x) + ε)uq+1
ε

≤
∫
M

A(x)

δ
= C

where δ is the uniform lower bound of uε. Therefore (uε)ε is bounded in

H2 (M) and if q + 1 ≤ 2], we have uε −→ u in L2 and weakly in H2 (M)

and L2](M).
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So if we take ϕ ∈ C∞(M), we have a weak solution which we can show

using the regularity theory that is is indeed smooth.∫
M
ϕPg,ψuε =

∫
M

A(x)

up−1
ε

ϕ−
∫
M

(B(x) + ε)uqεϕ

so by letting ε −→ 0 we get that∫
M
ϕPg,ψu =

∫
M

A(x)

up−1
ϕ−

∫
M
B(x)uqϕ

so u is a weak solution and using elliptic regularity we get the fact that it

is indeed a smooth one.

For the uniqueness, if we consider two smooth positive solutions u and

v of then w = u− v satisfies :

Pg,ψw =
A(x)

up
− A(x)

vp
+Bε(x)vq −Bε(x)uq

= −C(x)(u− v) = −C(x)w

where C(x) is a non-negative function that we get from the mean value

theorem, therefore using the maximum principle we get the desired result.

As an improvement of the previous result we have :

Theorem 3.5. Assume that B+ is non-zero then problem (5) has at least

one positive solution if the following inequality is satisfied

max
M

(
A

q−1
p+qB

p+1
p+q

− ϕ
q p+1
p+q
−p q−1

p+q
−1

1

)
≤ λ1(

q−1
p+1

) p+1
p+q

+
(
p+1
q−1

) q−1
p+q

, (6)

where λ1 and ϕ1 are the first eigenvalue and eigenfunction of Pg,ψ, respec-

tively.

first let u be a solution of Pg,ψu = A(x)
up −B

+(x)uq

u > 0

12



In fact since we are going to use this process another time let us give the

picture and the idea behind :

Consider a convex function positive f : R+ −→ R and, so for it to in-

tersect a line L passing through the origin its slope should be greater than

the one of the unique tangent to the graph of passing through the origin as

shown in the following figure :

and the condition to find the slope at zero is by solving

f(t)

t
= f ′(t). (7)

So if we take ϕ1 the first eigenfunction of P , we get

tPϕ1 −
A(x)

tpϕp
+B(x)tqϕq1 = tλ1ϕ1 −

A(x)

tpϕp1
+B(x)tqϕq1

≥ tλ1ϕ1 −
A(x)

tpϕp1
−B−(x)tqϕq1.

And here we can see that in fact we are comparing t −→ tλ1ϕ1 and t −→
A(x)
tpϕp

1
+B−(x)tqϕq1 which is convex, thus using the previous remark we can see

that the inequality (6) insures that we are in the same situation as ?? and
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thus there exist t0 > 0 such that t0ϕ1 is a super-solution to (5) therefore,

using the classical monotone iteration method we get a positive solution.

3.1 Further investigations and existence results

Here we investigate the case where B < 0. The coercivity assumption implies

that

‖u‖ψ =

(∫
M
uPg,ψu

) 1
2

,

defines a norm equivalent to the H2(M) norm. So we will use that norm

instead of the usual one. Also we take Sψ the best Sobolev constant with

respect to this norm, that is Sψ is the est constant satisfying

‖u‖2
L2] Sψ ≤ ‖u‖

2
ψ

Remark that for B < 0 this condition still work, but let us try to find an-

other condition that works in a weaker setting. We will rewrite the problem

as  Pg,ψu = A(x)
up +B(x)uq

u > 0
, (8)

and B here is taken to be positive (in fact one get a similar result if B has a

negative part up to a small modification to the assumption in the following

theorem).

For the regularity issues we refer to [5] and [5], there one can find the

necessary regularity and bootstrapping argument to deal with it.

Theorem 3.6. Assume that P is strongly positive (that is it satisfies the

strong maximum principle). If there exist a function ϕ > 0 in H2 (M) such

that

‖ϕ‖(p−1)
ψ ‖B‖

p+1
q−1

L
2]

2]−q−1

(∫
M

A

ϕp−1

)
< C (9)
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then problem (8) has at least one positive smooth solution.

In fact we will compute an exact value of C, That is

C = S
− (q+1)(p+2q+1)

2(q−1)

ψ

(
(q − 1) (p− 1)

2

)
(10)

Befor Starting the proof let us state the following lemma which appears to

be helpful in our situation.

Lemma 3.7. Let E, E1, E2 be three C1 functional on a Banach space X.

Assume that E1(0) = 0 and limE(tϕ) = −∞. and E2 ≥ 0. Then If E1 has

the montainpass geometry around zero, (that is there exist r > 0 such that

δ = inf∂B(0,r)E1 > 0) and there exist u ∈ B(0, r) such that E2(u) < δ, the

functional E has a Palais-Smale sequence.

Proof of Lemma. Here is is easy to see that if we concider the set

Γ = {γ : [0, 1] −→ X such that γ(0) = u and γ(1) = tϕ}

then we get a Palais-Smale sequence at the level

c = inf
γ∈Γ

maxE(γ([0, 1]))

Since each curve crosses ∂B(0, r), then c > max(E(u), E(tϕ)), and thus we

have a mountain pass geometry.

Proof. In fact let ϕ be a positive function such that ‖ϕ‖ψ = 1 and the energy

functional

E(u) =
1

2
‖u‖2ψ +

1

p− 1

∫
M

A

(ε+ u2)
p−1
2

− 1

q + 1

∫
M
Buq+1.

Clearly the functional E1 defined by

E1(u) =
1

2
‖u‖2ψ −

1

q + 1

∫
M
Buq+1

15



has the mountain pass geometry and in fact if r0 = ‖B‖
−1
q−1

Ls S
− q+1

2(q−1)

ψ then

inf
u∈∂B(0,r0)

E1(u) = ‖B‖
−2
q−1

Ls S
− q+1

q−1

(
q − 1

2

)
And therefore the inequality (9) is exactly saying that that t0ϕ satisfies the

assumption of Lemma (3.7) for t0 < r0 and thus we have the existence of

t0 < r0 < t2 such that,

max(E(t0ϕ), E(t2ϕ)) < E(r0ϕ)

And in fact we can apply the lemma for the following approximated energy

functional

Eε(u) =
1

2
‖u‖2ψ +

1

p− 1

∫
M

A(
ε+ (u+)2

) p−1
2

− 1

q + 1

∫
M
B
(
u+
)q+1

for ε > 0 and small. Remark that we have uniform convergence of t −→

Eε(tϕ) to t −→ E(tϕ), on every compact of R. Therefore there exist ε0 > 0

such that for every 0 < ε ≤ ε0 one have

max(Eε0(t0ϕ), Eε0(t2ϕ)) ≤ max(Eε(t0ϕ), Eε(t2ϕ)) < Eε(r0ϕ) ≤ E(r0ϕ).

(11)

Therefore if we take

Γ =
{
γ : [0, 1] −→ H2 (M) such that γ (0) = t0ϕ; γ (1) = t2ϕ

}
we have a Palais-smale sequence at the level

cε = inf
γ∈Γ

max
u∈γ([0,1])

Eε(u)

notice that from (11)

inf
u∈∂B(0,r0)

E1(u) < cε < E(r0ϕ)
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and thus cε is uniformly bounded. Let us call that Palais-Smale sequence

(uεk)k, it satisfies then

Eε(u
ε
k) −→ cε and E′ε(u

ε
k) −→ 0 in H−2 as k −→∞.

Thus The following holds

O(‖uεk‖ψ) = (q + 1)Eε(u
ε
k)−

〈
E′ε(u

ε
k), u

ε
k

〉
(12)

=
(q − 1)

2
‖uεk‖

2
ψ +

(
q + 1

p− 1
− 1

)∫
A(

ε+
(
uε+k
)2) p−1

2

+ ε

∫
A(

ε+
(
uε+k
)2) p+1

2

(13)

Therefor ∥∥∥ukε∥∥∥
ψ

= O(1),

which implies the boundedness of (uεk)k in H2 (M) and thus the existwwence

of uε ∈ H2 (M) such that
uεk ⇀ uε weakly in H2

uεk −→ uε strongly in L2

uεk ⇀ uε weakly in L2]

,

so take η ∈ C∞(M), the previous assertion gives that∫
M
ηPg,ψuε =

∫
M

Au+
ε η(

ε+
(
u+
ε

)2) p−1
2

+

∫
M
Buqεη

thus uε is a weak solution to the problem

Pg,ψuε =
Au+

ε(
ε+

(
u+
ε

)2) p+1
2

+Buqε (14)

hence uε is smooth and positive.

First, assume that
(
q+1
p−1 − 1

)
> 0, then

(q + 1)Eε(uε)−
〈
E′ε(uε), uε

〉
= (q + 1)) cε

17



therefore from (12) we get∫
M

A(
ε+ (uε)

2
) p+1

2

< C1 (15)

‖uε‖H2 < C2

where C1, C2 are constants independant of ε. Thus we can extract a subse-

quence of (uε)ε that we will call (uεk)εk so that
uεk ⇀ u weakly in H2(M)

uεk −→ u strongly in Ls(M) for 1 < s < 2]

uεk −→ u a.e on M.

Thus using Fatou’s lemma in (15) we get∫
M

1

up+1
< C1. (16)

Assume now that there exist xk −→ x such that uεk(xk) −→ 0. Then using

the integral representation we get

uεk(xk) ≥
∫
M
G(xk, y)B (y)uqεk(y)dy

where G is the Green’s function of the operator Pg,ψ. Taking k −→ 0 we get∫
M
G(x, y)B (y)uq(y)dy = 0,

thus u = 0 which is impossible because of (16), therfor uε is uniformly

bounded from below.

So now we can pass to the weak limit in (14) to get.∫
M
ηPg,ψu =

∫
M

ηA

up
+

∫
M
Buqη, for every η ∈ C∞(M),

hence, since u is positively bounded from below, we get a smooth positive

solution to

Pg,ψu =
A

up
+Buq.
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If p−1 = q+1 (and that is the case of the Lichnerowicz Equation), to find a

uniform bound on
∫
M

A

(ε+(uε)2)
p+1
2

, we use the fact that ‖uε‖ψ is uniformly

bounded, and Sobolev embedding to get a uniform bound on
∫
M Buq+1

ε and

thus we get the desired bound.

Corollary 3.8. Under the assumption of the previous theorem, we have the

existence of another positive solution

Proof. If we take a look at the inequality (9) we notice that it is open,

that is iw we pertube B a small perturbation, we still get the same ex-

istence result. So let us call uB the solution corresponding to B. Then

using a comparison principle, we get uB−ε < uB+ε and they are a pair of

sub and super-solution to the problem (8), therefore we have the existence

of a solution ũ to the problem, and to guaranty that uB 6= ũ we use a

degree theory argument since every positive smooth solution is in the set

A =
{
u ∈ C4,α (M) ; 1

C < u < C
}

for C > 0 large enough and uniform.

Corollary 3.9. There exist a constant C = C(n,M,Qψ) > 0 such that, if

Pg,ψ is strongly positive and

(maxB)
3n−4

8

∫
M
A < C

the Paneitz-Lichnerowicz Problem admits at least one positive solution.

For the proof of this corollary, we just take ϕ = 1 in (9), and the Sobolev

embedding

H2(M) ↪→ L2] (M) .
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4 Non existence Result

Theorem 4.1. Assume that A,B ≥ 0, then if

(∫
M
A

q
p+qB

p
q+p

) (p+q)(q−3)
q(p+q−2)


(
q−1
p+1

) 1−q
p+q−2

(∫
M A

q
p+qB

p
q+p

) (p+q)2
q(p+q−2)

+
(
q−1
p+1

) p+1
p+q−2

 >

(∫
M

(
Q+
ψ

) q
q−1

B
− 1

q−1

) q−1
q

,

then the problem does not posses any positive smooth solution, where Qψ =

Q− |∇ψ|2g

Proof. Let u be a positive solution, then the follwong holds :∫
M

A

up
+

∫
M
Buq =

∫
M
Qψu

using the fact that∫
M
Qψu ≤

(∫
M

(
Q+
ψ

) q
q−1

B
− 1

q−1

) q−1
q
(∫

M
Buq

) 1
q

Also ∫
M
A

q
p+qB

p
q+p ≤

(∫
M

A

up

) q
p+q
(∫

M
Buq

) p
q+p

therefore if we set X =
∫
Buq, one gets

X +

((∫
M
A

q
p+qB

p
q+p

)) p+q
q

X
− p

q ≤
(∫

M

(
Q+
ψ

) q
q−1

B
− 1

q−1

) q−1
q

X
1
q

Which is equivalent to say that

X
1− 1

q +

(∫
M
A

q
p+qB

p
q+p

) p+q
q

X
− p+1

q ≤
(∫

M

(
Q+
ψ

) q
q−1

B
− 1

q−1

) q−1
q

Therefore if

(∫
M
A

q
p+qB

p
q+p

) (p+q)(q−3)
q(p+q−2)


(
q−1
p+1

) 1−q
p+q−2

(∫
M A

q
p+qB

p
q+p

) (p+q)2
q(p+q−2)

+
(
q−1
p+1

) p+1
p+q−2

 >

(∫
M

(
Q+
ψ

) q
q−1

B
− 1

q−1

) q−1
q

then there is no smooth positive solution to the problem.
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5 Conclusion

As a conclusion of the previous existence and non-existence result, we can

set for the sake of simplicity, A = 1, B = λ ∈ R, and we get the following

corollary if we consider the following problem

Pg,ψu =
1

up
+ λuq. (17)

Corollary 5.1. If Pg,ψ is strongly positive, then there exist a constant λ∗ > 0

such that

i)Problem has no positive smooth solution if λ > λ∗.

ii)Problem has at least one positive solution if λ < λ∗.

Moreover we have the following estimate(
V ol(M)

− 2]−q−1

2] C

(
n− 4

2

∫
M
Qψ

)−(p−1)
) q−1

p+1

< λ∗ < V ol(M)
− (p+q)(q−1)

pq+q−2

(
q − 1

p+ 1

) q(q−1)
pp+q−2

‖Qψ‖
q(p+q−2)
pq+q−2
q

q−1
,

where C is the constant (10).
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