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FOLIATED STOCHASTIC CALCULUS: HARMONIC

MEASURES

PEDRO J. CATUOGNO, DIEGO S. LEDESMA AND PAULO R. RUFFINO

Abstract. In this article we present an intrinsec construction of
foliated Brownian motion via stochastic calculus adapted to foli-
ation. The stochastic approach together with a proposed foliated
vector calculus provide a natural method to work on harmonic
measures. Other results include a decomposition of the Laplacian
in terms of the foliated and basic Laplacians, a characterization
of totally invariant measures and a differential equation for the
density of harmonic measures.

1. Introduction

Harmonic measures in a foliated Riemannian manifold are invariant
measures for foliated Brownian motion (FoBM), which is a diffusion
associated to the foliated Laplacian ∆E . A Borel measure µ is harmonic
if for any leafwise C2-function f ,∫

M

∆Ef dµ = 0.

Harmonic measures have a central place in the ergodic theory of foli-
ations and in the study of asymptotic properties of the leaves. It has
been introduced by Garnett [6] and developed in many articles by Can-
del [2], Kaimanovich [11], Yue [19], Adams [1], Ghys [8], Ledrappier [13]
and others.
In this article we apply stochastic calculus in foliated Riemannian

manifold focusing mainly the theory of harmonic measures. Precisely,
we present an intrinsec construction of foliated Brownian motion via
stochastic calculus adapted to foliation (Theorem 3.4). The stochas-
tic approach together with a proposed foliated vector calculus provide
a natural method to work on harmonic measures. Other results in-
clude a decomposition of the Laplacian in terms of the foliated and
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basic Laplacians (Theorem 2.1), a characterization of totally invariant
measures (Theorem 4.3) and a differential equation for the density of
harmonic measures (Theorem 4.6).
The article is organized in the following way. In section 2, we intro-

duce the foliated operators and study properties of foliated Laplacian.
In section 3, we develop the foliated stochastic calculus, where we con-
struct a FoBM in a similar way of the construction of the Brownian
motion of Eells-Elworthy-Malliavin (e.g. [4], [10], among others). In
section 5, we study the harmonic measures. Some examples are given
along the text.

2. The foliated Laplacian

In this section we introduce the fundamental operators which are
structural in the theory of foliated spaces. Our framework here is a
Riemannian manifold (M, g) which is foliated by a family of submani-
folds F which is characterized by the integrable distribution E ⊆ TM
given by the tangent bundle of the leaves. Let π : TM → E be the
orthogonal projection on E, naturally the metric g induces metrics gE
and g⊥ in E and E⊥ respectively.
Let ∇ be the Levi-Civita connection inM with respect to g. Denote

by ∇E the connection on E induced by ∇, i.e.

∇E
XY = π∇XY

for all X ∈ TM and Y in Γ(E), the space of smooth sections of E over
M . The connection ∇E is the Levi-Civita connection on the leaves
with respect to gE.

Definition 2.1. Let f : M → R be a smooth function and X, Y
sections of E. We define the foliated operators:

a) gradE f = π(grad f);

b) divE Y = TrE g(∇E
· Y, · ), where TrE is the trace on E;

c) HessE(f)(X, Y ) = XY (f)−∇E
XY f ;

d) ∆Ef = divE(gradEf) = TrEHessEf .

Extending vector fields and smooth functions from a leaf to the man-
ifold M , one sees that the operators above are the natural extension of
the corresponding operator on the leaf.
Given {X1, . . . , Xp} a local orthonormal basis of E, the following

classical formulae hold:

a) gradE f =
∑p

i=1(Xif)Xi,
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b) divE Y =
∑p

i=1

(
g(∇E

Xi
Y,Xi)

)
,

c) ∆Ef =
∑p

i=1HessEf(Xi, Xi).

Comparing the Hessian on M with the foliated operator HessE , we
have that

(1) Hessf(X, Y ) = HessEf(X, Y )−W (X, Y )f

where W (X, Y ) is the second fundamental form of the foliation. Also,
by this formula one finds that

∆Ef = TrE (Hessf) +Kf,(2)

where K is the mean curvature of the foliation, defined as K = TrEW .
Given smooth functions f and h, the classical formulae below hold:

(3) HessE(fh) = hHessEf + fHessEh + dh|E ⊗ df |E + df |E ⊗ dh|E
and

(4) ∆E(fh) = f∆Eh+ h∆Ef + 2 g(gradEf, gradEh).

Following the definition presented by Rumler [16] and [17] we intro-
duce the characteristic form of F .

Definition 2.2. Let E be an orientable bundle. The characteristic
form of F , denoted by χE, is the differential p-form on M defined by

χE(Y1, . . . , Yp) = det[g(Yi, Ej)]

where Y1, . . . , Yp ∈ TM and {E1, . . . , Ep} is a local positively oriented
orthonormal basis of sections of E.

The restriction of χE to tangent vectors to a leaf L ∈ F is an induced
volume form in L. The characteristic form fits well in the approach
proposed here in the sense that we recover the classical formula:

Lemma 2.1. Let Y ∈ Γ(E). Then

divE (Y )χE = LY χE

where LY is the Lie derivative.

Proof. Let {E1, . . . , Ep} be a local positively oriented orthonormal basis
of sections of E. Symmetry of the connection implies that

gE(LYEj , Ej) = −gE(∇E
Ej
Y,Ej),
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hence

LY χE(E1, . . . , Ep) = −
p∑

j=1

χE(E1, . . . , LYEj , . . . , Ep)

= −
p∑

j=1

gE(LYEj , Ej)χE(E1, . . . , Ep)

=

p∑

j=1

gE(∇E
Ej
Y,Ej)χE(E1, . . . , Ep)

= divE (Y )χE(E1, . . . , Ep).

�

Again, using the terminology of Rumler [16], we introduce the fol-
lowing

Definition 2.3. Let E⊥ be a orientable bundle and q = n − p. The
characteristic transverse form of F , denoted by χE⊥, is the differential
q-form on M defined by

χE⊥(Y1, . . . , Yq) = det[g(Yi, Ej)]

where Y1, . . . , Yq ∈ TM and {Ep+1, . . . , En} is a local positively oriented
orthonormal basis of sections of E⊥.

The following identity holds:

Lemma 2.2.

(5) dχE⊥ = −κ♭ ∧ χE⊥,

where κ = πE

(∑n
j=p+1∇Ej

Ej
)
.

Proof. Let {Ep+1, . . . , En} be a local positively oriented orthonormal
basis of sections of E⊥.
Initially, note that if Y ∈ E⊥, both sides of the Equation (5) vanish

in the (q + 1)-uple (Y,Ep+1, . . . , En). For Y ∈ E we have that

g(LYEj , Ej) = g(Y,∇Ej
Ej).
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Since iY χE⊥ = 0, by Cartan formula:

dχE⊥(Y,Ep+1, . . . , En) = LY χE⊥(Ep+1, . . . , En)

= Y (χE⊥(Ep+1, . . . , En))

−
n∑

j=p+1

χE⊥(Ep+1, . . . , LYEj , . . . , En)

= −g
(
Y,

n∑

j=p+1

∇Ej
Ej

)

= −g(Y, κ).
Thus

dχE⊥(Y,Ep+1, . . . , En) = −
n∑

j=p+1

g(Y, πE∇Ej
Ej) = −κ♭(Y ),

for all Y ∈ TM . �

The vector field κ defined in the lemma above can also be character-
ized as the unique section on E such that

(6) κ♭(X) = divE (X)− div(X),

for all X ∈ E. Yet, κ is the trace on E⊥ of the bilinear form b, defined
by

b(V,W ) = π∇VW.

The Laplacian ∆M can be written in terms of the foliated Laplacian
∆E, the section κ and the basic Laplacian ∆b. Let δb is the formal
adjoint of the exterior derivative d restricted to basic forms and denote
by ∗ the Hodge star operator (see e.g. Tondeur [18, p. 134]). The basic
Laplacian ∆bf = δbdf is the second order operator given by

∆bf = (−1)p(q−1) ∗
[
K♭ ∧ (∗(df ∧ χE)) ∧ χE)− d(∗(df ∧ χE)) ∧ χE)

]
.

Theorem 2.1. If M is oriented, then

∆f = (∆Ef − κf) + (−1)pq+1∆bf.

Proof. Orientability of M implies that χ⊥ = ∗χ. Iniciatially, consider
a vector field Y in M . We claim that

iY χ
⊥ = (−1)p ∗ (Y ♭ ∧ χ).(7)

In fact, let {V1, . . . , Vq, E1, . . . , Ep} be an adapted orthonormal basis of
TM and consider its dual basis {V ♭

1 , . . . , V
♭
q , E

♭
1, . . . , E

♭
p}. We have

χ = E♭
1 ∧ . . . ∧ E♭

p and χ⊥ = V ♭
1 ∧ . . . ∧ V ♭

q .
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It is enough to prove the equality for Y = Vj, for j = 1, . . . , q. But, for
a fixed j, Equation (7) follows from

iVj
χ⊥ = (−1)j+1(V ♭

1 ∧ . . . ∧ V̂ ♭
j ∧ . . . ∧ V ♭

q )

and

∗(V ♭
j ∧ χ) = (−1)p+j−1(V ♭

1 ∧ . . . ∧ V̂ ♭
j ∧ . . . ∧ V ♭

q ).

Secondly, let f be a smooth function in M , by Cartan formula,

di(grad f) χ
⊥ = di(π⊥grad f) χ

⊥

= L(π⊥grad f) χ
⊥ − i(π⊥grad f) dχ

⊥,(8)

where π⊥ : TM → E⊥ is the orthogonal projection. Equation (5)
implies that,

iπ⊥grad fdχ
⊥ = k♭ ∧ iπ⊥grad fχ

⊥

= k♭ ∧ igrad fχ
⊥.(9)

Rumler formula (Tondeur [18, pg. 66]) says that

LZχ|E +K♭(Z)χ|E = 0, ∀Z ∈ E⊥.(10)

Hence, combining the above equations, we have that

(−1)pd ∗ (df ∧ χ) ∧ χ = (digrad fχ
⊥) ∧ χ by (7)

= (Lπ⊥grad fχ
⊥) ∧ χ

−k♭ ∧ (igrad fχ
⊥) ∧ χ by (8) and (9)

= Lπ⊥grad fµg

−χ⊥ ∧ (Lπ⊥grad fχ)

= Lπ⊥grad fµg +K(f)µg,

by Equation (10). Again, by Equation (7) and the fact thatK♭∧χ⊥ = 0
one can show that

(−1)pK♭ ∧ ∗(df ∧ χ) ∧ χ = K♭ ∧ igrad fχ
⊥ ∧ χ

= −igrad f(K
♭ ∧ χ⊥) ∧ χ+ (igrad fK

♭) χ⊥ ∧ χ
= K(f)µg.

Now, replacing this formula in the definition of ∆b, we obtain

∆bf = −(−1)pqdiv(π⊥grad f).

Thus, decomposing grad f into tangential and normal components:

∆f = (∆Ef − κf) + (−1)pq+1∆bf.

�
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In order to construct foliated Brownian motion in the next section,
we have to study the horizontal lift of the foliated Laplacian. We
consider the principal bundle O(E) of orthonormal frames in E, with
projection r : O(E) →M and structural group O(p).

The induced connection ∇E gives a partition of the tangent bundle
of O(E) into a vertical space V O(E) and a horizontal space HO(E)
such that TO(E) = V O(E)⊕HO(E) (see e.g. Kobayashi and Nomizu
[12]).
For each v in Rp the standard vector field Hv in O(E), is given

by the unique Hv(u) ∈ HO(E)u such that r∗(Hv(u)) = uv. For an
orthonormal frame {e1, . . . , ep} of Rp, we define the horizontal foliated
Laplacian in O(E) as

∆H
E =

p∑

i=1

(Hei)
2.

One checks that it is independent of the basis.

The following lemma shows that ∆H
E is the horizontal lift of ∆E :

Lemma 2.3. For f ∈ C∞(M), the following identity holds

∆H
E (f ◦ r) = (∆Ef) ◦ r.

Proof. We first observe that

Hej(f ◦ r)(u) = g (gradEf(r(u)), uej) .

For the second derivative, consider a horizontal curve ut in O(E) such
that u0 = u and u̇t = Hei(ut). Then, for each ei, the vector field utei
is the parallel transport of uei along γt = r(ut) with respect to the
connection ∇E . Hence,

HeiHej(f ◦ r)(u) =
d

dt

∣∣∣∣
t=0

g
(
gradEf(r(ut)), utej

)

= g
(
∇E

uei
gradEf(r(u)), uej

)

= HessEf(uei, uej) ◦ r(u).
So,

∆H
E (f ◦ r)(u) =

(
p∑

i=1

HessEf(uei, uei)

)
◦ r(u).

�
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3. The foliated Brownian motion

In this section we introduce the probabilistic aspects which are the
key points of our approach. We shall denote by (Ω,F, {Ft},P) a filtered
probability space satisfying the usual completeness conditions.
A semimartingale X in M will be called foliated if each trajectory

stays in a single leaf. Furthermore, a foliated semimartingale X will
be called a foliated martingale if for any smooth function f ,

f(X)− f(X0)−
1

2

∫

0

HessEf(dX, dX)

is a local martingale. Foliated martingales may not be martingales in
M ; precisely, this fact depends on the geometry of the foliation:

Proposition 3.1. Foliated martingales are martingales in M if and
only if the foliation is totally geodesic.

Proof. A foliation is totally geodesic when HessEf(X, Y ) = Hessf(X, Y )
for all f ∈ C∞(M), hence the result follows.
Conversely, consider γ a geodesic of a leaf. We have to proof that γ

is a geodesic in M . For a linear Brownian motion B, the process X =
γ(B) is a foliated martingale, hence, by hypothesis, it is a martingale
in M . By standard calculation

∫
d2

dt2
f(γ)(B)dt =

∫
HessMf(dX, dX)

=

∫
(γ∗ ⊗ γ∗)

∗HessMf(dB, dB)

=

∫
Tr(γ∗ ⊗ γ∗)

∗HessMf(B)dt

=

∫
HessMf(γ̇(B), γ̇(B))dt.

It follows that

d2

dt2
f(γ)(t) = HessMf(γ̇(t), γ̇(t)),

i.e. γ is a geodesic in M . �

Next result says that the foliated martingales also satisfy the non-
confluence property:

Proposition 3.2. For each x ∈ M there is an open neighborhood Ux ⊂
M such that, if X and Y are foliated martingales in Ux such that
XT = YT for a stopping time T then Xt = Yt a.e. for 0 ≤ t ≤ T .
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Proof. The proof follows similar ideas for nonconfluence of martingales
in a manifold as in Emery [5, p.52-53]. For a fixed point p ∈ M we
consider a convex function f defined on a neighborhood U ⊂ Lp ×
Lp where Lp is the leaf through of p. By continuity, we extend this

function to f̃ : Ũ ⊂ M × M → R such that HessE×E f̃(A,A) ≥ 0

for all A ∈ E × E and f̃ |{(x, x) ∈ Ũ} = 0. Clearly, there exists Ux

neighborhood of x such that Ux × Ux ⊂ Ũ . Let X and Y be foliated

martingales in Ux such that XT = YT a.e.. Using that f̃(X, Y ) is
a positive bounded submartingale null at time T , we conclude that
Xt = Yt a.e. for 0 ≤ t ≤ T . �

Let X be a foliated semimartingale. We says that X is a foliated
Brownian motion (FoBM) if for any smooth function f ,

f(X)− f(X0)−
1

2

∫

0

∆Ef(X) dt

is a local martingale. Note that a process X is a FoBM if and only if
it is a foliated martingale and for any smooth function f ,

(11) [f(X), f(X)] =

∫

0

|gradEf(X)|2dt.

The geometry of the foliation determines probabilistic properties of
FoBM:

Proposition 3.3. FoBM are martingales inM if and only if the leaves
are minimal submanifolds, i.e. the foliation is harmonic.

Proof. Let X be a FoBM. By Equation (2) and the definition, we have
that for all smooth function f ,

(12) f(X)− f(X0)−
1

2

∫

0

Hessf (dX, dX)− 1

2

∫

0

Kf(X) dt

is a local martingale. Since X is a martingale in M ,
∫

0

Kf(X) dt = 0,

hence K = 0.
Conversely, from Equation (12) and K = 0 we have that

f(X)− f(X0)−
1

2

∫

0

Hessf (dX, dX)

is a local martingale. Thus X is a martingale in M . �
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Garnett [6] introduced foliated heat kernels via foliated semigroups
of operators which depends strongly on the geometry of the foliation,
(see also Candel [2]). We can recovery the same semigroup considering
the semigroup associated to a FoBM, provided one can guarantees the
existence of this stochastic process.
Focusing in this direction, we present an intrinsec construction of

FoBM. Our argument corresponds to an adaptation to foliated spaces of
the techniques of Eells-Elworthy-Malliavin, classically used to construct
Brownian motions in a Riemaniann manifold (see e.g. [4], [10] and
references therein) .

Theorem 3.4. Let ut be the solution of the Stratonovich equation

dut =

p∑

i=1

Hei(ut) ◦ dBi,

where (B1, . . . , Bp) is the Brownian motion on Rp with u0 as initial
condition in O(E). Then r(ut) is a FoBM in M starting at r(u0).

Proof. For any smooth function f in M , applying Lemma 2.3, we have
that

f(r(u))− f(r(u0)) =

p∑

i=1

∫
Hei(f ◦ r)(u) dBi +

1

2

∫ p∑

i=1

H2
ei
(f ◦ r)(u)dt

=

p∑

i=1

∫
Hei(f ◦ r)(u) dBi

t

+
1

2

∫
∆Ef(r(u))dt.

�

Example 1: Let N and L be two Riemannian manifolds. Consider
the product M = N × L with the canonical foliation given by E =
TL ⊂ TM = TN ⊕ TL. The foliated Laplacian ∆E = ∆L, hence if W
is a Brownian motion in L then B = (x0,W ) is a FoBM.

2

Example 2: (Kronecker foliation) Consider the totally geodesic fo-
liation of the plane R2 along lines parallel to the vector (a, 1). The
process

B =
(a, 1)√
a2 + 1

W,
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where W is a linear Brownian motion is a foliated Brownian motion.
Now, denoting by T2 the 2-torus S1 × S1 ⊂ R4, let φ : R2 → T2 given
by

φ(x, y) = (cos(x), sin(x), cos(y), sin(y)).

The induced foliation by φ in T2 is called the Kronecker foliation,
Candel and Conlon [3]. We claim that φ(B) is a FoBM. In fact, E =
{λ(a∂x + ∂y), λ ∈ R} and

∆E =
1

a2 + 1
(a2∂2x + 2a∂2xy + ∂2y),

where ∂x = φ∗(e1) and ∂y = φ∗(e2).
For all smooth function f in T2,

f(φ(Bt)) = f(φ(x0)) +

∫ t

0

a(∂xf)(φ(Bs)) + (∂yf)(φ(Bs))dWs

+
1

2

∫ t

0

(∆Ef)(φ(Bs))ds.

Hence φ(B) is a foliated Brownian motion in the Kronecker foliation
of the torus.

2

Next proposition shows that 1-dimensional foliations generated by
unitary vector fields have an easy construction of FoBM:

Proposition 3.5. Let M be a foliated Riemannian manifold where the
distribution E is generated by a smooth unitary vector field Y . If φt is
the flow of diffeomorphisms associated to Y and B is a linear Brownian
motion, then φB(x0) is a FoBM starting at x0 ∈M .

Proof. We have that ∆E = Y 2 and φt(x0) is a geodesic in the leaf.
Hence φB(x0) is a martingale, so that

f(φB(x0))− f(φ0(x0))−
1

2

∫
∆Ef(φB(x0)) dt

is a local martingale for any smooth function f . So, φB(x0) is a FoBM
starting at x0. �

4. The Harmonic Measures

In this section we focus on the theory of harmonic measures, ac-
cording to Garnett [6], Candel [2] and others. The Markov semi-
group P (t, x, A) associated to the FoBM generates a Feller semigroup in
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C2(M) whose infinitesimal generator is 1/2∆E. The adjoint semigroup,
denoted by {T ∗

t }, acts on the measure space of M in the following way

T ∗
t µ(A) =

∫

M

P (t, x, A) µ(dx).

A measure µ is called invariant if T ∗
t µ = µ for all t ≥ 0. We recall

that a measure µ on a foliated manifold M is called harmonic if for all
smooth function f , ∫

M

∆Efdµ = 0.

Lemma 4.1. A Borel measure µ on M is harmonic if and only if it is
an invariant measure for FoBM.

Proof. The proof follows directly from the equality

d

dt

∫

M

Ttf dµ =
1

2

∫

M

∆ETtf dµ,

for all smooth function f .
�

As a consequence of the support theorem (see e.g. Ikeda-Watanabe
[10]), it follows that the support of a harmonic measure is a satured
set, i.e. it consists in a union of leaves. Next theorem extends results
of Garnett [6] on existence of harmonic measures.

Theorem 4.1. Let M be a foliated Riemannian manifold

1) If M is compact then there exist harmonic probability measure;
2) If the leaves are stochastically complete and there exists a smooth

function ϕ ≥ 0 on M such that

lim
d(x,x0)→∞

∆Eϕ(x) = −∞,

then there exist harmonic probability measure.
3) If ∆Ef ≡ 0 then f is constant in the leaves of the support of

any harmonic measure.

Proof. Item (1) follows directly from Lemma 4.1 and the existence of
invariant measure of diffusions in compact manifolds.

Item (2) is a consequense of Khas’minskii criterium for existence of
invariant measures, see e.g. Lorenzi and Bertoldi [14, p.172].

For (3), let f : M → R be a leafwise harmonic function (∆Ef = 0)
and µ a harmonic measure. Using Equation (4) one finds∫

M

|gradEf |2(x) µ(dx) =
1

2

∫

M

∆Ef
2(x) µ(dx) = 0.
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Then, by continuity of |gradEf |, f is constant in the leaves of the
support of µ.

�

Remark: Stochastic completeness in item (2) of the above Theorem
can be guaranteed by well known geometrical conditions on the leaves,
say, for example if the leaves are complete and∫ ∞

c>0

r dr

ln |B(r)| = ∞,

where |B(r)| is the volume of the geodesic ball of radius r, see Grigorian
[9, Thm. 9.1, p.184] or yet, in terms of curvature, if we have lower
bounds in the Ricci curvature, Elworthy [4].

Given M and M ′ two foliated Riemannian manifolds, we say that a
smooth map φ : M → M ′ is a foliated map if it preserves leaves. If
φ∗∆E = ∆′

E , and µ is a harmonic measure inM , note that the induced
measure φ∗µ is a harmonic measure in M ′.

Our formalism allows a direct proof of the result on superharmonic
functions on foliations in Adams [1]:

Theorem 4.2 (Adams). Let µ be a harmonic probability measure.
Consider f : M → (0,∞) a measurable function such that, for µ-a.s.
∆Ef ≤ 0. Then f is constant in each leaf µ-a.s.

Proof. Using the fact that for any smooth function φ we have that

∆E(φ ◦ f) = φ′(f(x))∆Ef(x) + φ′′(f(x))|gradEf(x)|2

then for u = ln(f + 1), u is positive and satisfies

|gradEu|2 +∆Eu =
∆Ef

f + 1
≤ 0,(13)

on µ-a.s., thus ∫

M

|gradEu|2 dµ ≤ 0,

hence gradEf = (1 + f) gradEu vanishes.
�

Example 3: Consider a torus T2 ⊂ R3 imersed isometrically with the
covering coordinate system φ : R2 → T2 given by

φ(x, y) =
(
(b+ cos(x)) cos(y), (b+ cos(x)) sin(y), sin(x)

)
,

with b > 1. In these coordinates the induced metric is

g = dx2 + (b+ cos(x))2dy2,
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and the associated Riemannian connection ∇ is characterised by

∇∂x∂x = 0, ∇∂x∂y =
− sin(x)

b+ cos(x)
∂y, ∇∂y∂y = (b+ cos(x))sin(x)∂x.

Consider the foliation E on T2 generated by

Y =
1√

α2 + 1

(
α∂x +

1

(b+ cos(x))
∂y

)
.

The leaf through (x0, y0) is the flow line of Y through (x0, y0), where
the flow ψ of Y can be represented in local coordinates as ψt(x0, y0) =
(xt , yt) with

xt = x0 +
α t√
1 + α2

(2π mod ),

yt = y0 + A+
2

α
√
b2 − 1

arctan

(√
b− 1

b+ 1
tan

(xt
2

))
(2π mod ),

A =
−2

α
√
b2 − 1

arctan

(√
b− 1

b+ 1
tan

(x0
2

))
(2π mod ).

We observe that

∇Y Y =
sin(x)

(1 + α2)(b+ cos(x))
∂x −

α sin(x)

(1 + α2)(b+ cos(x))2
∂y.

Then ∇E
Y Y = 0 and ∆E = Y 2. So, a FoBM in T2 is a solution of the

stochastic differential equation

dW = Y (W ) ◦ dB
W0 = p0 ∈M

with B the Brownian motion in R. Therefore the FoBM can be written
in coordinates as the solution of

dXt =
α√

1 + α2
dBt,

dYt =
1

(b+ cos(Xt))
√
1 + α2

dBt +
1

2

α sin(Xt)

(1 + α2)(b+ cos(Xt))2
dt.

So,

Xt = x0 +
α√

1 + α2
Bt (2π mod ),

Yt = y0 + A +
2

α
√
b2 − 1

arctan

(√
b− 1

b+ 1
tan

(
Xt

2

))

(2π mod ).
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Therefore, cf. Proposition 3.5, the FoBM starting at (x0, y0) is given
by Wt = ψBt

(x0, y0). A measure µ = h µg is harmonic for a smooth
function h if and only if h satisfies

Y 2(h) + 2 div(Y )Y (h) +
(
Y (div(Y )) + div(Y )2

)
h = 0.

Considering the case of h depending only on x, equation above reduces
to

(b+ cos(x))h′′(x)− 2 sin(x)h′(x)− cos(x)h(x) = 0.

Whose unique non-trivial normalized periodic solution is

h(x) =
1

4π2

1

(b+ cos(x))
.

2

In a foliated spaceM with orientable leaves which admit a holonomy
invariant measure ν, a harmonic measure can be constructed in terms
of ν. The p-current ϕν associated to ν is the funcional in Λp(M) given
by

ϕν(ω) =
∑

α∈U

∫

Sα

(∫

P

λαω

)
dν(P )

where λα is a partition of unity subordinated to a foliated atlas U , P
are plaques in Uα ∈ U and Sα is transversal in Uα (see Plante [15,
p.330] and Candel [2, p.235]).
The measure µν associated to the positive functional f 7→ ϕν(fχE)

is called in the literature a totally invariant measure (e.g. [15]). Such
associated measures have a further characterization which generalizes
similar result in [6]:

Theorem 4.3. Let M be a compact foliated Riemannian manifold leaf-
wise orientable. A measure µ is totally invariant if and only if

∫

M

divE X dµ = 0

for any X ∈ Γ(E).

Proof. Let µ be a totally invariant measure associated to ν. We have
to prove that

ϕν(divE XχE) = 0.

But

divE (X)χE = diXχE + iXdχE,

ϕν(dα) = 0 and iX (dχE) = 0 restricted to the leaves (cf. [18, p.69]).
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For the converse, note that µ is harmonic. There exists a foliated
atlas {Ui ≃ Ti × P} and an associated family of leafwise positive har-
monic functions hi : Ui → R with corresponding transverse measures
νi such that for any measurable function f ,∫

Ui

f dµ =

∫

Ti

∫

{t}×Dt

fχE dνi

see Garnett [6, Theorem 1-c] or Candel and Conlon [3, Vol II, Prop.2.4.10].
We take a partition of unity {λi} subordinated to the foliated atlas
{Ui ≃ Ti × P}. Hence
∫

M

divE (X) dµ =
∑

i

∫

M

divE (λiX)µ

=
∑

i

∫

Ti

(∫

{t}×Dt

divE (λiX)hi χE(t)

)
dνi(t)

=
∑

i

∫

Ti

(∫

{t}×Dt

divE (hiλiX) χE(t)

)
dνi(t)

−
∑

i

∫

Ti

(∫

{t}×Dt

λiX(hi) χE(t)

)
dνi(t)

= −
∑

i

∫

Ti

(∫

{t}×Dt

λiX(hi) χE(t)

)
dνi(t)

where each νi = p∗(µ|Ui
) is a measure over Ti induced by the projection

p : Ui → Ti. Thus,
∫
M
divE (X)µ = 0 for any X if and only if hi is

constant along the leaf, that is µ is associated to the transverse measure
ν =

∑
i hiνi which is invariant under holonomy transformations.

�

Corollary 4.4. Let M be a compact foliated Riemannian manifold
leafwise orientable. A measure µ is totally invariant if and only if∫

M

div(X) µ = −
∫

M

κ♭(X) µ

for all X ∈ Γ(E).

Proof. It follows directly from Equation (6). �

Proposition 4.5. Let M be a compact foliated Riemannian manifold
leafwise orientable with ν a holonomy invariant measure. If µ and µ̃ are
two harmonic measure such that µ̃ has a leafwise C2 Radon-Nikodym
derivative h with respect to µ, then h is constant in the leaf (a.e).
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Proof. We have by Equation (4),∫

M

|gradEh|2µ =
1

2

∫
∆Eh

2 µ−
∫

M

(∆Eh) µ̃ = 0.

�

Harmonic measures which are absolutely continuous with respect to
the Riemanian volume µg are characterized in the following:

Theorem 4.6. LetM be a compact foliated Riemannian manifold with-
out boundary and h be a non negative function which is C2 leafwise.
Then hµg is harmonic if and only if h satisfies

(14) div(gradEh− hκ) = 0 µg − a.s.

Proof. Firstly, we claim that the operator ∆E − κ is self-adjoint. In
fact, by Equation (6) we have that

(∆Ef − κf)µg = div(gradEf)µg.

Using that

div (h gradEf) = g(gradEf, gradEh) + h div(gradEf),

one finds that∫

M

h(∆E − κ)fµg =

∫

M

h div(gradEf)µg

= −
∫

M

g(gradEf, gradEh)µg

=

∫

M

f div(gradEh)µg

=

∫

M

f(∆E − κ)hµg.

For any smooth function f we have that

div(fhκ) = hκ(f) + fκ(h) + fhdiv(κ).

Hence,∫

M

fdiv(gradEh− hκ) µg =

∫

M

f(∆Eh− 2κh− div(κ)h)µg

=

∫

M

f(∆Eh− κh)µg +

∫

M

(κf)hµg

=

∫

M

(∆Ef)hµg

which vanishes for any f if and only if hµg is harmonic.
�
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Corollary 4.7. Let M be a compact foliated Riemannian manifold
without boundary. Then div(κ) = 0 if and only if for every non-negative
leafwise constant function h the measure µ = hµg is harmonic.

Corollary 4.8. Let M be a compact foliated Riemannian manifold
without boundary. Then

∫

M

|gradEh|2 dµg = −1

2

∫

M

h2div(κ) µg,

for any leafwise harmonic function h.

Proof. One uses that ∆E−κ is selfadjoint, Equation (4) and the Gauss
theorem to find that

0 =

∫

M

(∆E − κ)h2µg = 2

∫

M

|gradEh|2µg −
∫

M

κ(h2)µg.

�

Example 4: LetM be a quotient of the universal covering of Sl(2,R)
by a cocompact lattice. Denote by {X, Y,H} an orthonormal basis of
TM satisfying

[X,H ] = X [X, Y ] = −H [H, Y ] = Y.

Consider the foliation induced by E = span{X,H}. We have that

∆E = X2 +H2 +H.

Hence FoBM satisfies the following stochastic differential equation

dB = Hdt+H ◦ dB1 +X ◦ dB2

where (B1, B2) is the Brownian motion in R2. In this case we also have
that κ = H and div(κ) = 0 which implies that the volume measure µg

and any hµg with h constant in the leaves are harmonic (cf. Corollary
4.7). But any smooth h which is leafwise constant is constant in M :
In fact, note that for any smooth function f ,

(15)

∫

M

Hf µg =

∫

M

LH(fµg)−
∫

M

fdivHµg

and both terms on the right hand side vanishes by Cartan formula and
Stokes theorem. Moreover, we observe that

H(Y h) = Y h+ Y Hh

= Y h.
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Hence, applying Equation (15) to (Y h)2,

0 =

∫

M

H(Y h)2µg = 2

∫

M

(Y h)H(Y h)µg

= 2

∫

M

(Y h)2µg.

Then h is constant.
2

Example 5: (Lie foliations) Let M be a manifold and g a Lie algebra
of dimension q. Assume that there exists a non singular surjective
g-valued 1-form θ which satisfies the Maurer-Cartan formula

dθ +
1

2
[θ, θ] = 0.

Consider the Lie foliation E = ker θx.
Let Y1, . . . , Yq be vector fields in TM such that θ(Yi), i = 1. . . . , q is

an orthonormal basis in g. We introduce an adapted metric onM , i.e.,
a metric g such that g(Yk, Yj) = δkj and Y1, . . . , Yq is an orthonormal
basis of E⊥. Hence, for all X ∈ E,

g(κ,X) =

q∑

k=1

g(∇Yk
Yk, X) = g([Yk, X ], Yk) = 0.

Then κ = 0 therefore the volume measure µg and any hµg with h
constant in the leaves are harmonic (cf. Corollary 4.7).

2
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Departamento de Matemática, Universidade Estadual de Campinas,,

13.081-970 - Campinas - SP, Brazil.

E-mail address : pedrojc@ime.unicamp.br ; dledesma@ime.unicamp.br and

ruffino@ime.unicamp.br


	1. Introduction
	2. The foliated Laplacian
	3. The foliated Brownian motion
	4. The Harmonic Measures
	References

