
Constant-Rounds, Linear Multi-party Computation for

Exponentiation and Modulo Reduction ∗

Chao Ning and Qiuliang Xu †

School of Computer Science and Technology, Shandong University,
Jinan, 250101, China

ncnfl@mail.sdu.edu.cn, xql@sdu.edu.cn

Abstract

Bit-decomposition is an important primitive in multi-party computation (MPC). Given a shar-
ing of secret a, it allows the parties to compute the sharings of the bits of a in constant rounds. With
the help of bit-decomposition, we will be able to construct constant-rounds protocols for various
MPC problems, such as equality test, comparison, public modulo reduction and private exponentia-
tion, which are four main applications of bit-decomposition. However, bit-decomposition does not
have a linear communication complexity. Thus any protocols involving bit-decomposition inherit
this inefficiency. Constructing protocols for MPC problems without relying on bit-decomposition is
a meaningful work because this may provide us with constant-rounds protocols with linear commu-
nication complexity. It is already proved that equality test, comparison and public modulo reduction
can be solved without involving bit-decomposition and the communication complexity can be re-
duced to linear. However, it remains an open problem whether private exponentiation could be
done with linear communication. In this paper, maybe somewhat surprisingly, we show that it can.
That is to say, we construct a constant-rounds, linear protocol for private exponentiation without
relying on bit-decomposition though it seems essential to this problem. Compared with the previous
solution for this problem (relying on bit-decomposition), our protocol has a lower round complexity
and a much lower communication complexity.

In a recent work, Ning and Xu proposed a generalization of bit-decomposition which can, given
a sharing of secret a and an integer m ≥ 2, compute the sharings (or bitwise sharings) of the base-m
digits of a. They also proposed a linear protocol for public modulo reduction as a simplification
of their generalization. In this paper, we show that their generalization can be further generalized.
More importantly, as a simplification of our further generalization, we propose a public modulo
reduction protocol which is more efficient than theirs. Specifically, the round complexity of our
(modulo reduction) protocol is the same with theirs, but the communication complexity can be
considerably lower.

Keywords. Multi-party Computation, Constant-Rounds, Linear, Exponentiation, Modulo Reduc-
tion, Bit-Decomposition.

∗Supported by the National Natural Science Foundation of China under Grant No. 60873232.
†Corresponding author.

1

Contents

1 Introduction 3
1.1 Our Results . 3
1.2 Related Work . 4

2 Preliminaries 5
2.1 Notations and Conventions . 5
2.2 Known Primitives . 6

3 Multi-party Computation for Private Exponentiation with BD 7
3.1 The Public Exponentiation Protocol . 7
3.2 The Bit Exponentiation Protocol . 8
3.3 The Private Exponentiation Protocol with BD . 9

4 Linear Multi-party Computation for Private Exponentiation 9
4.1 The Private Exponentiation Protocol without BD . 9
4.2 A Further Improvement . 11

5 Further Generalization of BD and Improved Solution for Public Modulo Reduction 13

6 Conclusion and Future Work 15

A Extending to ZN 17

B An Overview of Known Primitives 18

C An Overview of The New Protocols 18

D Hierarchy of The Protocols for Exponentiation 19

2

1 Introduction

Multi-party computation (MPC) is a powerful and interesting tool in cryptology. It allows a set of
n mutually un-trusted parties to compute a predefined function f with their private information as
inputs. After running the MPC protocol, the parties obtains only the predefined outputs but nothing
else, and the privacy of their inputs is guaranteed. Although generic solutions for MPC (which can
compute any function f) already exist [BGW88, GMW87], these solutions tend to be inefficient and
thus not applicable for practical use. So, to fix this problem, we focus on constructing efficient protocols
for specific functions.

Recently, in the work [DFK+06], Damg̊ard et al. proposed a novel technique called bit-decomposition
which can, in constant rounds, convert a polynomial sharing of secret a into the sharings of the bits
of a. Bit-decomposition (which will often be referred to as BD hereafter for short) is a very useful
tool for MPC. For example, after getting the sharings of the bits of some shared secrets using BD, we
can securely perform Boolean operations on these secrets (such as computing the Hamming Weight,
XOR, etc). Thus we can say that BD can be viewed as a “bridge” (in the world of MPC) connecting
the arithmetic circuits and the Boolean circuits. What’s more, with the help of BD, we can construct
constant-rounds protocols for some very important basic problems in MPC, such as equality test, com-
parison, public modulo reduction and private exponentiation, which are four main applications of BD.
After getting the bitwise sharings of the shared inputs to these problems (using BD), we will be able
to use the divide and conquer technique to solve these problems.

However, a problem is, BD is relatively expensive in terms of round and communication com-
plexities, and thus all the protocols relying on BD inherit this inefficiency. A feasible solution for
this problem is to construct protocols for MPC problems without relying on BD. It is already proved
that, three of the four main applications of BD, i.e. equality test, comparison and public modulo re-
duction, can be realized without relying on BD [NO07, NX10] and the main advantage is that the
communication complexity can be reduced to linear. Thus a natural problem is whether a similar
conclusion can be arrived at for another important application of BD: private exponentiation. This
is generally believed to be impossible before (e.g. [NO07, RT09]), however, in this paper, we show
that it can. What’s more, we show an improvement of the public modulo reduction protocol (without
BD) proposed in [NX10]. The details of our results are presented below. Here we’d like to argue that
although these four applications of BD can be realized without involving BD, this does not mean BD is
meaningless for these problems because all these protocols (without relying on BD) depend heavily on
the ideas, techniques and sub-protocols of BD and thus can be viewed as an extension of the research
on BD.

1.1 Our Results

First we introduce some necessary notations. In this paper, we concern mainly about MPC based
on linear secret sharing schemes (LSSS). Assume that the underlying LSSS is built on field Zp where
p is a prime with bit-length l (i.e. l = dlog pe). For an element a = (al−1, ..., a1, a0) ∈ Zp, we use
[a]p to denote “the sharing of a”, and [a]B to denote “the bitwise sharing of a” (which will also be
referred to as “the sharings of the bits of a” or “the shared base-2 form of a” in this paper), i.e.
[a]B = ([al−1]p, ..., [a1]p, [a0]p). Our work is mainly about two basic problems in MPC: the private
exponentiation problem and the public modulo reduction problem. The details are presented below.

3

The private exponentiation problem can be formalized as:

[xa mod p]p ← Private-Exponentiation([x]p, [a]p)

where x, a ∈ Zp.
Hereafter we will refer to [xa mod p]p as [xa]p for simplicity. For solving this problem, it seems

that we must involve BD to get the bitwise sharing of the exponent, i.e. [a]B. This is exactly the case
in the private exponentiation protocol in [DFK+06]. However, in this paper we show that this is not
necessary. That is to say, the private exponentiation problem can also be solved without relying on
BD and the communication complexity can also be reduced to linear (in the input length l). Compared
with the private exponentiation protocol in [DFK+06] (denoted as Pri-Expo-BD(·) in this paper), our
protocol (denoted as Pri-Expo+(·)) reaches lower round complexity and much lower communication
complexity.

The public modulo reduction problem (which will be referred to as Pub-MRP for short) can be
formalized as:

[a mod m]p ← Public-Modulo-Reduction([a]p, m)

where a ∈ Zp and m ∈ {2, 3, ..., p− 1}.
Our work on this problem can be viewed as an extension of [NX10], in which Ning and Xu pro-

posed a generalization of BD and, as a simplification of their generalization, they proposed a linear
protocol for Pub-MRP without involving BD (denoted as Pub-MR(·) in this paper). In this paper, we
propose a further generalization of their generalization and, similarly and more importantly, as a sim-
plification of our further generalization, we propose a protocol for Pub-MRP with improved efficiency
(denoted as Pub-MR+(·)). Specifically, the round complexity of our Pub-MR+(·) protocol is the same
with Pub-MR(·) and, for relatively small m, the communication complexity is reduced by a factor of
approximately 4.

Finally, we’d like to stress that all the protocols presented in this paper are constant-rounds and
unconditionally secure. See Appendix C (Table 2) for an overview of our protocols.

1.2 Related Work

Both of the two problems considered in this paper, exponentiation and modulo reduction, are appli-
cations of bit-decomposition (BD). The problem of BD was first considered by Algesheimer et al. in
[ACS02], in which a partial solution was proposed. The first full solution for BD in the secret sharing
setting was propose in [DFK+06] by Damg̊ard et al. The main concern of this work is constant-rounds
solution for BD and this is achieved by realizing various constant-rounds sub-protocols which are im-
portant building blocks for subsequent research including ours. What’s more, as an application of
BD, they also proposed a private exponentiation protocol which is the foundation of our work. Inde-
pendently and concurrently, Shoenmakers and Tuyls [ST06] solved the problem of BD for MPC based
on (Paillier) threshold homomorphic cryptosystems [CDN01, DN03] and they concern mainly about
efficient variations of BD for practical use. In the work [NO07], Nishide and Ohta proposed solutions
for interval test, comparison and equality test of shared secrets without relying on the expensive BD
protocol although it seems necessary. Their ideas and techniques play an important role in our work.
Recently, Toft showed a novel technique that can reduce the communication complexity of BD to
almost linear [Tof09]. This is a very meaningful work and some key ideas of our work come from it.
In a followup work, Reistad and Toft proposed a linear BD protocol [RT09], however, the security of
this protocol is non-perfect.

4

As for the public modulo reduction problem (Pub-MRP), Guajardo et al. proposed a protocol for
it in the threshold homomorphic setting without relying on BD [GMS10]. Their protocol is efficient
and can be very useful for practical use, however, they did not consider the general case (of Pub-MRP)
where the inputs can be arbitrary size. In [NX10], Ning and Xu proposed a generalization of BD, and,
as a simplification of their generalization, they proposed a linear protocol (without BD) for Pub-MRP
which can deal with arbitrary inputs. Our work on Pub-MRP depends heavily on their work.

2 Preliminaries

In this section we introduce some important notations and known primitives.

2.1 Notations and Conventions

As mentioned above, the MPC considered in this paper is based on LSSS, such as Shamir’s [Sha79].
We denote the underlying field (of the LSSS) as Zp where p is a prime with bit-length l = dlog pe. For
a secret a ∈ Zp, we use [a]p to denote the sharing of a and [a]B to denote the bitwise sharing of a.
What’s more, assume that there are n participants in the MPC protocol.

As in previous works, such as [DFK+06, NO07], we assume that the underlying LSSS allows to
compute [a + b mod p]p from [a]p and [b]p without communication, and that it allows to compute
[ab mod p]p from (public) a ∈ Zp and [b]p without communication. We also assume that the LSSS
allows to compute [ab mod p]p from [a]p and [b]p through communication among the parties and we
call this procedure secure multiplication (or multiplication for simplicity). One invocation of this
multiplication will be denoted as

[ab mod p]p ← Sec-Mult([a]p, [b]p)
in which [ab mod p]p will be referred to as [ab]p for simplicity. Obviously, for MPC protocols, this
multiplication protocol is a dominant factor of complexity as it involves communication. So, as in
previous works, the round complexity of the (MPC) protocols is measured by the number of rounds of
parallel invocations of multiplication (Sec-Mult(·)), and the communication complexity is measured by
the number of invocations of multiplication. For example, if in all a protocol involves a multiplications
in parallel and then another b multiplications in parallel, then we can say that the round complexity
of this protocol is 2 and the communication complexity is a + b multiplications. What’s more, if a
procedure does not involve any secure multiplication, then it can be viewed as free and will not count
for complexity. For example, if we get [a]B, then [a]p can be freely obtained by a linear combination
since a =

∑l−1
i=0 ai · 2i.

As in [NO07], when we write [C]p, where C is a Boolean test, it means that C ∈ {0, 1} and C = 1

iff C is true. For example, we use [x
?= y]p to denote the output of the equality test protocol, i.e.

(x
?= y) = 1 iff x = y holds.
Given [c]p, we need a protocol to reveal c, which is denoted by c ← Reveal([c]p). Note that

although this protocol involves communication, it does not count for (both round and communication)
complexity because the communication it involves can be carried out through a broadcast channel.

As in [Tof07], we will often use the conditional selection command below:
[C]p ← [b]p ? [A]p : [B]p

in which A, B,C ∈ Zp and b ∈ {0, 1}, and which means the following:
If b = 1, then C is set to A; otherwise, C is set to B.

It is easy to see that this command can be realized by setting

5

[C]p ← [b]p([A]p − [B]p) + [B]p
which costs only 1 round and 1 multiplication. We will frequently use this conditional selection
command in this paper because it can make our protocols easier to be understood.

2.2 Known Primitives

We will now simply introduce some existing primitives which will be of importance later on. We refer
the readers to [DFK+06, NO07, Tof09] for detailed descriptions of these primitives.

• Random Bit Protocol. The Random-Bit(·) protocol has no input and it will output a
shared uniformly random bit [b]p which is unknown to all parties. In the secret sharing setting,
it takes only 2 rounds and 2 multiplications [DFK+06].
• Bitwise Less-Than Protocol. Given two bitwise shared inputs, [x]B and [y]B, the Bit-

LessThan(·) protocol can compute a shared bit [x
?
< y]p which identifies whether x < y holds.

The complexity of this protocol can be referred to as 6 rounds and 14l multiplications when
l ≥ 36 holds which is often the case in practice [Tof09, NX10].
• Secure Inversion Protocol. Given a shared non-zero secret [x]p as input, the secure inversion

protocol Sec-Inver(·) will output [x−1 mod p]p. This protocol will cost only 2 rounds and 2
multiplications [BB89, DFK+06, NO07].
• Unbounded Fan-In Multiplication. In this paper, we will often need to perform the un-

bounded fan-in secure multiplication [BB89, CFL83b], i.e. given l sharings [A0]p, [A1]p, ..., [Al−1]p
where Ai ∈ Zp for i ∈ {0, 1, ..., l − 1}, computing a sharing [A]p where A =

∏l−1
i=0 Ai mod p. By

the detailed analysis in [NO07], we get to know that this protocol, denoted as Sec-Prod∗(·) in
this paper, can be realized in only 3 rounds and 5l multiplications.
• Equal-Zero Test Protocol. In [NO07], a linear protocol Equ-Zero(·) was proposed for testing

whether a given secret [x]p is 0 or not, i.e. we have [x
?= 0]p ← Equ-Zero([x]p). Obviously, this

protocol can also be used to test whether two shared secrets [x]p and [y]p are equal because
“x = y”⇔ “(x− y) = 0”. The complexity of this protocol is 8 rounds and 81l multiplications.
• Generation of Bitwise Shared Random Value. This protocol, denoted by Solved-Bits(·),

has no input and can output a bitwise shared random integer [r]B satisfying r < p. The
complexity of this protocol can be referred to as 7 rounds and 56l multiplications when l ≥ 36
[Tof09].
• Bit-Decomposition (BD). In the secret sharing setting, the function of BD can be described

as converting [x]p to [x]B, i.e. we have [x]B ← BD([x]p) [DFK+06]. To the best of our knowledge,
currently the most efficient version of BD (with unconditional security) was proposed in [Tof09],
whose complexity can be referred to as 23 rounds and 76l + 31l log l multiplications when l ≥ 36.
We note that [Tof09] also proposed a BD protocol with almost-linear communication complexity
(i.e. O(l log∗ l) multiplications or even lower). This is of course a very meaningful work. However,
inevitably the round complexity of this version of BD is relatively high and thus for obtaining
(private exponentiation) protocols with close and comparable round complexities, (as well as for
notational convenience) we do not referred to this BD protocol in detail in this paper.

See Appendix B (Table 1) for an overview of these known primitives.

6

3 Multi-party Computation for Private Exponentiation with BD

In [DFK+06], a constant-rounds private exponentiation protocol was constructed with the help of BD.
This protocol is the foundation of our work and in our exponentiation protocol, we need to use the
sub-protocols of it. So, in this section, we describe in detail this private exponentiation protocol with
BD. We will first introduce two important sub-protocols of it, i.e. the public exponentiation protocol
and the bit exponentiation protocol. All the protocols in this section are re-descriptions of the ones in
[DFK+06] but with detailed analysis.

3.1 The Public Exponentiation Protocol

With a shared non-zero value [x]p (i.e. x ∈ Z∗p) and a public value a ∈ Zp as inputs, the public
exponentiation protocol, Pub-Expo(·), can compute [xa]p. The details are presented in Figure 1.
Generally speaking, this protocol is a slightly improved version of the one in [DFK+06].

Protocol [xa]p ← Pub-Expo([x]p, a)
This protocol requires that x 6= 0.

1. Every party Pi (i ∈ {1, 2, ..., n}) picks a random integer ri ∈ Z∗p and computes r−a
i . Then Pi

shares ri and r−a
i between the parties, i.e. the parties get [ri]p and [r−a

i]p.
2. The parties compute

[r]p ← Sec-Prod∗([r1]p, [r2]p, ..., [rn]p)
[r−a]p ← Sec-Prod∗([r−a

1]p, [r−a
2]p, ..., [r−a

n]p)
3. [xr]p ← Sec-Mult([x]p, [r]p)
4. xr ← Reveal([xr]p)
5. Return [xa]p = (xr)a · [r−a]p

Figure 1: The Public Exponentiation Protocol

As for the correctness, notice that in Step 4 we need to reveal the value of xr where r is non-zero,
and it is easy to see that xr = 0⇔ x = 0. This is just why this protocol requires that x 6= 0: if x = 0,
then the parties will get to know this in this step. Also note that in this protocol the public exponent
−a is the additive inverse of a in the sense of mod (p− 1) rather than mod p.

Privacy is straightforward.
The complexity will be discussed in two cases: the semi-honest case and the malicious case. The

difference between these two cases lies in Step 1 where every party Pi (i ∈ {1, 2, ..., n}) is required to
distribute two sharings, [ri]p and [r−a

i]p, between the parties. Below we will first analyze the complex-
ity of this step. Before going on, recall the well-known fact that when considering the communication
complexity of MPC protocols (in the LSSS setting), 1 invocation of the secure multiplication is equiv-
alent to distributing n sharings between the n parties and thus the communication complexity of
distributing 1 sharing can be viewed as 1

n multiplications.
In the semi-honest case, all the n parties follow the protocol, so every party distributes 2 sharings

between all the n parties, thus the complexity of Step 1 is 1 round and 2
n · n = 2 multiplications.

In the malicious case, as mentioned in [DFK+06], the complexity is much higher because we need
to involve the cut-and-choose technique to make the protocol robust. Specifically, besides [ri]p and
[r−a

i]p, every party Pi (i ∈ {1, 2, ..., n}) is required to distribute another two sharings [si]p and [s−a
i]p.

7

Then the parties involve the Random-Bit(·) protocol to jointly form a shared random bit [bi]p and open
it. Then they open ([si]p, [s−a

i]p) or compute and open ([siri]p, [s−a
i r−a

i]p) according to the value of bi

and then verify that the first value is non-zero and that the second value is the (−a)’th power of the
first. We call the above process one instance of cut-and-choose. For every party Pi (i ∈ {1, 2, ..., n}),
to get a lower error probability, we can repeat the above process k (which satisfies k ≥ 1 and which
will be referred to as “the security parameter for cut-and-choose”) times in parallel, leading to an error
probability 2−k. Then we can say that in all we need kn instances of cut-and-choose in parallel. As
for the complexity of one instance, we notice the following facts: distributing [si]p and [s−a

i]p between
the parties involves 2

n multiplications; the generation of [bi]p involves 2 rounds and 2 multiplications
and can be scheduled in parallel with the process of distributing [si]p and [s−a

i]p; the computation of
([siri]p, [s−a

i r−a
i]p) involves 1 round and 2 multiplications and, obviously, on average we need only to

compute ([siri]p, [s−a
i r−a

i]p) once every 2 instants of cut-and-choose because bi is a uniformly random
bit. So, on average, the complexity of one instance is (at most) 2+1 = 3 rounds and 2

n +2+2· 12 = 2
n +3

multiplications. Recall that in all we need kn parallel instances of cut-and-choose. What’s more, notice
that the process of cut-and-choose can be scheduled in parallel with the process of distributing [ri]p and
[r−a

i]p. So, in the malicious case, the complexity of Step 1 is 3 rounds and 2+kn ·(2
n +3) = 2+2k+3kn

multiplications.
Then it is easy to see that, in the semi-honest case, the overall complexity of this Pub-Expo(·)

protocol is Rpub , Rs−h
pub = 1 + 3 + 1 = 5 rounds and Cpub , Cs−h

pub = 2 + 5n · 2 + 1 = 10n + 3
multiplications; in the malicious case, the overall complexity is Rpub , Rmal

pub = 3 + 3 + 1 = 7 rounds
and Cpub , Cmal

pub = (2 + 2k + 3kn) + 5n · 2 + 1 = 3kn + 10n + 2k + 3 multiplications. Recall that n
denotes the number of the parties and k is the security parameter for cut-and-choose. Hereafter, we
will generally refer to the complexity of this protocol as Rpub rounds and Cpub multiplications. The
values of Rpub and Cpub are determined by the adversaries considered; moreover, we can say that both
Rpub and Cpub can be viewed as constants because they are independent from (the input length) l.

3.2 The Bit Exponentiation Protocol

With a shared non-zero value [x]p and a bitwise shared value [a]B = ([al−1]p, ..., [a1]p, [a0]p) as inputs,
the bit exponentiation protocol, Bit-Expo(·), can compute [xa]p. The details are seen in Figure 2.

Protocol [xa]p ← Bit-Expo([x]p, [a]B)
This protocol requires that x 6= 0.

1. For i = 0, 1, ..., l − 1 in parallel: [Ai]p ← Pub-Expo([x]p, 2i)
2. For i = 0, 1, ..., l − 1 in parallel: [Bi]p ← [ai]p ? [Ai]p : 1
3. Return [xa]p ← Sec-Prod∗([Bl−1]p, ..., [B1]p, [B0]p)

Figure 2: The Bit Exponentiation Protocol

Correctness and privacy is straightforward. The complexity of this protocol is Rpub+1+3 = Rpub+4
rounds and Cpub · l + l + 5l = (Cpub + 6)l multiplications.

8

3.3 The Private Exponentiation Protocol with BD

Here we come to the private exponentiation protocol relying on BD proposed in [DFK+06], which will
be denoted by Pri-Expo-BD(·). Given two shared inputs [x]p and [a]p, Pri-Expo-BD(·) will output
[xa]p. This time, both x and a can be arbitrary values in Zp. See Figure 3 for the details.

Protocol [xa]p ← Pri-Expo-BD([x]p, [a]p)

1. [b]p ← Equ-Zero([x]p)
2. [x̃]p = [x]p + [b]p
3. [a]B ← BD([a]p)
4. [x̃a]p ← Bit-Expo([x̃]p, [a]B)
5. Return [xa]p = [x̃a]p − [b]p

Figure 3: The Private Exponentiation Protocol with BD

As for the correctness, notice that b = (x
?= 0) and that [x̃]p = [x]p + [x

?= 0]p is always non-zero
and thus can be given to Bit-Expo(·) as the first input. What’s more, it can be easily verified that

[xa]p = [x̃a]p − [x
?= 0]p always holds no matter x is 0 or not. Using x̃ to substitute x to perform the

protocol is in fact the “exception trick” proposed in [DFK+06] for handling the special case where
x = 0. This “exception trick” can be re-described using the conditional selection command as follows:

first we set [x̃]p ← [x
?= 0]p ? 1 : [x]p thus x̃ is always non-zero; then, after getting [x̃a]p, we can set

the expected value [xa]p to be [xa]p ← [x
?= 0]p ? 0 : [x̃a]p.

Privacy follows readily from only using private sub-protocols.
As for the complexity, it is easy to see that only the three sub-protocols, i.e. Equ-Zero(·), BD(·) and

Bit-Expo(·), count for complexity; what’s more, Equ-Zero(·) and BD(·) can be scheduled in parallel.
So the overall complexity of this protocol is 23 + (Rpub + 4) = Rpub + 27 rounds and 81l + (76l +
31l log l) + ((Cpub + 6)l) = 163l + Cpub · l + 31l log l multiplications.

4 Linear Multi-party Computation for Private Exponentiation

In this section, we propose a private exponentiation protocol with constant round complexity and
linear communication complexity. Specifically, we will first show how to remove the invocation of BD
to get a protocol with linear communication complexity. Then we will further improve this linear
protocol to reduce the communication complexity considerably.

4.1 The Private Exponentiation Protocol without BD

See Figure 4 for our private exponentiation protocol without BD which will be denoted as Pri-Expo(·).
As for the correctness, similar to the Pri-Expo-BD(·) protocol (in Figure 3), we use the non-zero

[x̃]p to substitute [x]p to perform the main process. The main idea of this protocol is as follows.
First we compute [C̃]p = [x̃a+r]p. Notice that we have c = a + r mod p and there are two cases:

no wrap-around mod p occurs or there is a wrap-around. In the former case, a + r = c holds over the
integers (or we can say “a + r = c holds unconditionally”) and then we have c ≥ r because a ≥ 0;
similarly, in the latter case, a + r = c + p holds over the integers and then we have c < r because

9

Protocol [xa]p ← Pri-Expo([x]p, [a]p)

1. [b]p ← Equ-Zero([x]p)

2. [x̃]p = [x]p + [b]p
3. [r]B ← Solved-Bits() . Recall that [r]B implies [r]p.

4. [c]p = [a]p + [r]p
5. c← Reveal([c]p) . c = a + r mod p

6. [C]p ← Pub-Expo([x̃]p, c) . C = x̃c mod p

7. [C ′]p ← Sec-Mult([C]p, [x̃]p) . C ′ = C · x̃ = x̃c+1 = x̃c+1+ϕ(p) = x̃c+p mod p

8. [f]p ← Bit-LessThan(c, [r]B)

9. [C̃]p ← [f]p ? [C ′]p : [C]p . C̃ = x̃a+r mod p

10. [R]p ← Bit-Expo([x̃]p, [r]B)

11. [R−1]p ← Sec-Inver([R]p) . R−1 = x̃−r mod p

12. [x̃a]p ← Sec-Mult([C̃]p, [R−1]p)

13. Return [xa]p = [x̃a]p − [b]p

Figure 4: The Private Exponentiation Protocol without BD

c = r+(a−p) and a < p. So, for computing [x̃a+r]p, we can compute both of the two possible values of
it, [x̃c]p and [x̃c+p]p, and then select the correct one; this selection can be carried out by testing whether
c < r holds. What’s more, when computing [x̃c]p we need to involve the Pub-Expo(·) protocol; however,
this is not necessary when computing [x̃c+p]p because we have: x̃c+p = x̃c+p−(p−1) = x̃c+1 = x̃c · x̃
mod p.

Then, in the following steps, after getting [R]p = [x̃r]p using the Bit-Expo(·) protocol, we can
obtain [x̃a]p based on the simple fact x̃a = x̃a+r · (x̃r)−1 mod p. Then finally [xa]p can be easily
obtained.

Privacy is straightforward because the only information revealed is the uniformly random c.
As for the complexity, we notice the following facts: Step 1 and Step 3 can be scheduled in parallel;

Step 6 through Step 9 can be schedule in parallel with Step 10 through Step 11; Step 6 through Step
7 can be scheduled in parallel with Step 8. So it is easy to see that, both in the semi-honest case and
the malicious case, Step 6 through Step 9 involve Rpub + 1 + 1 = Rpub + 2 rounds and Step 10 through
Step 11 involve (Rpub + 4) + 2 = Rpub + 6 rounds. So the round complexity of Step 6 through Step 11
is Rpub + 6. Thus, both in the semi-honest case and the malicious case, the complexity of this protocol
(Pri-Expo(·)) can be referred to as 8 + (Rpub + 6) + 1 = Rpub + 15 rounds and

81l + 56l + Cpub + 1 + 14l + 1 + (Cpub + 6)l + 2 + 1 = 157l + Cpub · l + Cpub + 5
multiplications. Recall that both Rpub and Cpub can be viewed as constants, so this is a constant-rounds
protocol with linear communication complexity. Compared with the Pri-Expo-BD(·) protocol proposed
in [DFK+06] (whose complexity is Rpub + 27 rounds and 163l + Cpub · l + 31l log l multiplications), our
protocol has a lower round complexity and a significantly lower communication complexity.

10

4.2 A Further Improvement

In this section, we make a further improvement of our Pri-Expo(·) protocol above by improving one
of the sub-protocols of it, Bit-Expo(·), which is often the dominate factor of the communication
complexity. The improved version of Pri-Expo(·) and Bit-Expo(·) will be denoted as Pri-Expo+(·)
and Bit-Expo+(·) respectively. Generally speaking, by replacing the invocation of Bit-Expo(·) with
Bit-Expo+(·) in our Pri-Expo(·) protocol, we get our further improved private exponentiation protocol:
Pri-Expo+(·). The details are presented below.

In our Pri-Expo(·) protocol (in Figure 4), Bit-Expo(·) is a very important sub-protocol. Recall that
the communication complexity of this sub-protocol is (Cpub + 6)l multiplications; what’s more, in the
semi-honest case Cpub = Cs−h

pub = 10n+3, and in the malicious case Cpub = Cmal
pub = 3kn+10n+2k+3 (see

Section 3.1). In many cases, Bit-Expo(·) is relatively expensive. For example, in the malicious case, if
we set n = 20 and k = 10, then the communication complexity of Bit-Expo(·) will be (Cmal

pub +6)l = 829l
multiplications; at the same time, the communication complexity of the (whole) Pri-Expo(·) protocol
is (Cmal

pub + 157)l + Cmal
pub + 5 = 980l + 828 multiplications. So we can see that, in this case, Bit-Expo(·)

is obviously a dominate factor of the communication complexity of Pri-Expo(·). So, reducing the
communication complexity of Bit-Expo(·) is very meaningful.

The communication complexity of Bit-Expo(·) comes mainly from the l invocations of Pub-Expo(·)
which is non-trivial (See Figure 2 and Figure 1). Here we show a technique that can reduce the number
of invocations (of Pub-Expo(·)) to 2

√
l (with slight increase in round complexity) and thus reduce the

communication complexity significantly. The main idea, which is presented below, is somewhat similar
to that of the Prefix-Or protocol in [DFK+06, CFL83a].

Consider the case that we are going to compute xa. For the given exponent a = (al−1, ..., a1, a0) ∈
Zp, we divide a into s blocks, each of which including t bits. Obviously, we have s·t = l and 1 ≤ s, t ≤ l.
We denote the i’th block of a as as×t

i for i ∈ {0, 1, ..., s− 1}, and denote the j’th bit of the i’th block
as as×t

i,j for j ∈ {0, 1, ..., t− 1}. That is to say, we have

a = (al−1, ..., a1, a0) =
(
as×t

s−1, ..., a
s×t
1 , as×t

0

)
=
((

as×t
s−1,t−1, ..., a

s×t
s−1,1, a

s×t
s−1,0

)
, ...,

(
as×t

1,t−1, ..., a
s×t
1,1 , as×t

1,0

)
,
(
as×t

0,t−1, ..., a
s×t
0,1 , as×t

0,0

))
Obviously, as×t

i can be viewed as the i’th digit of the base-2t form of a. What’s more, we have
as×t

i,j = ai·t+j . Now we have the following equations:

xa = x

s−1∑
i=0

as×t
i ·(2t)i

=
s−1∏
i=0

xas×t
i ·(2t)i

=
s−1∏
i=0

(
xas×t

i

)(2t)i

=
s−1∏
i=0

x

t−1∑
j=0

as×t
i,j ·2

j

(2t)i

=
s−1∏
i=0

t−1∏
j=0

xas×t
i,j ·2

j

(2t)i

=
s−1∏
i=0

t−1∏
j=0

(
x2j
)as×t

i,j

(2t)i

=
s−1∏
i=0

t−1∏
j=0

(
as×t

i,j ? x2j
: 1
)(2t)i

Based on the above facts, we propose our improved Bit-Expo(·) protocol, Bit-Expo+(·), which
is presented in Figure 5. Note that in Figure 5, for the convenience of the forthcoming discussions,
the two variables s and t are not assigned. We will discuss how to assign them when analyzing the
complexity of this protocol.

11

Protocol [xa]p ← Bit-Expo+([x]p, [a]B)
This protocol requires that x 6= 0.

1. For j = 0, 1, ..., t− 1 in parallel: [Aj]p ← Pub-Expo([x]p, 2j)

2. For i = 0, 1, ..., s− 1 in parallel do
For j = 0, 1, ..., t− 1 in parallel: [Bi,j]p ← [as×t

i,j]p ? [Aj]p : 1 . as×t
i,j = ai·t+j .

[Bi]p ← Sec-Prod∗([Bi,0]p, [Bi,1]p, ..., [Bi,t−1]p)
[Ci]p ← Pub-Expo

(
[Bi]p, (2t)i

)
End for

3. Return [xa]p ← Sec-Prod∗([C0]p, [C1]p, ..., [Cs−1]p)

Figure 5: The Improved Bit Exponentiation Protocol

Correctness and privacy is straightforward. As for the complexity, notice that there are invocations
of Pub-Expo(·) in both Step 1 and Step 2. One important point is, these two places of invocations
can be scheduled partially in parallel. Specifically, when the invocations (of Pub-Expo(·)) in Step 1
are proceeding with the first two steps of Pub-Expo(·) (See Figure 1), the invocations in Step 2 can
also proceed with them. That is to say, although these two places of invocations can not be scheduled
(completely) in parallel, they will cost only 1 more round than one single invocation (note that Step
3 through Step 5 in Pub-Expo(·) (Figure 1) involve only 1 multiplication). So, the complexity of this
protocol is Rpub+1+3+1+3 = Rpub+8 rounds and Cpub ·t+t·s+5t·s+Cpub ·s+5s ≤ Cpub ·(s+t)+11l
multiplications. (Recall that s · t = l and 1 ≤ s ≤ l.)

It remains to assign concrete values to s and t. Note that we have s + t ≥ 2
√

s · t = 2
√

l and
s + t = 2

√
l iff s = t =

√
l. So we should set s = t =

√
l, because in this case the communication

complexity of this Bit-Expo+(·) protocol will be the lowest, i.e. Cpub ·2
√

l+11l multiplications. Then, if
we replace the invocation of Bit-Expo(·) in our Pri-Expo(·) protocol (in Figure 4) with the Bit-Expo+(·)
protocol here, we will get an improved private exponentiation protocol (denoted as Pri-Expo+(·))
whose complexity is Rpub + 19 rounds and 162l +Cpub ·2

√
l +Cpub + 5 multiplications. Compared with

Pri-Expo-BD(·) (whose complexity is Rpub + 27 rounds and 163l + Cpub · l + 31l log l multiplications),
our Pri-Expo+(·) protocol reaches lower round complexity and much lower communication complexity.
What’s more, we can say that, the larger Cpub is (which implies larger n and k), the greater advantage
our protocol has. For systems with relatively more participants, higher security requirements and
longer input length (i.e. l), our protocol can be of overwhelming advantage. (See Appendix C (Table
2) for an overview.)

Here is a further discussion. Consider the case where we need X (1 ≤ X ≤ l) parallel invocations
of this Bit-Expo+(·) protocol and where the first input to these invocations is the same value [x]p and
the second input is different, e.g. [ā0]B, [ā1]B, ..., [āX−1]B where āi ∈ Zp for i ∈ {0, 1, ..., X − 1}. (This
case will appear when we proceed with X parallel invocations of Pri-Expo+(·) with the first input be
the same and the second be different.) It is easy to see that when proceeding with these X invocations
(of Bit-Expo+(·)), all the [Aj]p (j = 0, 1, ..., t − 1) computed in Step 1 of Bit-Expo+(·) (in Figure 5)
can be reused between these invocations. That is to say, in all we need only to run Step 1 (in Figure
5) once for all these X invocations. So the communication complexity of these X invocations is not
X times of one single invocation (i.e. X · (Cpub · (s + t) + 11l)) but Cpub · (Xs + t) + 11Xl. Then by
the fact that Xs + t ≥ 2

√
Xs · t = 2

√
Xl and that Xs + t = 2

√
Xl iff Xs = t =

√
Xl, we can see, if

12

we set s =
√

l
X and t =

√
Xl, we can optimize the efficiency of these X invocations.

See Appendix A for some discussions on extending our techniques (on exponentiation) to ZN , and
see Appendix D (Figure 6) for a simple hierarchy of the protocols for exponentiation.

5 Further Generalization of BD and Improved Solution for Public
Modulo Reduction

Given a sharing of secret a, BD allows the parties to extract the shared base-2 form of a in constant
rounds. In the work [NX10], Ning and Xu show us a generalization of BD which is named as “Base-m
Digit-Decomposition” (or “Base-m Digit-Bit-Decomposition”) and which can extract the shared (or
bitwise shared) base-m form of a in constant rounds. We note that their generalization can be further
generalized to a “Hybrid-base Digit-Decomposition” (or “Hybrid-base Digit-Bit-Decomposition”) pro-
tocol which can extract the shared (or bitwise shared) hybrid-base form of a. Here hybrid-base means
the base of every digit can be different. For example, if we denote “9 weeks 6 days 23 hours 59 minutes
59 seconds” as a = 9 6 23 59 59 , then a can be used to represent the total seconds and can be
viewed as a hybrid-base integer with bases (from left to right) 10, 7, 24, 60, 60. Here the left-most
base (i.e. “10”) can be set as we wish, but other bases are fixed.

Below we discuss the relationship between “the value of an integer” and “the bases” in another
point of view. Specifically, we list 3 cases below.

1. Getting the base-2 form of a ∈ Zp

In this case, we get l = dlog pe bits ai ∈ {0, 1} for i ∈ {0, 1, ..., l − 1} satisfying

a =
l−1∑
i=0

(
ai · 2i

)
2. Getting the base-m form of a ∈ Zp

Similarly, in this case, for the given base m ≥ 2, we get l(m) = dlogm pe digits a
(m)
i ∈ {0, 1, ...,m−

1} for i ∈ {0, 1, ..., l(m) − 1} satisfying

a =
l(m)−1∑

i=0

(
a

(m)
i ·mi

)
3. Getting the hybrid-base form of a ∈ Zp

Given an l(M) size array of bases M [] =
[
ml(M)−1, ...,m1, m0

]
satisfying mi ≥ 2 for i ∈ {0, 1, ...,

l(M) − 1} and
∏l(M)−2

i=0 mi < p <
∏l(M)−1

i=0 mi, we get l(M) digits a
(M)
i ∈ {0, 1, ...,mi − 1} for

i ∈ {0, 1, ..., l(M) − 1} satisfying

a =
l(M)−1∑

i=0

a
(M)
i ·

i−1∏
j=−1

mj

in which we set m−1 = 1. Here, we call

(
a

(M)

l(M)−1
, ..., a

(M)
1 , a

(M)
0

)
the hybrid-base form of a defined

by M [].

13

It is easy to see that in the hybrid-base case (i.e. Case 3) if we set the array of bases M []
to be [m, ...,m, m] where l(M) = l(m), then we will get the base-m case (i.e. Case 2); if we set
M [] = [2, ..., 2, 2] where l(M) = l, we will get the base-2 case (i.e. Case 1).

Given a shared secret [a]p and an array of bases M [], our “Hybrid-base Digit-Decomposition”
(or “Hybrid-base Digit-Bit-Decomposition”) protocol, whose asymptotic complexity is O(1) rounds
and O(l(M) log l(M)) (or O(l log l)) multiplications, can output the shared (or bitwise shared) hybrid-
base form of a defined by M [] (i.e. the sharings (or bitwise sharings) of all the digits a

(M)
i for

i ∈ {0, 1, ..., l(M) − 1}) which will be referred to as [a]MD (or [a]MD,B). That is to say, we have

[a]MD ← Hybrid-base Digit-Decomposition([a]p, M []);

[a]MD,B ← Hybrid-base Digit-Bit-Decomposition([a]p, M []).

The intuition behind our further generalization is similar to that of the generalization of BD in
[NX10]. Specifically, as shown in [NX10], for getting the shared (or bitwise shared) base-m form of
a, we need to randomize [a]p using a jointly generated random integer r whose bitwise shared base-m
form is known to the parties. That is to say, the parties generate an array of bitwise shared base-m
digits to form r. Here, a base-m digit is in fact a non-negative integer less than m. Similarly, to obtain
the shared (or bitwise shared) hybrid-base form of a (which is defined by M []), we should randomize
[a]p using a (jointly generated random) integer r+ whose bitwise shared hybrid-base form (which is
also defined by M []) is known to the parties. This is the key idea of our further generalization and
is also the key difference between our further generalization and the generalization in [NX10]. And
of course we need to generalize other primitives in [NX10] (e.g. Digit-Bit-wise-Subtraction(·), Digit-
Bit-wise-LessThan(·), etc), however, we do not discuss this in detail here because the main ideas of
the generalized version of these primitives are quite similar to that of the original ones (in [NX10]).
Our further generalization can be useful in practice because we may often use hybrid-base values in
real life, for example, values about time, the license plate numbers (which always include letters and
numbers) and the ID-card numbers in some countries, etc. On the other hand, it may also be useful
in theory due to the loose restriction on the bases (i.e. the array of bases M []). We can set M [] =[
ml(M)−1, ...,m1, m0

]
freely and the only constraint is mi ≥ 2 for i ∈ {0, 1, ..., l(M) − 1}. For example,

if we set mi = i + 2, then for a given shared secret a, we can get the sharings (or bitwise sharings) of
all the digits a

(M)
i ∈ {0, 1, ..., i + 1} for i ∈ {0, 1, ..., l(M) − 1} satisfying a =

∑l(M)−1
i=0

(
a

(M)
i · (i + 1)!

)
which may be useful somewhere.

More importantly, as a simplification of our “Hybrid-base Digit-Decomposition” protocol, we can
get an improved public modulo reduction protocol (denoted as Pub-MR+(·) here) which is more
efficient than the one in [NX10] (denoted as Pub-MR(·)). Specifically, in [NX10], for solving Pub-MRP
(i.e. computing [a mod m]p from [a]p and m ∈ {2, 3, ..., p − 1}), Ning and Xu view this problem as
extracting only (the sharing of) the least significant base-m digit of a, and thus their modulo reduction
protocol (i.e. Pub-MR(·)) can be viewed as a simplification of their “Base-m Digit-Decomposition”
protocol (which extracts (the sharings of) all the base-m digits). In another point of view, we can say
that they set M [] = [m, ...,m, m] and extract only (the sharing of) a

(M)
0 (see Case 3 above). This is

obviously correct because in this case we have a =
∑l(M)−1

i=0

(
a

(M)
i ·mi

)
. However, this is not a must,

and we find that, by setting M [] = [2, ..., 2, 2, m] where l(M) =
⌈
log
⌊ p

m

⌋⌉
+ 1, we can also solve Pub-

MRP because in this case we have a =
∑l(M)−1

i=1

(
a

(M)
i · 2i−1 ·m

)
+ a

(M)
0 and thus a

(M)
0 = a mod m.

That is to say, in the case where M [] = [2, ..., 2, 2, m], if we extract only (the sharing of) the least

14

significant digit, which can be viewed as a simplification of our “Hybrid-base Digit-Decomposition”,
we can also get [a mod m]p.

Below we show the advantage of our Pub-MR+(·) protocol over Pub-MR(·). Similar to the gen-
eralization and further generalization of BD, when computing [a mod m]p from [a]p and m, both
Pub-MR(·) and our Pub-MR+(·) need to use a jointly generated random integer to randomize [a]p.
The key difference between these two (modulo reduction) protocols lies just in the generation of this
random integer. Specifically, in the Pub-MR(·) protocol, the random integer needed, denoted as r
here, should be of a “hybrid-base” form defined by M [] = [m, ...,m, m] (where l(M) = l(m)); whereas
in our Pub-MR+(·) protocol, the random integer needed, denoted as r+, should be of a hybrid-base
form defined by M [] = [2, ..., 2, 2, m] (where l(M) =

⌈
log
⌊ p

m

⌋⌉
+ 1). Then obviously, in Pub-MR(·)

when generating r, we need to generate l(M) = l(m) (bitwise shared) base-m digits, whereas in our
Pub-MR+(·) when generating r+, we need only to generate 1 such digit. This is just the advantage of
our improved public modulo reduction protocol. Reducing the demand for such base-m digits is very
meaningful because the generation of them is a non-trivial work. Specifically, when m is a non-power
of 2, roughly speaking the generation of 1 such digit will cost 8 rounds and 64L(m) multiplications
where L(m) , dlog me denotes the bit-length of m [NX10].

Finally, we conclude that, the complexity of our Pub-MR+(·) protocol is 22 rounds and (about)
78l+276L(m) multiplications. Compared with Pub-MR(·) (whose complexity is 22 rounds and (about)
326l + 28L(m) multiplications), we can see that, for relatively small m where L(m) is very small (e.g.
l = 256, m = 100 thus L(m) = 7), the communication complexity is reduced considerably.

6 Conclusion and Future Work

Conclusion. In this paper, we first focus on the open problem whether the private exponentiation prob-
lem (for computing [xa mod p]p from [x]p and [a]p) can be solved without relying on bit-decomposition
and show that it can. Specifically, we propose a private exponentiation protocol (i.e. Pri-Expo+(·))
without bit-decomposition which reaches constant round complexity and linear communication com-
plexity. From Appendix C (Table 2, which is an overview of the new protocols in this paper) we can
see that our (private exponentiation) protocol is much more efficient than the previous solution in
[DFK+06] (i.e. Pri-Expo-BD(·)).

Then, we propose an extension of [NX10] in which Ning and Xu proposed a generalization of
bit-decomposition which can output the shared (or bitwise shared) base-m form of a shared secret
a (“Base-m Digit-Decomposition” or “Base-m Digit-Bit-Decomposition”) and, as a simplification of
their generalization, they also proposed a linear protocol for the public modulo reduction problem
(for computing [a mod m]p from [a]p and a public m) without relying on bit-decomposition (i.e. Pub-
MR(·)). Based on their work, we propose a further generalization of bit-decomposition which can
output the shared (or bitwise shared) hybrid-base form of a (“Hybrid-base Digit-Decomposition” or
“Hybrid-base Digit-Bit-Decomposition”) and as a simplification of our further generalization, we show
an improved public modulo reduction protocol (Pub-MR+(·)).
Future Work. In our private exponentiation protocol, we need an important sub-protocol called
public exponentiation protocol (i.e. Pub-Expo(·)) for computing [xa mod p]p from [x]p and a public
a. A problem is, the communication complexity of this sub-protocol is relatively high and more
importantly, the communication complexity depends on n and k (see Section 3.1 for the details). We
leave it an open problem to construct more efficient protocols for this problem and protocols with

15

communication complexity independent from n and k would be most welcome. What’s more, in our
private exponentiation protocol when involving Pub-Expo(·), the second input (i.e. the public a in
Figure 1) is (almost) always a power of 2. So designing more efficient public exponentiation protocols
for this special case is also meaningful.

References

[ACS02] Algesheimer, J., Camenisch, J.L., Shoup, V.: Efficient Computation Modulo A Shared
Secret with Application to the Generation of Shared Safe-Prime Products. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417-432. Springer, Heidelberg (2002)

[BB89] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant num-
ber of rounds of interaction. In: 8th ACM Symposium on Principles of Distributed Com-
puting, pp. 201-209. ACM Press, New York (1989)

[BGW88] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Noncrypto-
graphic Fault-Tolerant Distributed Computations. In: 20th Annual ACM Symposium on
Theory of Computing, pp. 1-10. ACM Press, New York (1988)

[CDN01] Cramer, R., Damg̊ard, I.B., Nielsen, J.B.: Multiparty Computation from Threshold
Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 280-300. Springer, Heidelberg (2001)

[CFL83a] Chandra, A.K., Fortune, S., Lipton, R.J.: Lower Bounds for Constant Depth Circuits for
Prefix Problems. In: Dı́az J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 109-117. Springer,
Heidelberg (1983)

[CFL83b] Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded Fan-In Circuits and Associative
Functions. In: 15th Annual ACM Symposium on Theory of Computing, pp. 52-60. ACM
Press, New York (1983)

[DFK+06] Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure
Constant-Rounds Multi-Party Computation for Equality, Comparison, Bits and Expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285-304.
Springer, Heidelberg (2006)

[DN03] Damg̊ard, I.B., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation
from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 247-264. Springer, Heidelberg (2003)

[GMS10] Guajardo, J., Mennink, B., Schoenmakers, B.: Modulo Reduction for Paillier Encryptions
and Application to Secure Statistical Analysis. In: Sion, R. (ed.) FC 2010. LNCS, vol.
6052, pp. 375-382. Springer, Heidelberg (2010)

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game or A Complete
Theorem for Protocols with Honest Majority. In: 19th Annual ACM Symposium on
Theory of Computing, pp. 218-229. ACM Press, New York (1987)

16

[GRR98] Gennaro, R., Rabin, M.O., Rabin, T.: Simplified Vss and Fast-Track Multiparty Com-
putations with Applications to Threshold Cryptography. In: 17th ACM Symposium on
Principles of Distributed Computing, pp. 101-110. ACM Press, New York (1998)

[NO07] Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Compari-
son without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 343-360. Springer, Heidelberg (2007)

[NX10] Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without Bit-
Decomposition and A Generalization to Bit-Decomposition. In: Abe, M. (ed.) ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 483-500. Springer, Heidelberg (2010)

[RT09] Reistad, T., Toft, T.: Linear, Constant-Rounds Bit-Decomposition. In: Lee, D., Hong,
S. (eds.) ICISC 2009. LNCS, vol 5984, pp. 245-257. Springer, Heidelberg (2010)

[Sha79] Shamir, A.: How to Share A Secret. Communications of the ACM 22(11), 612-613 (1979)

[ST06] Schoenmakers, B., Tuyls, P.: Efficient Binary Conversion for Paillier Encrypted Values.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522-537. Springer,
Heidelberg (2006)

[Tof07] Toft, T.: Primitives and Applications for Multi-party Computation. PhD the-
sis, University of Aarhus (2007), http://www.daimi.au.dk/~ttoft/publications/
dissertation.pdf

[Tof09] Toft, T.: Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357-371. Springer, Heidelberg
(2009)

A Extending to ZN

Although we describe our private exponentiation protocol in the secret sharing setting where all
the operations take place over Zp, our techniques can also be used to solve the private exponentiation
problem in the (Paillier) threshold homomorphic setting where operations take place over ZN (N = pq)
[CDN01, DN03]. However, we need some adaptions. For example, in the secret sharing setting, when
computing the sharing of xc+p from the sharing of x and the public c + p, we can make use of the
equation xc+p = xc+p−ϕ(p) = xc+1 = xc ·x mod p to simplify the problem and thus omit the invocation
of Pub-Expo(·) (See Figure 4, Step 6 and Step 7). However, when we perform a similar operation
in the threshold homomorphic setting, i.e. computing the encryption of xc+N from the encryption of
x and the public c + N , this simplification can not be carried out because the parties do not know
ϕ(N) and thus we need to involve Pub-Expo(·). The absence of the knowledge of ϕ(N) also causes
the parties unable to get −a mod ϕ(N) (see Figure 1) and thus they must involve the Sec-Inver(·)
protocol (see Section 2.2). Another problem is when involving our Pri-Expo+(·) protocol (as well as
Pri-Expo(·)) with the encryptions of x ∈ ZN − Z∗N − {0} and a ∈ ZN as inputs, it will abort in Step
11 (in Figure 4) because x̃ = x is non-invertible. However, we can simply ignore this because getting
such an x is equivalent to factoring N and thus the probability is negligible.

17

http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf
http://www.daimi.au.dk/~ttoft/publications/dissertation.pdf

B An Overview of Known Primitives

Protocol Name Description Rounds Multiplications
Sec-Mult(·) [ab]p ← Sec-Mult([a]p, [b]p) 1 1
Reveal(·) c← Reveal([c]p) 0 0
Random-Bit(·) [b]p ← Random-Bit() 2 2

Bit-LessThan(·) [x
?
< y]p ← Bit-LessThan([x]B, [y]B) 6 14l

Sec-Inver(·) [x−1 mod p]p ← Sec-Inver([x]p) 2 2

Sec-Prod∗(·)
[

l−1∏
i=0

Ai

]
p

← Sec-Prod∗ ([A0]p, [A1]p, ..., [Al−1]p) 3 5l

Equ-Zero(·) [x
?= 0]p ← Equ-Zero([x]p) 8 81l

Solved-Bits(·) [r]B ← Solved-Bits() 7 56l

BD(·) [x]B ← BD([x]p) 23 76l + 31l log l

Table 1: Overview of Known Primitives

C An Overview of The New Protocols

The details are presented in Table 2. Below are some notes.
As mentioned in Section 3.1, Rpub represents the round complexity of the public exponentiation

protocol (i.e. Pub-Expo(·)) and Cpub represents the communication complexity (of Pub-Expo(·)), and
the values of Rpub and Cpub are determined by the adversary considered. Specifically, in the semi-
honest case, Rpub = Rs−h

pub = 5 and Cpub = Cs−h
pub = 10n + 3; in the malicious case, Rpub = Rmal

pub = 7
and Cpub = Cmal

pub = 3kn + 10n + 2k + 3, in which n denotes the number of the participants of the
MPC protocol and k is the security parameter for cut-and-choose. Both Rpub and Cpub can be viewed
as constants because they are independent from (the input length) l.

What’s more, as mentioned in Section 5, L(m) = dlog me represents the bit-length of m.

Protocol Name Description Rounds Multiplications
Pub-Expo(·) [xa]p ← Pub-Expo([x]p, a) Rpub Cpub

Bit-Expo(·) [xa]p ← Bit-Expo([x]p, [a]B) Rpub + 4 Cpub · l + 6l

Bit-Expo+(·) [xa]p ← Bit-Expo+([x]p, [a]B) Rpub + 8 Cpub · 2
√

l + 11l

Pri-Expo-BD(·) [xa]p ← Pri-Expo-BD([x]p, [a]p) Rpub + 27 163l + Cpub · l + 31l log l

Pri-Expo(·) [xa]p ← Pri-Expo([x]p, [a]p) Rpub + 15 157l + Cpub · l + Cpub + 5
Pri-Expo+(·) [xa]p ← Pri-Expo+([x]p, [a]p) Rpub + 19 162l + Cpub · 2

√
l + Cpub + 5

Pub-MR(·) [a mod m]p ← Pub-MR([a]p, m) 22 326l + 28L(m)
Pub-MR+(·) [a mod m]p ← Pub-MR+([a]p, m) 22 78l + 276L(m)

Table 2: Overview of The New Protocols

18

D Hierarchy of The Protocols for Exponentiation

The details of the dependency are presented in Figure 6.

Pri-Expo-BD

BD

Pri-Expo+

Bit-Expo Bit-Expo+

Pri-Expo

Pub-Expo

Figure 6: Hierarchy of The Protocols for Exponentiation

19

	Introduction
	Our Results
	Related Work

	Preliminaries
	Notations and Conventions
	Known Primitives

	Multi-party Computation for Private Exponentiation with BD
	The Public Exponentiation Protocol
	The Bit Exponentiation Protocol
	The Private Exponentiation Protocol with BD

	Linear Multi-party Computation for Private Exponentiation
	The Private Exponentiation Protocol without BD
	A Further Improvement

	Further Generalization of BD and Improved Solution for Public Modulo Reduction
	Conclusion and Future Work
	Extending to ZN
	An Overview of Known Primitives
	An Overview of The New Protocols
	Hierarchy of The Protocols for Exponentiation

