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Abstract. We present a brief review of the spectral approach to the Riemann hypothesis,
according to which the imaginary part of the non trivial zeros of the zeta function are the
the eigenvalues of the Hamiltonian of a quantum mechanical system.
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1. Introduction

The Riemann hypothesis (RH) is the statement that the complex zeros of the classical zeta
function all have imaginary part equal to 1/2. It was first suggested by Riemann in his famous
memoir in 1859 [1]. The RH is important for its connection with the distribution of prime
numbers [2, 3]. The average number of primes less than a givennumberx, which is denoted as
π(x), behaves asymptotically asx/ log x. This statement is called the Prime Number Theorem
(PNT) and was proved independently by Hadamard and de La Vallée-Poussin in 1896 [4, 5].
The truth of the RH implies that the fluctuations ofπ(x), around its average value, behaves
asymptotically asx1/2 log x, which also gives the best possible bound for the error of thePNT.
The RH is not an isolated property of a particular function, but it holds for the Dirichlet L-
functions, for curves over finite fields, etc. It is expected that a proof of the RH for the zeta
function, will be generalizable to other L-functions as well. However the consensus is that
some key idea is required for this goal.

One of the most promising pathways for a proof of the RH was suggested by Polya and
Hilbert around 1910, but never published apparently. The suggestion is that there exist a
selfadjoint operatorH, whose spectrum contains the imaginary part of the Riemann zeros.
The selfadjointness of such an operator would inmediately prove the RH:

If ζ

(

1
2
+ iEn

)

= 0, ∀n =⇒ H |ψn〉 = En |ψn〉 =⇒ En = E∗n, ∀n (1)

In the latter equation one must exclude the trivial Riemann zeros, so a most appropiate
formulation fo the problem is to use theξ(s) function, defined as [4]

ξ(s) =
1
2

s(s− 1)π−s/2Γ

( s
2

)

ζ(s) (2)
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whose zeros are those ofζ(s) except the trivial ones. Polya and Hilbert conjecture is known
as the spectral approach to the RH, and, as we shall see later on, it is supported by several
"phenomenological" results and heuristic arguments, which suggest that the operatorH is
the quantum Hamiltonian of a physical system. This is one of the reasons why the RH
has attracted the interest of physicist working in disciplines apparently unrelated to Number
Theory (see [6] for an extensive list of references concerning several approaches to the RH).

Assuming the RH (i.e.E∗n = En,∀n), one can define a diagonal operatorH whose entries
areEn, but nothing is learned from this construction. Eq.(1), implies thatH must encode in
itself, the zeta functionζ(1/2+ iE), without assuming the truth of the RH, which will be a
consequence of its selfadjointness. Ifζ(1/2+ iE), or ξ(1/2+ iE), where a polynomial inE,
this encoding could be realized by a finite dimensional matrix H whose characteristic poly-
nomial were proportional toζ(1/2+ iE). The Euler product formula of the zeta function, in
terms of the prime numbers, implies thatH must also know about these numbers. Hence, the
relation found by Riemann, between prime numbers and zeros of the zeta function, will be
justified from the common dynamical origin of these quantities. The precise mathematical
formulation of these relations is given by the, so called, trace formulas in Number Theory
and Quantum Chaos [7]. The simplicity of the definition of thezeta function, as the series
ζ(s) =

∑∞
n=1 1/ns (Re s > 1), has lead some researches, as Berry, to suggest that the Hamil-

tonianH may have a subtle but simple definition, allowing the observation of the Riemann
zeros as spectral lines in an experimental set up [8]. The existence of such a "Riemann cal-
culator" would place Number Theory in the realm of Quantum Mechanics with far reaching
consequences. We shall briefly summarize below some phenomenologial and heuristic hints
that support the spectral approach to the RH.

2. Selberg’s trace formula (1956)

Consider a compact Riemann surface with negative curvature. This surface can be con-
structed as the complex upper plane divided by a discrete subgroup of the modular group
PS L(2,R), and it is equipped with the Poincaré metric. A classical problem is to determine
the lengthsℓp of the primitive periodic orbits (p.p.o.), that is, the geodesics on this surface. A
quantum problem is to find the spectrum of the Laplace-Beltrami operator∆ = y2(∂2

x + ∂
2
y),

− ∆ ψn(x, y) = En ψn(x, y), En =
1
4
+ k2

n. (3)

Selberg’s trace formula establishes a relation between themomentakn and the length of
the geodesicsℓp [9]

∑

n

h(kn) =
µ(D)
4π

∫ ∞

−∞

dk k h(k) tanh(πk) +
∑

p.p.o.

ℓp

∞
∑

n=1

g(nℓp)

2 sinh(nℓp/2)
(4)

whereh(k) is a test function,g(k) its the Fourier transform andµ(D) is the area of the fun-
damental domainD describing the Riemann surface. Selberg also defined a zeta function in
terms of the lenghtsℓp as
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Z(s) =
∏

p.p.o.

∞
∏

m=0

(1− e−ℓp(s+m)) (5)

in close analogy to the Euler’ s product formula of the zeta function [4]:

ζ(s) =
∏

p

1
1− p−s

, Re s> 1 (6)

where the product is over all the prime numbersp. Selberg zeta function satisfies a RH which
can be proved. The trivial zeros ofZ(s) are sn = −n (n = 0, 1, . . . ), and the non trivial
ones aresn =

1
2 + ikn. Sincekn are real numbers, any complex zero ofZ(s) lies on the line

Re s = 1/2. The functionsζ(s) andZ(s) both satisfy functional equations that relate their
values toζ(1− s) andZ(1− s), respectively. Finally, Selberg’ s trace formula is reminiscent
to the Riemann-Weil explicit formula relating the prime numbersp and the imaginary part of
the Riemann zerosγn [10]:

∑

n

h(γn) =
∫ ∞

−∞

dk
2π

h(k)
Γ′

Γ

(

1
4

ik
2

)

+h(
i
2

)+h(−
i
2

)− logπ g(0)−2
∑

p

log p
∞
∑

n=1

p−n/2g(n log p)

(7)
where the notations are as in eq.(4). A comparison between eqs.(4) and (7) suggests that
prime numbers and primitive geodesics are in one-to-one correspondence, such that:ℓp ↔

log p. This correspondence also underlines the Quantum Chaos approach to the RH reviewed
later on. However, the analogy between these two formulas fails in two respects: i) the term
1/(2 sinh(nℓp/2)), with the identificationℓp = log p, only converges top−n/2 for large values
of p, and ii) the factor of -2 in the last term of eq.(7) as comparedto the factor one, in the
last term of eq.(4). The difference in signs of the two terms finds an explanation in Connes
spectral realization of Riemann zeros (see below). Finally, we observe that the imaginary
part of the Riemann zeros,γn, seem to correspond to the momentakn rather than to the
eigenenergiesEn. This suggest that the Riemann Hamiltonian is probably related to a first
order linear operator, as we shall see in the discussion of the H = xp Hamiltonian.

3. Random matrix theory and Quantum Chaos (70’s-80’ s)

In 1973 Montgomery, asuming the RH, proved that the imaginary part of the Riemann zeros,
γn, where distributed at random, according the gaussian unitary ensemble distribution (GUE)
of Random Matrix Theory (RMT) [11]. This result found strongnumerical confirmation
by Odlyzko in the 80’ s, who computed trillions of Riemann zeros ( near the 1012 -th zero
and near the 1020- th zero) [12]. These phenomenological findings means that the statistical
properties of the Riemann zeros are similar to those of the eigenvalues of large hermitean
matrices, in particular the property of level repulsion. There are three universality classes
of random matrices corresponding to orthogonal (GOE), hermitean (GUE) and symplectic
matrices (GSE). The GUE statistics corresponds to random systems where time reversal is
broken, which gives a strong indication that the Riemann Hamiltonian H must break this
symmetry.
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A further step along this direction was taken by Berry, who noticed a formal analogy
between the fluctuations of the Riemann zeros and the fluctuations of the energy levels of
quantum chaotic system around their average values [8]. Thelatter fluctuations are given by
the semiclassical Gutwiller formula,

NQC,fl(E) =
1
π

∑

γ

∞
∑

m=1

sin(mETγ)

2msinh(mλγ/2)
(8)

whereE is an eigenenergy,γ is a primitive periodic orbit,Tγ its period andλγ its Lyapunov
exponent. The sum overmcorresponds to the repetitions of the primitive orbits. Thefluctua-
tion part of the Riemann zeros is given by

NR,fl(E) = −
1
π

∑

p

∞
∑

m=1

sin(mElog p)
mpm/2

(9)

where the sum is over the prime numbersp. Comparing (8) and (9), Berry conjectured
the existence of a classical chaotic Hamiltonian whose primitive periodic orbits,γ, would
be labelled by the prime numbersp, with periodsTp = log p, and instability exponents
λp = ± log p. Moreover, since each orbit is counted once, the Hamiltonian must break time
reversal (otherwise there would be a factor 2/π, in front of eq. (9) instead of 1/π). This
analogy is reminiscent to the one existing between Selberg trace formula and the Riemann-
Weil formula, and also suffers from a "sign problem" and "asymptotic problem" as observed
before. The connection with Quantum Chaos also explained some numerical discrepancies
found by Odlyzko between RMT and the statistics of zeros for long range spectral correla-
tions, which are due to the shortest periodic orbits, where universality no longer holds. They
were explained by Berry , Keating and Bogomolny [13, 14]. Allthese results put on a more
firm basis the Polya-Hilbert conjecture giving further clues on the structure of the dynamical
system behind the Riemann zeros.

4. The Hamiltonian H = xp (1999)

In 1999 Berry and Keating, and Connes suggested that the Riemann zeros are related to the
classical HamiltonianHcl = xp, wherex and p are the position and momenta of a particle
movin in 1D [15, 16]. The classical trayectories of this Hamiltonian are hyperbolas in the
phase space

x(t) = x0 et, p(t) = p0 e−t (10)

and therefore unbounded, which would then imply a continuous spectrum rather than a dis-
crete spectrum associated to the Riemann zeros. The connection with the latter arises in two
possible ways depending on two different regularizations of the phase space. Berry and Keat-
ing introduced a minimal lengthℓx and a minimal momentaℓp, whose product is the Planck
quantumℓxℓp = 2π~ [15]. In terms of these quantities, they imposed|x| ≥ ℓx and |p| ≥ ℓp,
so that the trayectories are now bounded. The semiclassicalnumber of states is given by the
area below the hyperbola and above the boundaries|x| = ℓx and|p| = ℓp, and it is given, in
units~ = 1, by
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nBK(E) =
ABK

2π
=

E
2π

(

log
E
2π
− 1

)

+ 1 (11)

Rather surprisingly, this result coincides, asymptotically, with the average number of Rie-
mann zeros up to a heightE in the critical strip (i.e. 0< ℜs < 1, 0 < ℑs < E). The
constant in Riemann’ s formula is actually 7/8, which can be obtained by taking into account
a Maslow phase contributing−1/8 to eq. (11), due to the fact that the particle only travels
one quadrant of the phase space. Unfortunately, eq.(11) hasremained so far heuristic since it
is not supported by a quantum mechanical model (see later).

Connes regularization is based on the restrictions|x| ≤ Λ and|p| ≤ Λ, whereΛ is a cutoff,
which is taken to infinity at the end of the calculation [16]. The semiclassical number of
states is computed as before yielding,

nCo(E) =
ACo

2π
=

E
2π

log
Λ2

2π
−

E
2π

(

log
E
2π
− 1

)

(12)

The first term on the RHS of this formula diverges in the limitΛ → ∞, which corresponds
to a continuum of states. The second term is minus the averagenumber of Riemann zeros,
which according to Connes, become missing spectral lines inthe continuum. This is the, so
called, "absortion" spectral interpretation of the Riemann zeros, as opposed to the standard
"emission" spectral interpretation where they form a discrete spectrum. The minus sign in
eq.(12) could also be related to the minus sign in the trace formulas discussed earlier. Connes
interpretation has however two drawbacks. First of all, theaverage number of Riemann zeros
is not fully obtained in eq(12). The termE/2π log1/2π, actually cancells between the first
and second summands in this formula. Other objection is thatthe second term in (12) is
simply a finite size correction of discrete energy levels, where no lines are missing, and the
same remains true in the continuum limit.

The H = xp model was modified in references [17], adding a non local interaction
suggested by a relation of this model to a BCS model of superconductivity with a cyclic
renormalization group. The spectrum of this interactingxp-model is a continuum where the
Riemann zeros are embedded as bound states. This result reconciles the Berry-Keating and
Connes spectral interpretations. However, the non locality of the interaction implies that the
Hamiltonian has no classical limit, and consequently its relation to classical chaotic dynami-
cal systems remains unclear. Moreover the prime numbers do not appear in this construction,
which as we saw in previous sections, is an important ingredient of the trace formulas.

A different route toH = xp was suggested in reference [18] which will bring us to more
familiar territores in Physics.

Landau levels and Riemann zeros (2008)

Let us consider a charged particle moving in a plane under theaction of a perpendicular mag-
netic field and an electrostatic potential with a saddle shape [18]. The Langrangian describing
the dynamics is given, in the Landau gauge, by

L =
µ

2
(ẋ2 + ẏ2) −

eB
c
ẏx− eλxy (13)
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whereµ is the mass,e the charge,B the magnetic field,c the speed of light andλ a coupling
constant parameterizing the electrostatic potential. There are two normal modes with real,
ωc, and imaginary,ωh, angular frequencies, describing cyclotronic and a hyperbolic motions
respectively. In the limit whereωc >> ωh, only the Lowest Landau Level (LLL) is relevant
and the effective Lagrangian becomes

Leff = pẋ− |ωh|xp, p =
~y

ℓ2
, ℓ =

(

~c
eB

)1/2

, |ωh| ∼
λc
B

(14)

whereℓ is the magnetic length, which is proportional to the radius of the cyclotronic orbits in
the LLL. The coordinatesx andy, which commute in the 2D model, after the proyection to
the LLL become canonical conjugate variables, and the effective Hamiltonian coincides with
thexpHamiltonian introduced by Berry, Keating and Connes, wherethe energy is measured
in units of~|ωh|. This realization of thexp Hamiltonian allow us to interpret the semiclas-
sical quantization of these authors in the language of the Landau model. In particular, the
semiclassical counting of states in thexpmodel follows from the counting of quantum fluxes
in a certain area of thex − y plane. If the plane is infinite, then the number of states in
the LLL will is also infinite. To have a finite number of states we put the particle into a
box: |x| < L, |y| < L, which reproduces Connes regularizations conditions. Thenumber of
semiclassical states with an energy between 0 andE is given by

nsm(E) =
E
2π

log
L2

2πℓ2
−

E
2π

(

log
E
2π
− 1

)

(15)

which agrees with Connes eq. (12). The classical energy is given byE = xy/ℓ2 (in units of
~|ωh|), and it attains its maximum value atEmax = L2/ℓ2. Plugging this value into (15) yields
nsm(Emax) = L2/2πℓ2, which is the number of quantum fluxes in the first quadrant. This
semiclassical results can be derived from the quantizationof the model. Indeed, the energy
levels follows from the identification of the wave function at the boundariesx = L andy = L
(up to a phase)

ψE(x, L) = eixL/ℓ2
ψE(L, x) =⇒

Γ
(

1
4 +

iE
2

)

Γ
(

1
4 −

iE
2

)

(

L2

2ℓ2

)−iE

= 1 (16)

Taking the logarithm on the RHS of (16), one gets the smooth part of the Riemann formula,
whose asymptotic expansion coincides with eq. (15). The 2D formulation of thexp model
allows one to convert the hyperbolic orbits into periodic orbits by means of the boundary
condition (16). It would be extremely interesting to deriveBerry-Keating regularization in the
Landau version of the model. To achieve this goal, one must inject the particle approaching
the boundary aty = ℓy, back to the boudary atx = ℓx, so that the orbits become periodic.
The Berry-Keating semiclassical arguments suggest that the spectrum will be discrete and
associated to the smooth Riemann zeros. Preliminary results suggest that this possibility
can indeed be realized. Of course the main problem that remains is the construction of the
Hamiltonian giving rise to the exact Riemann zeros. It is notclear at the moment wether
this can be done, but preliminary results suggest that the higher Landau levels may play a
role [18]. In any case, the Landau model formulation of theH = xp Hamiltonian provides a
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promissing new avenue where to explore the fascinating problem of a physical interpretation
of the Riemann zeros, and perhaps a physicist proof of the RH.
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