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1. Introduction

The Riemann hypothesis (RH) is the statement that the conzgles of the classical zeta
function all have imaginary part equal tp2L 1t was first suggested by Riemann in his famous
memoir in 1859[[1]. The RH is important for its connectionhwihe distribution of prime
numbers[Z, B]. The average number of primes less than a giuaberx, which is denoted as
n(X), behaves asymptotically aglog x. This statement is called the Prime Number Theorem
(PNT) and was proved independently by Hadamard and de Léaa/&lbussin in 1896[4] 5].
The truth of the RH implies that the fluctuationsxdk), around its average value, behaves
asymptotically as®/? log x, which also gives the best possible bound for the error oPIHE.
The RH is not an isolated property of a particular functiout, ibholds for the Dirichlet L-
functions, for curves over finite fields, etc. It is expectedtta proof of the RH for the zeta
function, will be generalizable to other L-functions as lwélowever the consensus is that
some key idea is required for this goal.

One of the most promising pathways for a proof of the RH wagysated by Polya and
Hilbert around 1910, but never published apparently. Ttggsstion is that there exist a
selfadjoint operatoH, whose spectrum contains the imaginary part of the Riemanusz
The selfadjointness of such an operator would inmediatelygothe RH:

If g(% + iEn) =0, Yn=>H |yp) = Ep [Yn) = En = EX, ¥n 1)

In the latter equation one must exclude the trivial Riemaenmog, so a most appropiate
formulation fo the problem is to use tl§és) function, defined as [4]

€9 = 3805 D *r (3) (9 @
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whose zeros are those &fs) except the trivial ones. Polya and Hilbert conjecture ien
as the spectral approach to the RH, and, as we shall see fatiri® supported by several
"phenomenological” results and heuristic arguments, wkiosggest that the operatbrr is
the quantum Hamiltonian of a physical system. This is onehefreasons why the RH
has attracted the interest of physicist working in discigdi apparently unrelated to Number
Theory (see 6] for an extensive list of references conogrseveral approaches to the RH).

Assuming the RH (i.eE;, = En, ¥n), one can define a diagonal operatbwhose entries
are En, but nothing is learned from this construction. Eb.(1), liegpthatH must encode in
itself, the zeta functiog(1/2 + iE), without assuming the truth of the RH, which will be a
consequence of its selfadjointness/(1/2 + iE), or £(1/2 + iE), where a polynomial irk,
this encoding could be realized by a finite dimensional matriwhose characteristic poly-
nomial were proportional tg(1/2 + iE). The Euler product formula of the zeta function, in
terms of the prime numbers, implies thdtmust also know about these numbers. Hence, the
relation found by Riemann, between prime numbers and zdrtteeeta function, will be
justified from the common dynamical origin of these quaesiti The precise mathematical
formulation of these relations is given by the, so called¢érformulas in Number Theory
and Quantum Chaokl[7]. The simplicity of the definition of #ega function, as the series
() = Yol 1/n% (Res> 1), has lead some researches, as Berry, to suggest thatnfie Ha
tonianH may have a subtle but simple definition, allowing the obg#eof the Riemann
zeros as spectral lines in an experimental setf up [8]. Thetenge of such a "Riemann cal-
culator” would place Number Theory in the realm of Quantunthamnics with far reaching
consequences. We shall briefly summarize below some phermaaggal and heuristic hints
that support the spectral approach to the RH.

2. Selberg'strace formula (1956)

Consider a compact Riemann surface with negative curvatlifés surface can be con-
structed as the complex upper plane divided by a discretgreup of the modular group
PS (2,R), and it is equipped with the Poincaré metric. A classicabgm is to determine
the lengthg, of the primitive periodic orbits (p.p.o.), that is, the gesits on this surface. A
quantum problem is to find the spectrum of the Laplace-Baitaperator = y?(9% + 43),

1
- Ayn(Xy) = En (X y), En = 2 + kﬁ (3)

Selberg’s trace formula establishes a relation betweemtraentsk, and the length of
the geodesicé, [9]

D) S glnty)
Stk =52 [ akkrtotannen 200 55mee @

whereh(k) is a test functiong(k) its the Fourier transform angD) is the area of the fun-
damental domaib describing the Riemann surface. Selberg also defined awetéidn in
terms of the lenghté, as
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2(9=] ﬁ(l— g folstm) (5)

p.p.o. m=0
in close analogy to the Euler’ s product formula of the zetefion [4]:

1
“S"Dl—p*’ Res> 1 (6)
where the product is over all the prime numbprsSelberg zeta function satisfies a RH which
can be proved. The trivial zeros &(s) ares, = —n (n = 0,1,...), and the non trivial
ones ares, = % + ikn. Sincek, are real numbers, any complex zeroZgf) lies on the line
Re s = 1/2. The functiong(s) andZ(s) both satisfy functional equations that relate their
values ta/(1 — s) andZ(1 — s), respectively. Finally, Selberg’ s trace formula is reisdent

to the Riemann-Weil explicit formula relating the prime noensp and the imaginary part of
the Riemann zerog, [10]:

Yh0n = [ 500 (35 )+hz) +h-5)-loan a(0)-2 3 logp ). p "g(niogp)
n - p

n=1
()

where the notations are as in €d].(4). A comparison betwesrf2@¢q@nd[(l7) suggests that
prime numbers and primitive geodesics are in one-to-onespondence, such thaf, <
log p. This correspondence also underlines the Quantum Chaosabto the RH reviewed
later on. However, the analogy between these two formulbsifatwo respects: i) the term
1/(2 sinhit,/2)), with the identificatiorf, = log p, only converges tp~"? for large values
of p, and ii) the factor of -2 in the last term of d9.(7) as compdtethe factor one, in the
last term of eq[{4). The fierence in signs of the two terms finds an explanation in Connes
spectral realization of Riemann zeros (see below). Finally observe that the imaginary
part of the Riemann zeros,, seem to correspond to the momekgarather than to the
eigenenergie&,. This suggest that the Riemann Hamiltonian is probablytedi#o a first
order linear operator, as we shall see in the discussioredfith xp Hamiltonian.

3. Random matrix theory and Quantum Chaos (70's-80" )

In 1973 Montgomery, asuming the RH, proved that the imagipart of the Riemann zeros,
vn, Where distributed at random, according the gaussianmyrétessemble distribution (GUE)
of Random Matrix Theory (RMT)[11]. This result found strongmerical confirmation
by Odlyzko in the 80’ s, who computed trillions of Riemanna=( near the 1§ -th zero
and near the 8- th zero) [12]. These phenomenological findings means heastatistical
properties of the Riemann zeros are similar to those of thenealues of large hermitean
matrices, in particular the property of level repulsion.ef@are three universality classes
of random matrices corresponding to orthogonal (GOE), iteam (GUE) and symplectic
matrices (GSE). The GUE statistics corresponds to randateiss where time reversal is
broken, which gives a strong indication that the Riemann iHanian H must break this
symmetry.
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A further step along this direction was taken by Berry, wheicenl a formal analogy
between the fluctuations of the Riemann zeros and the flucthisadf the energy levels of
guantum chaotic system around their average values [8]laktez fluctuations are given by
the semiclassical Gutwiller formula,

sin(mET,)
Nocn(E) = Z Z 2m smh(m/lyy/Z) ®)

whereE is an eigenenergy, is a primitive periodic orbitT, its period andi, its Lyapunov
exponent. The sum oven corresponds to the repetitions of the primitive orbits. Tihetua-
tion part of the Riemann zeros is given by

)< -1 3, 5 SHrELan o

where the sum is over the prime numbegrs Comparing[(B) and{9), Berry conjectured
the existence of a classical chaotic Hamiltonian whose ifivienperiodic orbits,y, would
be labelled by the prime numbeps with periodsT, = logp, and instability exponents
Ap = =logp. Moreover, since each orbit is counted once, the Hamiltomast break time
reversal (otherwise there would be a factgr 2in front of eq. [®) instead of /ir). This
analogy is reminiscent to the one existing between Selvaog tformula and the Riemann-
Weil formula, and also dters from a "sign problem" and "asymptotic problem" as obsearv
before. The connection with Quantum Chaos also explainetsaumerical discrepancies
found by Odlyzko between RMT and the statistics of zerosdaglrange spectral correla-
tions, which are due to the shortest periodic orbits, whereansality no longer holds. They
were explained by Berry , Keating and Bogomolny/[13, 14]. tAltse results put on a more
firm basis the Polya-Hilbert conjecture giving further dun the structure of the dynamical
system behind the Riemann zeros.

4. The Hamiltonian H = xp (1999)

In 1999 Berry and Keating, and Connes suggested that thedRieeros are related to the
classical HamiltoniaHy = xp, wherex and p are the position and momenta of a particle
movin in 1D [15,[16]. The classical trayectories of this Hiamian are hyperbolas in the
phase space

X(t) = %0 €, p(t) = po e (10)

and therefore unbounded, which would then imply a contiswspectrum rather than a dis-
crete spectrum associated to the Riemann zeros. The comedth the latter arises in two
possible ways depending on twdléirent regularizations of the phase space. Berry and Keat-
ing introduced a minimal lengthy, and a minimal momenté,, whose product is the Planck
quantuméylp = 2r# [15]. In terms of these quantities, they impoggd> ¢, and|p| > ¢p,

so that the trayectories are now bounded. The semiclassicaber of states is given by the
area below the hyperbola and above the boundéaties ¢, and|p| = ¢, and it is given, in
unitsz = 1, by



A physics pathway to the Riemann hypothesis 5

nax (E) = % - = (Iog = 1) i1 (11)

Rather surprisingly, this result coincides, asymptoljcatith the average number of Rie-
mann zeros up to a heigl in the critical strip (i.,e. 0< Rs < 1,0 < Js < E). The
constant in Riemann’ s formula is actuall{87which can be obtained by taking into account
a Maslow phase contributingl/8 to eq. [(11), due to the fact that the particle only travels
one quadrant of the phase space. Unfortunately, q.(1Xehz@ined so far heuristic since it
is not supported by a quantum mechanical model (see later).

Connes regularization is based on the restrictjgins A and|p| < A, whereA is a cutdf,
which is taken to infinity at the end of the calculation|[16]heTsemiclassical number of
states is computed as before yielding,

ncO(E)—Zﬂ 2ﬂlgzjr 2ﬂlog 1
The first term on the RHS of this formula diverges in the limit> oo, which corresponds
to a continuum of states. The second term is minus the avenagéer of Riemann zeros,
which according to Connes, become missing spectral lindssirontinuum. This is the, so
called, "absortion" spectral interpretation of the Riemaeros, as opposed to the standard
"emission" spectral interpretation where they form a diseispectrum. The minus sign in
eq.[12) could also be related to the minus sign in the tracedtas discussed earlier. Connes
interpretation has however two drawbacks. First of all,aberage number of Riemann zeros
is not fully obtained in e(12). The terf/2xlog 1/2r, actually cancells between the first
and second summands in this formula. Other objection isttteasecond term i (12) is
simply a finite size correction of discrete energy levelsereno lines are missing, and the
same remains true in the continuum limit.

The H = xp model was modified in references [17], adding a non localrautton
suggested by a relation of this model to a BCS model of supelectivity with a cyclic
renormalization group. The spectrum of this interactipgmodel is a continuum where the
Riemann zeros are embedded as bound states. This resultilesdhe Berry-Keating and
Connes spectral interpretations. However, the non Igcafithe interaction implies that the
Hamiltonian has no classical limit, and consequently itatien to classical chaotic dynami-
cal systems remains unclear. Moreover the prime numberstippear in this construction,
which as we saw in previous sections, is an important ingredif the trace formulas.

A different route tdH = xp was suggested in reference[18] which will bring us to more
familiar territores in Physics.

Aco A? ( E ) (12)

Landau levels and Riemann zer os (2008)
Let us consider a charged particle moving in a plane undeadtien of a perpendicular mag-

netic field and an electrostatic potential with a saddle sia§]. The Langrangian describing
the dynamics is given, in the Landau gauge, by

=BG +ip)- %Byx _elxy (13)
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whereu is the masse the chargeB the magnetic fielde the speed of light and a coupling
constant parameterizing the electrostatic potential.r lage two normal modes with real,
wg, and imaginarywp, angular frequencies, describing cyclotronic and a hygérimotions
respectively. In the limit where. >> wn, only the Lowest Landau Level (LLL) is relevant
and the €ective Lagrangian becomes

Lo = PX— |wn|Xp, p

hiy nc\Y? AC
= ﬁ’ ¢ (e_B) s lwn| ~ E (14)

where( is the magnetic length, which is proportional to the radithe cyclotronic orbits in
the LLL. The coordinateg andy, which commute in the 2D model, after the proyection to
the LLL become canonical conjugate variables, and ffexdve Hamiltonian coincides with
the xp Hamiltonian introduced by Berry, Keating and Connes, wlileeesnergy is measured
in units of ilwy|. This realization of thexp Hamiltonian allow us to interpret the semiclas-
sical quantization of these authors in the language of threlaa model. In particular, the
semiclassical counting of states in temodel follows from the counting of quantum fluxes
in a certain area of th& — y plane. If the plane is infinite, then the number of states in
the LLL will is also infinite. To have a finite number of stateg wut the particle into a
box: |x| < L, |yl < L, which reproduces Connes regularizations conditions. ntmeber of
semiclassical states with an energy between Okarsdgiven by

E L2 E E

nsm(E) = E |Og W - E (Iog E - 1) (15)
which agrees with Connes e@. [12). The classical energwéndiyE = xy/¢? (in units of
hlwnl), and it attains its maximum value Bfax = L2/¢2. Plugging this value intd(15) yields
Nsm(Emax) = L?/27€2, which is the number of quantum fluxes in the first quadrantis Th
semiclassical results can be derived from the quantizaticghe model. Indeed, the energy
levels follows from the identification of the wave functiortle boundarieg = L andy = L
(up to a phase)
F( y )
rz-%)

Taking the logarithm on the RHS df {116), one gets the smoothqfdhe Riemann formula,
whose asymptotic expansion coincides with éq.l (15). The@bnfilation of thexp model
allows one to convert the hyperbolic orbits into periodibits by means of the boundary
condition [16). It would be extremely interesting to defBerry-Keating regularization in the
Landau version of the model. To achieve this goal, one myesttithe particle approaching
the boundary ay = ¢,, back to the boudary at = ¢y, so that the orbits become periodic.
The Berry-Keating semiclassical arguments suggest tieaspectrum will be discrete and
associated to the smooth Riemann zeros. Preliminary sesufigest that this possibility
can indeed be realized. Of course the main problem that renisithe construction of the
Hamiltonian giving rise to the exact Riemann zeros. It is clear at the moment wether
this can be done, but preliminary results suggest that thleehiLandau levels may play a
role [18]. In any case, the Landau model formulation ofithe: xp Hamiltonian provides a

Nl

I= | Bl

(B)E=1 (16)

lﬂE(X, L) = eiXL/[ (//E(L’ X) == ﬁ

i

N
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promissing new avenue where to explore the fascinatingl@mobf a physical interpretation
of the Riemann zeros, and perhaps a physicist proof of the RH.
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