arXiv:1012.4245v1 [math.FA] 20 Dec 2010

Some approximation properties of Lupas
g-analogue of Bernstein operators

N. I. Mahmudov and P. Sabancigil

Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey
email: nazim.mahmudov@emu. edu.tr
pembe. sabancigil@emu. edu. tr

Abstract

In this paper, we discuss rates of convergence for the Lupas ¢g-analogue of Bern-
stein polynomials R,, ;. We prove a quantitative variant of Voronovskaja’s theorem
for R, 4.
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1 Introduction

Let ¢ > 0. For any n € N U {0}, the g-integer [n] = [n], is defined by
n]:=1+q+..+¢"", [0]:=0;

and the g-factorial [n]! = [n] ! by

In the last two decades interesting generalizations of Bernstein polynomials were
proposed by Lupag [6]

n ([k:]) n ¢k (1 — z)k

|l =24 qx)..(1 -2+ ¢  2)
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and by Phillips [10]

):;;f(@) x’fnsf[ol (1—¢°z).

]

The Phillips g-analogue of the Bernstein polynomials (B, ,) attracted a lot of
interest and was studied widely by a number of authors. A survey of the obtained
results and references on the subject can be found in [§]. The Lupasg operators
(R, ) are less known. However, they have an advantage of generating positive
linear operators for all ¢ > 0, whereas Phillips polynomials generate positive
linear operators only if ¢ € (0,1). Lupas [6] investigated approximating proper-
ties of the operators R, ,(f,x) with respect to the uniform norm of CJ0,1]. In
particular, he obtained some sufficient conditions for a sequence {R, ,(f,x)} to
be approximating for any function f € Cf0,1] and estimated the rate of con-
vergence in terms of the modulus of continuity. He also investigated behavior of
the operators R, ,(f, z) for convex functions. In [9] several results on convergence
properties of the sequence {R, ,(f,z)} is presented. In particular, it is proved
that the sequence {R,, ,(f,z)} converges uniformly to f(x) on [0, 1] if and only if
¢n — 1. On the other hand, for any ¢ > 0 fixed, ¢ # 1, the sequence {R,, ,(f,2)}
converges uniformly to f(x) if and only if f(x) = ax 4 b for some a,b € R.

In the paper, we investigate the rate of convergence for the sequence {R,, ,(f,z)}
by the modulii of continuity. We discuss Voronovskaja-type theorems for Lupasg

operators for arbitrary fixed ¢ > 0. Moreover, for the Voronovskaja’s asymptotic
formula we obtain the estimate of the remainder term.

2 Auxiliary results

It will be convenient to use for « € [0, 1) the following transformations

_ . qr i) — q’v
v=v(gw) = 1—a+qx’ v(q,v)— 1 —v+¢iv

Let 0 < g < 1. We set

k(k—1)

n q = xF(1— )k
bor(q; x) == , € 0,1],
(g;2) |l (I—2+qx)..(1—-2+q¢" ') €01
k(k—1)
—32 1 —
boslgin) i —— L O oy,

(1— )" KT + ¢ (z/1 — 2))
7=0



It was proved in [6] and [9] that for ¢ € (0,1) and x € [0, 1),

n

> buk(g;2) = g book (q; ) = 1.

k=0

Definition 1 Lupas [6]. The linear operator R, , : C'[0,1] — C'[0, 1] defined by

R, ) = Zf (%) b 2)

1s called the q-analogue of the Bernstein operator.

Definition 2 The linear operator defined on C'[0,1] given by

S 7 (1= ) balgsa) i we[0,1),
k=0
f() if =1

ROO#] (f7 SL’) =

18 called the limit q-Lupas operator.

It follows directly from the definition that operators R, ,(f,z) possess the end-
point interpolation property, that is,

Rng(f,0) = f(0),  Rug(f,1) = f(1)
forallg>0and alln=1,2,....

Lemma 3 We have

bk (q; 1) = {:] ﬂv(qa"x) n_]j; (1=v (¢ 2)), =zel01],

1 k—1 ) [e's) b
book(q;x):m};lov (qj,x)jl;[()(l—v(q ,x)), x € [0,1].

It was proved in [6] and [9] that R,, , (f, %), R4 (f, z) reproduce linear functions
and R, , (t*,x) and R, (t*, r) were explicitly evaluated. Using Lemma [3 we may
write formulas for R, , (t?,2) and Ry, (%, ) in the compact form.

Lemma 4 We have

R,,(L,z)=1,R,,(t,x) =2,Rocy(1,2) =1, Reo y (t, x) = z,
z(1—-v(q 1))
[n] ’

Ry (,2) =20 (g,2) + (1= @)z (1= v(g,7)) =2 — qz (1 = v (q,7)) .

R,, (t2, :17) = zv(q,2) +



Now define
Ln,q(f> I) = Rn,q(fa :L’) — R g (f> I) .

Lemma 5 The following recurrence formulae hold

Rpg (71, 2) = Rog (8", ) — (1 — ) [”[;]ﬂmz-zn_l,q "™ v), (2.1)
Raoq (1771, 2) = Rog g (t7,7) = (1 = &) Rog g (™, 0), (2.2)

L (™ ) = L, ,(t™, 2) + (1 — )
n—1

L,
X <<1 _l i ]m]m> Reo o(t",v) — %Ln_l,q(tm,vﬁ . (2.3)

Proof. First we prove (2.1). We write explicitly

J

o

R0+, 0) = > M [Mofeo) T (1-0(™0)) e

and rewrite the first two factor in the following form:

k=0W k| j=0 j=0
_ [n[;]nll]m (1 — LL’) :2 [n[ﬁ]?]m |:7”L ; 1] lj(:]v (qj’,U (q,x)) n__o_ (1 v (qk+j,’(] (q,x)))
=R (t",7) — [n[_]i]m (1 —2)Ry1y (™, v (g, 2))



Next we prove (Z.3)

Ln, ™ 2) = R,, (th, :)3) — Ry (tm+1, :5)

)

— Roog (™, 2) + (1 — @) Rag g (™, v (¢, 7))
= Lmq(tm,x) +(1-12)

« ((1 _n= ”m> Ryt v (g o) = 2= (q,x))) |

[n]" [n]"

Formula (2.2)) can be obtained from (1), by taking the limit as n — co. m

=Ry (1", 2) = (1 =)

Moments R, , (t", z), R4 (™, ) are of particular importance in the theory of
approximation by positive operators. In what follows we need explicit formulas
for moments R, , (t3,2), R, (13, 7).

Lemma 6 We have

R, (ts,x) =zv(q,z) + z (1 _[:]Z(an)) _n— 1][7[32— 2] q2x (1—v(g,2))v (q2,x) 7

Ry (t?’, :L’) =zv(q,z)+ (1 — q)2 r(1—-v(q,2))— ¢z (1 —-v(qgx))v (q2,x) )

Proof. Note that explicit formulas for R, , (t", ), Roc 4 (t™,2), m = 0,1, 2 were
proved in [6], [9]. Now we prove an explicit formula for R, , (3, z), since formula
for Ry 4 (t%, 2) can be obtained by taking limit as n — oo. The proof is based on
the recurrence formula (2.1]). Indeed,

n—1)°

R, , (t?’, x) =R, (tz, :L’) —(1—2a) WRn_l’q (t2, v)
— (q7 SL’) i T (1 _[Z](qa ZL’)) (1 i LL’) [n[;]2] v (q7 SL’) v (q27 SL’)
[n—1] [n—1]

] [n)”
— s (o. z(l—v(g,z) (, gqln—1]
=00+ H (1 4
- = 1= a0 o) o (5.)
= av(q,x) + z(1 _[:]2((]’:6)) i 1][7[32_ 2lg r(1—wv(gz))v (q2,x) .

In order to prove Voronovskaja type theorem for R, , (f,z) we also need explicit
formulas and inequalities for L, , (t™,x), m = 2,3, 4.



Lemma 7 Let 0 < q < 1. Then

n

Log(?, ) = [%]x (1—v(g ), (2.6)
Loyt ) = [qﬁx (1-v(g.)) (2.7)

X [2—q”+[n—1] (1+q)v(q2,x) +[n]qv(q2,x)},

Ln,q(t4,:£) = %z (1—-v(q,z)) M (q,v (qz,x) U (qg,x)) , (2.8)

where M is a function of (q,v (¢, ) ,v (¢, x)).

Proof. First we find a formula for L, , (3, x). To do this we use the recurrence

formula (2.3)):
L, (t?’,:v)
= Lng (,2) + (1 —x)
< . [n - 1]2 2 v T _ M 2 v €T
[(1 N )Roo,q (2,0 (g,2)) il L1 (50 (g, ))]
4 [n—1)°
[

%x(l—v(q,x))jL(l—x) (1— [n]2 ){(1—q)v(q,x)+qv(q,x)v(q2,x)}
-(1-2) n — 1] [sn__l]v( , ) (1—U(q2,x))

[n]?
= (= v(e0)
xl[n ( Ukl )(1_q+qv(q2,x))_[n_l](l_v(qz,x))]
—% <1—v<q,x>>
X [[n] + ([n — 1] + [n]) (1 —q+qu (q2,x)) —[n—1] (1 —v (qz,x))}
=§7x<1—v<q,x»

(] +1 =" =g+ = (L q) o (¢ x) + [l gv (. 2) = [~ 1]

n

= e (=@ 2= d = 0+ g v (¢0) + Il (¢2)]

The proof of the equation (2.8]) is also elementary, but tedious and complicated.
Just notice that we use recurrence formula for L, , (t*, 2) and clearly each term

of the formula contains %x (1-v(g,x)). =



Lemma 8 We have

n

Lug ((t = 2)* ) = [%]x (1-v(q 1)), (2.9)
Ly ((t = 2)* ) = %x (1=v(g,2)) (2.10)

x[2=q"+ =11 +qv (¢ )+ v (¢ z) —3[n]],

Lug ((t = 2)*,2) < Kl[z?x(l — (g, 7)), (2.11)

where K1 1s a positive constant.

Proof. Proofs of (ZI0) and (2.11]) are based on (2.7), (Z8)) and on the following
identities.

L,, ((t — x)3 ,x)
L,, ((t - :B)4 ,at)

L,, (t3, :c) —3xL,, ((t — x)2 ,:c) ,
L, (t4, :)3) —4zL,, ((t — ), :)3) — 627 Ly, ((t — ) ,x) .

3 Convergence properties

For f € C0,1], t > 0, the modulus of continuity w(f, ) and the second modulus
of smoothness wy(f,t) of f are defined by

w(f,t)= sup [f(z)— f(y)l,

lz—y|<t

wy(f,t) = sup sup [f(z+2h) =2f(x+h)+ f(z)].

0<h<t 0<x<1-2h

In [9], it is proved that b,x(¢; ©) = beok(q; ) uniformly in x € [0,1) as n — oo. In
the next lemma we show that this convergence is uniform on (0, go] x [0,1) and
give some estimates for |b,x(q; ) — bk (q; ).

Lemma 9 Let0<qg<qp <1, k>0,n>1.
(i) For any e > 0 there exists M > 0 such that

(g0 +¢)" g
1—(q+¢) Kl )1—610

bnk (43 ) — book(q; )| < buir(q; 2) M (e)

for all (q,x) € (0,q0] x [0,1). In particular, bu,(q; z) converges to bsor(q; x)
uniformly in (q,x) € (0,qo] % [0,1).



(it) For any x € [0,1) we have

n n—k+1

A book (¢; )
q 1—g¢q

T
1bnk(q; ) — book(q; )| < bnk(Q;x)l
__171__

In particular, bui(q; x) converges to book(q; ) uniformly in (q,x) € (0, qo] X
0,a], 0 <a<1.

Proof. We only prove part (i), since the proof of (ii) is similar to that of (i).
Standard computations show that

|bri(q; ) — boor(q; )|

T ,Hv<m>ﬁ<1—v<qw>>|
SHLCEIE SEERIS ()

i=0 7=0

o (9.0)) (H M)

+ kl:[lv (qj,x) ﬁ 1
§=0 j=0

/N
|

j=n j=n—k+1

Now using the inequality

k k

1-J[1 - ay) SZ , (a1,a9,...;ar € (0,1), k=1,2,...,00),

=1 =1

we get from (BI)) that
j:n j=n—k+1
v (¢t x)

On the other hand, lim;_, = ¢ < 1 and observe for any ¢ > 0 such

v (¢, )
that go + € < 1 there exists n* € N such that
vt x +e)’t!
(@2) e (@ )j
v (¢, ) (40 +¢)

for all j > n*. Hence, the sequence v (¢7,z) / (o +¢)’ is decreasing for large j



and thus uniformly bounded in (¢, z) € (0, g] x [0,1) by

]W(d==nmx{v(¢ﬁ+%x) o) “.”<%$>}.

(@+)" ™ (@+e)™ 7 qwte

So, for such M () > 0 we have |v(¢7,z)| < M (¢) (qo +€)’ for all j = 1,2, ... and
(qax) € (OaQO] X [07 1)

Now from (B.2)) we get the desired inequality

(g0 +¢)" q i

[k (45 ) = boor(@: )| < bur(gs 2)M () 7= @ ook (¢ ) 7= o

Before proving the main results notice that the following theorem proved in [9]
will allow us to reduce the case ¢ € (1,00) to the case ¢ € (0,1).

Theorem 10 Let f € C'[0,1], g(z) := f(1 —x). Then for any q > 1,
qu (.fa ZL’) = Rn,% (ga I l’) and Roo,q (.fa ZL’) = Roo% (97 1- ZL’) .

Using Lemma [ we prove the following quantitative result for the rate of local
convergence of R, , (f,x) in terms of the first modulus of continuity.

Theorem 11 Let 0 < ¢ <1 and f € C'[0,1]. Then for all 0 < x < 1 we have

2 1
|Rnq (f;2) — Roo g (f, )] < 1—_qmw (f,q").

Proof. Consider
A (ZL’) = RH,Q(f’ ZL’) _ROO,Q(.fa ZL’) = i f <%> nk Q7 Z .f (1 —q ) ook(%x)

Since R, 4(f, ) and R 4(f, x) possess the end point interpolation property A (0) =
A (1) =0. For all z € (0,1) we rewrite A in the following form

K]

i [f <7]> (1-4¢ )] bk (q; )
[ (=) = 7 ()] Guslas ) — bresla52))

=0

ol

B Z { (1_q)_f(l)}book(q;x)::]1+[2+]3.

k=n+1



We start with estimation of I; and I3. Since

we get
L] <w(f,q¢" ank ¢z) =w(f,q"), (3.3)
3] <w (f,q¢" Z boor(q; ) <w (f,¢") . (3.4)
k=n+1

Finally we estimate I5. Using the property of the modulus of continuity
w(f; M) <1+ ANw(fit), A>0

and Lemma O we get

L] < 3w (£,4") bur(a: ) = book(g; @)
k=0

<w(fiq") z (14 ) [bui(g: 2) = boca (g )|

<2 f,q")qinéqk\bnk ¢;7) — book(g; 7))

<20 (f,q") i"zi: <nkq7 lf“qanrbook(Q;x)q:__k;l)

< (f el = o (). (3.5)

From ([B3.3), (34), and (3.5]), we conclude the desired estimation. m

Corollary 12 Let ¢ > 1 and f € C'[0,1]. Then for all 0 < z < 1 we have

Ry (£,2) = Ry (1) £ w0 (.07

lz

Proof. Proof follows from Theorems [[1] and 10 =

Next corollary gives quantitative result for the rate of uniform convergence of
R,,(f,x)in C[0,a] and C[a,1], 0 <a < 1.

Corollary 13 Let f € C'[0,1],0<a < 1.

(1) If 0 < ¢ < 1, then

2 1
|Ro (F) = Reog (Dl < 77—

10



(2) If ¢ > 1, then

2qg 1 o
HRn,q (f) - Roo,q (f)HC'[(Ll} S q_—law (gv q ) .

In order to prove the estimation in terms of the second modulus of continuity we
need the following theorem proved in [16].

Theorem 14 [16] Let {T,,} be a sequence of positive linear operators on C'[0, 1]
satisfying the following conditions:

(A) the sequence {T, (t*) (z)} converges uniformly on [0,1];

(B) the sequence {T,, (f) (x)} is nonincreasing in n for any convex function f
and any x € [0, 1].
Then there ezists an operator T, on C'[0,1] such that

T (f) (x) = To (f) (@)

as n — oo uniformly on [0,1]. In addition, the following estimation holds:

17, () (@) = Toe (f) ()] < Con (£:/20 (@)

where wy is the second modulus of smoothness, N, (z) = |T;, (t?) (z) — Tw (t?) (2)|,
and C' is a constant depending only on T} (1).

Theorem 15 Let 0 < g < 1. Then

1 Rq (f) = Roog ()l < cwn (£,1/47) (3.6)
Moreover,
SO 1Py (£) = R (£ < e (£ %), (3.7)

where ¢ is a constant.

Proof. From [0], we know that the ¢-Bernstein operators satisfy condition (B) of
Theorem [I4l On the other hand

0 S qu (t2’[1§') — Roo,q (t2’[1§') = m[lf (]_ — U (q,l’)) S q m S q (38)
and
" ox(l—ux) z(l—x)
S Roo (t2,2) — Roog (t5, )| = s q_:c( = .
o<1;l<)1‘ X ( ) N ( )‘ 0201 (1] 1= + g n
Since

)

[Ru (22.2) =) = T2
we conclude that

sup ‘qu (tz,x) — Ry (tz,I)‘ < z(l=2) < (3.9)

1
0<q<1 n n

11



Theorem follows from ([39), (88) and Theorem 14l =

Theorem 16 Let g > 1. Then

1B (F) = Fovag (DI < 02 (9.1 )

SUD. || Rug () — Roog (FI] < e (9,07 /%) (3.10)

1<g<0
where ¢ is a constant.

Moreover,

Proof. The proof is similar to that of Theorem |

Remark 17 From (3.7) and (310), we conclude that the rate of convergence
|Rnq (f) — Reoq (f)|| can be dominated by cwo (f, n_l/z) uniformly with respect
toq# 1.

Remark 18 We may observe here that for f (z) = 2%, we have

|Rog (f) = Rocg (N = ¢" =@ (f,V/@"), 0<q<1,

where A(n) < B(n) means that A(n) < B(n) and A(n) > B(n), and A(n) <
B(n) means that there exists a positive constant ¢ independent of n such that
A(n) < ¢B(n). Hence the estimate (3.4) is sharp in the following sense: the
sequence q" in (3.8) cannot be replaced by any other sequence decreasing to zero
more rapidly as n — oo.

4 Voronovskaja type results

Theorem 19 Let 0 < q < 1, f € C?[0,1]. Then there exists a positive absolute
constant K such that

) ()
o (Bug(F.2) = Rooy(£.2) =

< Kz (1-v(g,2)w(f’ [n]?).

o1 <q,x>>\ (4.1

Proof. Let z € (0, 1) be fixed. We set

o) = 10~ (760 + £t -0+ e - 7).

It is known that (see [6]) if the function h is convex on [0, 1], then
Ry q(h,x) > Ryp14(h,z) > ... > Ry 4(hy ),
and therefore,

L, (h,z) =R, (h,x) — R 4(h,z) > 0.

12



Thus L,,, is positive on the set of convex functions on [0, 1]. But in general L,, ,
is not positive on C'[0, 1].

Simple calculation gives

L (9:) = (Rua(F,2) = Boog(f,2)) = %fﬁéx)

z(l—-v(q,2)).

In order to prove the theorem, we need to estimate L, , (g, ). To do this, it is
enough to choose a function S () such that the functions S (t) + ¢ (¢) are convex
on [0,1]. Then L, , (S £+ g,z) > 0, and therefore,

[ Lng (9(t), 2)| < Lng (S(t), 7).

So the first thing to do is to find such function S (t). Using the well-known
inequality w(f, \d) < (1 4+ A)w(f,d) (A,0 > 0), we get

") = 117() = (@) < w(f”, [t —x[)

w (f [nl]% )t |t —x|) <w (f ﬁ) ((1+ Il (¢ - 2)%))

Define S (t) = w (f”, [n]_%) [%(t —z)?+ 5 [n](t— x)ﬂ. Then

D=

12

2

0] < g (7 )7E) (3¢ -0+ 5 (- 0)!) = 5"(0)

t

Hence the functions S(t) & g(¢) are convex on [0, 1], and therefore,

|Lng (9(t), 2)| < L (S(t), ),

Since by the formula (Z.11))
4 q
Lng ((t—2)%2) < Ki——z (1 -v(g,)) (4.2)
n]
we have

Lng (5(t),2) <

éw (f”, [n]_%) <3£x (1—-wv(q,x))+ L [n] Kli—lx (1—-w (q,x))) )
)

By (£2]) and (4.3), we obtain (£.I]). Theorem is proved. m

Corollary 20 Let ¢ > 1, f € C?[0,1]. Then there exists a positive absolute

13



constant K such that

")y (Ruglf.) ~ Braglfo2)) — T g0y (1 )

< Kv(q.x) (1 - 2)wlg’ [,)

Corollary 21 If f € C?[0,1] and q, — 1 as n — oo, then

i (1], (R () — 1 @) = T80 0, (1.4
lin ]+ (R, (7,2) — f () = T (1)

uniformly on [0, 1].

Remark 22 When g, =1, (4.4) reduces to the classical Voronovskaja’s formula.
For the function f(t) = t2, the exact equality

[n]q 2 2

4 (R g(t,2) = Rocy(t®2)) =2 (1—v(g2)),  0<g<l,

qn
qn [TL]% (Rn,q(t2a ZL’) - Roo,q(t2a ZL’)) =v (Qa ZL’) (1 - ZL’) ) q> 1>
takes place without passing to the limit, but in contrast to the Phillips q-analogue
of the Bernstein polynomials the right hand side depends on q. In contrast to the

classical Bernstein polynomials and Phillips g-analogue of the Bernstein polyno-
mials the exact equality

(0] (Bug(t®,2) —2%) = (22) 2 (1 - ) /2

does not hold for the Lupas q-analogue of the Bernstein polynomials.
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