Some approximation properties of Lupaş q-analogue of Bernstein operators

N. I. Mahmudov and P. Sabancıgil
Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey email: nazim.mahmudov@emu.edu.tr
pembe.sabancigil@emu.edu.tr

Abstract

In this paper, we discuss rates of convergence for the Lupaş q-analogue of Bernstein polynomials $R_{n, q}$. We prove a quantitative variant of Voronovskaja's theorem for $R_{n, q}$.

Key words: q-Bernstein polynomials; Lupaş q-analogue; Voronovskaja-type formulas

1 Introduction

Let $q>0$. For any $n \in N \cup\{0\}$, the q-integer $[n]=[n]_{q}$ is defined by

$$
[n]:=1+q+\ldots+q^{n-1}, \quad[0]:=0
$$

and the q-factorial $[n]!=[n]_{q}!$ by

$$
[n]!:=[1][2] \ldots[n], \quad[0]!:=1 .
$$

For integers $0 \leq k \leq n$, the q-binomial is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{[n]!}{[k]![n-k]!} .
$$

In the last two decades interesting generalizations of Bernstein polynomials were proposed by Lupaş [6]

$$
R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)}
$$

$$
B_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) .
$$

The Phillips q-analogue of the Bernstein polynomials ($B_{n, q}$) attracted a lot of interest and was studied widely by a number of authors. A survey of the obtained results and references on the subject can be found in [8]. The Lupaş operators $\left(R_{n, q}\right)$ are less known. However, they have an advantage of generating positive linear operators for all $q>0$, whereas Phillips polynomials generate positive linear operators only if $q \in(0,1)$. Lupas [6 investigated approximating properties of the operators $R_{n, q}(f, x)$ with respect to the uniform norm of $C[0,1]$. In particular, he obtained some sufficient conditions for a sequence $\left\{R_{n, q}(f, x)\right\}$ to be approximating for any function $f \in C[0,1]$ and estimated the rate of convergence in terms of the modulus of continuity. He also investigated behavior of the operators $R_{n, q}(f, x)$ for convex functions. In [9] several results on convergence properties of the sequence $\left\{R_{n, q}(f, x)\right\}$ is presented. In particular, it is proved that the sequence $\left\{R_{n, q}(f, x)\right\}$ converges uniformly to $f(x)$ on $[0,1]$ if and only if $q_{n} \rightarrow 1$. On the other hand, for any $q>0$ fixed, $q \neq 1$, the sequence $\left\{R_{n, q}(f, x)\right\}$ converges uniformly to $f(x)$ if and only if $f(x)=a x+b$ for some $a, b \in R$.

In the paper, we investigate the rate of convergence for the sequence $\left\{R_{n, q}(f, x)\right\}$ by the modulii of continuity. We discuss Voronovskaja-type theorems for Lupaş operators for arbitrary fixed $q>0$. Moreover, for the Voronovskaja's asymptotic formula we obtain the estimate of the remainder term.

2 Auxiliary results

It will be convenient to use for $x \in[0,1)$ the following transformations

$$
v=v(q, x):=\frac{q x}{1-x+q x}, \quad v\left(q^{j}, v\right)=\frac{q^{j} v}{1-v+q^{j} v} .
$$

Let $0<q<1$. We set

$$
\begin{aligned}
& b_{n k}(q ; x):=\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{\frac{k(k-1)}{2}} x^{k}(1-x)^{n-k}}{(1-x+q x) \ldots\left(1-x+q^{n-1} x\right)}, \quad x \in[0,1], \\
& b_{\infty k}(q ; x):=\frac{q^{\frac{k(k-1)}{2}}(x / 1-x)^{k}}{(1-q)^{k}[k]!\prod_{j=0}^{\infty}\left(1+q^{j}(x / 1-x)\right)}, \quad x \in[0,1) .
\end{aligned}
$$

It was proved in [6] and [9] that for $q \in(0,1)$ and $x \in[0,1)$,

$$
\sum_{k=0}^{n} b_{n k}(q ; x)=\sum_{k=0}^{\infty} b_{\infty k}(q ; x)=1
$$

Definition 1 Lupaş [6]. The linear operator $R_{n, q}: C[0,1] \rightarrow C[0,1]$ defined by

$$
R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n k}(q ; x)
$$

is called the q-analogue of the Bernstein operator.
Definition 2 The linear operator defined on $C[0,1]$ given by

$$
R_{\infty, q}(f, x)= \begin{cases}\sum_{k=0}^{\infty} f\left(1-q^{k}\right) b_{\infty k}(q ; x) & \text { if } x \in[0,1) \\ f(1) & \text { if } x=1\end{cases}
$$

is called the limit q-Lupaş operator.
It follows directly from the definition that operators $R_{n, q}(f, x)$ possess the endpoint interpolation property, that is,

$$
R_{n, q}(f, 0)=f(0), \quad R_{n, q}(f, 1)=f(1)
$$

for all $q>0$ and all $n=1,2, \ldots$.
Lemma 3 We have

$$
\begin{aligned}
& b_{n k}(q ; x)=\left[\begin{array}{c}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right), \quad x \in[0,1] \\
& b_{\infty k}(q ; x)=\frac{1}{(1-q)^{k}[k]!} \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{\infty}\left(1-v\left(q^{k+j}, x\right)\right), \quad x \in[0,1] .
\end{aligned}
$$

It was proved in [6] and [9] that $R_{n, q}(f, x), R_{\infty, q}(f, x)$ reproduce linear functions and $R_{n, q}\left(t^{2}, x\right)$ and $R_{\infty, q}\left(t^{2}, x\right)$ were explicitly evaluated. Using Lemma 3 we may write formulas for $R_{n, q}\left(t^{2}, x\right)$ and $R_{\infty, q}\left(t^{2}, x\right)$ in the compact form.

Lemma 4 We have

$$
\begin{aligned}
R_{n, q}(1, x) & =1, R_{n, q}(t, x)=x, R_{\infty, q}(1, x)=1, R_{\infty, q}(t, x)=x \\
R_{n, q}\left(t^{2}, x\right) & =x v(q, x)+\frac{x(1-v(q, x))}{[n]}, \\
R_{\infty, q}\left(t^{2}, x\right) & =x v(q, x)+(1-q) x(1-v(q, x))=x-q x(1-v(q, x)) .
\end{aligned}
$$

Now define

$$
L_{n, q}(f, x):=R_{n, q}(f, x)-R_{\infty, q}(f, x) .
$$

Lemma 5 The following recurrence formulae hold

$$
\begin{align*}
R_{n, q}\left(t^{m+1}, x\right) & =R_{n, q}\left(t^{m}, x\right)-(1-x) \frac{[n-1]^{m}}{[n]^{m}} R_{n-1, q}\left(t^{m}, v\right) \tag{2.1}\\
R_{\infty, q}\left(t^{m+1}, x\right) & =R_{\infty, q}\left(t^{m}, x\right)-(1-x) R_{\infty, q}\left(t^{m}, v\right) \tag{2.2}\\
L_{n, q}\left(t^{m+1}, x\right) & =L_{n, q}\left(t^{m}, x\right)+(1-x) \\
& \times\left(\left(1-\frac{[n-1]^{m}}{[n]^{m}}\right) R_{\infty, q}\left(t^{m}, v\right)-\frac{[n-1]^{m}}{[n]^{m}} L_{n-1, q}\left(t^{m}, v\right)\right) \tag{2.3}
\end{align*}
$$

Proof. First we prove (2.1). We write explicitly

$$
R_{n, q}\left(t^{m+1}, x\right)=\sum_{k=0}^{n} \frac{[k]^{m+1}}{[n]^{m+1}}\left[\begin{array}{l}
n \tag{2.4}\\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right)
$$

and rewrite the first two factor in the following form:

$$
\begin{align*}
\frac{[k]^{m+1}}{[n]^{m+1}}\left[\begin{array}{l}
n \\
k
\end{array}\right] & =\frac{[k]^{m}}{[n]^{m}}\left(1-q^{k} \frac{[n-k]}{[n]}\right)\left[\begin{array}{c}
n \\
k
\end{array}\right] \\
& =\frac{[k]^{m}}{[n]^{m}}\left[\begin{array}{l}
n \\
k
\end{array}\right]-\frac{[n-1]^{m}}{[n]^{m}} \frac{[k]^{m}}{[n-1]^{m}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k} . \tag{2.5}
\end{align*}
$$

Finally, if we substitute (2.5) in (2.4) we get (2.1):

$$
\begin{gathered}
R_{n, q}\left(t^{m+1}, x\right)=\sum_{k=0}^{n} \frac{[k]^{m}}{[n]^{m}}\left[\begin{array}{l}
n \\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right) \\
-\frac{[n-1]^{m}}{[n]^{m}}(1-x) \sum_{k=0}^{n-1} \frac{[k]^{m}}{[n-1]^{m}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \prod_{j=0}^{k-1} v\left(q^{j}, v(q, x)\right) \prod_{j=0}^{n-k-2}\left(1-v\left(q^{k+j}, v(q, x)\right)\right) \\
=R_{n, q}\left(t^{m}, x\right)-\frac{[n-1]^{m}}{[n]^{m}}(1-x) R_{n-1, q}\left(t^{m}, v(q, x)\right) .
\end{gathered}
$$

Next we prove (2.3)

$$
\begin{aligned}
L_{n, q}\left(t^{m+1}, x\right)= & R_{n, q}\left(t^{m+1}, x\right)-R_{\infty, q}\left(t^{m+1}, x\right) \\
= & R_{n, q}\left(t^{m}, x\right)-(1-x) \frac{[n-1]^{m}}{[n]^{m}} R_{n-1, q}\left(t^{m}, v(q, x)\right) \\
& \quad-R_{\infty, q}\left(t^{m}, x\right)+(1-x) R_{\infty, q}\left(t^{m}, v(q, x)\right) \\
& =L_{n, q}\left(t^{m}, x\right)+(1-x) \\
\times\left(\left(1-\frac{[n-1]^{m}}{[n]^{m}}\right)\right. & \left.R_{\infty, q}\left(t^{m}, v(q, x)\right)-\frac{[n-1]^{m}}{[n]^{m}} L_{n-1, q}\left(t^{m}, v(q, x)\right)\right) .
\end{aligned}
$$

Formula (2.2) can be obtained from (2.1), by taking the limit as $n \rightarrow \infty$.
Moments $R_{n, q}\left(t^{m}, x\right), R_{\infty, q}\left(t^{m}, x\right)$ are of particular importance in the theory of approximation by positive operators. In what follows we need explicit formulas for moments $R_{n, q}\left(t^{3}, x\right), R_{\infty, q}\left(t^{3}, x\right)$.

Lemma 6 We have

$$
\begin{aligned}
R_{n, q}\left(t^{3}, x\right) & =x v(q, x)+\frac{x(1-v(q, x))}{[n]^{2}}-\frac{[n-1][n-2] q^{2}}{[n]^{2}} x(1-v(q, x)) v\left(q^{2}, x\right) \\
R_{\infty, q}\left(t^{3}, x\right) & =x v(q, x)+(1-q)^{2} x(1-v(q, x))-q^{2} x(1-v(q, x)) v\left(q^{2}, x\right)
\end{aligned}
$$

Proof. Note that explicit formulas for $R_{n, q}\left(t^{m}, x\right), R_{\infty, q}\left(t^{m}, x\right), m=0,1,2$ were proved in [6], [9]. Now we prove an explicit formula for $R_{n, q}\left(t^{3}, x\right)$, since formula for $R_{\infty, q}\left(t^{3}, x\right)$ can be obtained by taking limit as $n \rightarrow \infty$. The proof is based on the recurrence formula (2.1). Indeed,

$$
\begin{aligned}
R_{n, q}\left(t^{3}, x\right) & =R_{n, q}\left(t^{2}, x\right)-(1-x) \frac{[n-1]^{2}}{[n]^{2}} R_{n-1, q}\left(t^{2}, v\right) \\
& =x v(q, x)+\frac{x(1-v(q, x))}{[n]}-(1-x) \frac{[n-1]^{2}}{[n]^{2}} v(q, x) v\left(q^{2}, x\right) \\
& -(1-x) \frac{[n-1]}{[n]^{2}} v(q, x)+(1-x) \frac{[n-1]}{[n]^{2}} v(q, x) v\left(q^{2}, x\right) \\
& =x v(q, x)+\frac{x(1-v(q, x))}{[n]}\left(1-\frac{q[n-1]}{[n]}\right) \\
& -\frac{[n-1]}{[n]^{2}}([n-1]-1) q x(1-v(q, x)) v\left(q^{2}, x\right) \\
& =x v(q, x)+\frac{x(1-v(q, x))}{[n]^{2}}-\frac{[n-1][n-2] q^{2}}{[n]^{2}} x(1-v(q, x)) v\left(q^{2}, x\right) .
\end{aligned}
$$

In order to prove Voronovskaja type theorem for $R_{n, q}(f, x)$ we also need explicit formulas and inequalities for $L_{n, q}\left(t^{m}, x\right), m=2,3,4$.

Lemma 7 Let $0<q<1$. Then

$$
\begin{align*}
L_{n, q}\left(t^{2}, x\right) & =\frac{q^{n}}{[n]} x(1-v(q, x)) \tag{2.6}\\
L_{n, q}\left(t^{3}, x\right) & =\frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \tag{2.7}\\
& \times\left[2-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)\right] \\
L_{n, q}\left(t^{4}, x\right) & =\frac{q^{n}}{[n]^{2}} x(1-v(q, x)) M\left(q, v\left(q^{2}, x\right), v\left(q^{3}, x\right)\right) \tag{2.8}
\end{align*}
$$

where M is a function of $\left(q, v\left(q^{2}, x\right), v\left(q^{3}, x\right)\right)$.
Proof. First we find a formula for $L_{n, q}\left(t^{3}, x\right)$. To do this we use the recurrence formula (2.3):

$$
\begin{aligned}
& L_{n, q}\left(t^{3}, x\right) \\
& =L_{n, q}\left(t^{2}, x\right)+(1-x) \\
& \times\left[\left(1-\frac{[n-1]^{2}}{[n]^{2}}\right) R_{\infty, q}\left(t^{2}, v(q, x)\right)-\frac{[n-1]^{2}}{[n]^{2}} L_{n-1, q}\left(t^{2}, v(q, x)\right)\right] \\
& =\frac{q^{n}}{[n]} x(1-v(q, x))+(1-x)\left(1-\frac{[n-1]^{2}}{[n]^{2}}\right)\left[(1-q) v(q, x)+q v(q, x) v\left(q^{2}, x\right)\right] \\
& -(1-x) \frac{[n-1]^{2}}{[n]^{2}} \frac{q^{n-1}}{[n-1]} v(q, x)\left(1-v\left(q^{2}, x\right)\right) \\
& =\frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[[n]+\left(\frac{[n]^{2}-[n-1]^{2}}{q^{n-1}}\right)\left(1-q+q v\left(q^{2}, x\right)\right)-[n-1]\left(1-v\left(q^{2}, x\right)\right)\right] \\
& =\frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[[n]+([n-1]+[n])\left(1-q+q v\left(q^{2}, x\right)\right)-[n-1]\left(1-v\left(q^{2}, x\right)\right)\right] \\
& =\frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \\
& \times\left[[n]+1-q^{n-1}+1-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)-[n-1]\right] \\
& =\frac{q^{n}}{[n]^{2}} x(1-v(q, x))\left[2-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)\right] .
\end{aligned}
$$

The proof of the equation (2.8) is also elementary, but tedious and complicated. Just notice that we use recurrence formula for $L_{n, q}\left(t^{4}, x\right)$ and clearly each term of the formula contains $\frac{q^{n}}{[n]^{2}} x(1-v(q, x))$.

Lemma 8 We have

$$
\begin{align*}
L_{n, q}\left((t-x)^{2}, x\right) & =\frac{q^{n}}{[n]} x(1-v(q, x)), \tag{2.9}\\
L_{n, q}\left((t-x)^{3}, x\right) & =\frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \tag{2.10}\\
& \times\left[2-q^{n}+[n-1](1+q) v\left(q^{2}, x\right)+[n] q v\left(q^{2}, x\right)-3[n] x\right], \\
L_{n, q}\left((t-x)^{4}, x\right) & \leq K_{1} \frac{q^{n}}{[n]^{2}} x(1-v(q, x)), \tag{2.11}
\end{align*}
$$

where K_{1} is a positive constant.
Proof. Proofs of (2.10) and (2.11) are based on (2.7), (2.8) and on the following identities.

$$
\begin{aligned}
& L_{n, q}\left((t-x)^{3}, x\right)=L_{n, q}\left(t^{3}, x\right)-3 x L_{n, q}\left((t-x)^{2}, x\right) \\
& L_{n, q}\left((t-x)^{4}, x\right)=L_{n, q}\left(t^{4}, x\right)-4 x L_{n, q}\left((t-x)^{3}, x\right)-6 x^{2} L_{n, q}\left((t-x)^{2}, x\right) .
\end{aligned}
$$

3 Convergence properties

For $f \in C[0,1], t>0$, the modulus of continuity $\omega(f, t)$ and the second modulus of smoothness $\omega_{2}(f, t)$ of f are defined by

$$
\begin{aligned}
\omega(f, t) & =\sup _{|x-y| \leq t}|f(x)-f(y)|, \\
\omega_{2}(f, t) & =\sup _{0 \leq h \leq t} \sup _{0 \leq x \leq 1-2 h}|f(x+2 h)-2 f(x+h)+f(x)| .
\end{aligned}
$$

In [9], it is proved that $b_{n k}(q ; x) \rightarrow b_{\infty k}(q ; x)$ uniformly in $x \in[0,1)$ as $n \rightarrow \infty$. In the next lemma we show that this convergence is uniform on $\left(0, q_{0}\right] \times[0,1)$ and give some estimates for $\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right|$.

Lemma 9 Let $0<q \leq q_{0}<1, k \geq 0, n \geq 1$.
(i) For any $\varepsilon>0$ there exists $M>0$ such that

$$
\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \leq b_{n k}(q ; x) M(\varepsilon) \frac{\left(q_{0}+\varepsilon\right)^{n}}{1-\left(q_{0}+\varepsilon\right)}+b_{\infty k}(q ; x) \frac{q_{0}^{n-k+1}}{1-q_{0}}
$$

for all $(q, x) \in\left(0, q_{0}\right] \times[0,1)$. In particular, $b_{n k}(q ; x)$ converges to $b_{\infty k}(q ; x)$ uniformly in $(q, x) \in\left(0, q_{0}\right] \times[0,1)$.
(ii) For any $x \in[0,1)$ we have

$$
\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \leq b_{n k}(q ; x) \frac{x}{1-x} \frac{q^{n}}{1-q}+b_{\infty k}(q ; x) \frac{q^{n-k+1}}{1-q}
$$

In particular, $b_{n k}(q ; x)$ converges to $b_{\infty k}(q ; x)$ uniformly in $(q, x) \in\left(0, q_{0}\right] \times$ $[0, a], 0<a<1$.

Proof. We only prove part (i), since the proof of (ii) is similar to that of (i). Standard computations show that

$$
\begin{align*}
& \left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \\
& =\left\lvert\,\left[\begin{array}{c}
n \\
k
\end{array} \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right)\right.\right. \\
& \left.-\frac{1}{(1-q)^{k}[k]!} \prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{\infty}\left(1-v\left(q^{k+j}, x\right)\right) \right\rvert\, \\
& =\left\lvert\,\left[\begin{array}{c}
n \\
k
\end{array} \prod_{j=0}^{k-1} v\left(q^{j}, x\right)\left(\prod_{j=0}^{n-k-1}\left(1-v\left(q^{k+j}, x\right)\right)-\prod_{j=0}^{\infty}\left(1-v\left(q^{k+j}, x\right)\right)\right)\right.\right. \\
& \left.+\prod_{j=0}^{k-1} v\left(q^{j}, x\right) \prod_{j=0}^{\infty}\left(1-v\left(q^{k+j}, x\right)\right)\left(\left[\begin{array}{l}
n \\
k
\end{array}\right]-\frac{1}{(1-q)^{k}[k]!}\right) \right\rvert\, \\
& \leq b_{n k}(q ; x)\left|1-\prod_{j=n}^{\infty}\left(1-v\left(q^{j}, x\right)\right)\right|+b_{\infty k}(q ; x)\left|\prod_{j=n-k+1}^{n}\left(1-q^{j}\right)-1\right| \tag{3.1}
\end{align*}
$$

Now using the inequality

$$
1-\prod_{j=1}^{k}\left(1-a_{j}\right) \leq \sum_{j=1}^{k} a_{j}, \quad\left(a_{1}, a_{2}, \ldots, a_{k} \in(0,1), k=1,2, \ldots, \infty\right)
$$

we get from (3.1) that

$$
\begin{equation*}
\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \leq b_{n k}(q ; x) \sum_{j=n}^{\infty} v\left(q^{j}, x\right)+b_{\infty k}(q ; x) \sum_{j=n-k+1}^{n} q^{j} . \tag{3.2}
\end{equation*}
$$

On the other hand, $\lim _{j \rightarrow \infty} \frac{v\left(q^{j+1}, x\right)}{v\left(q^{j}, x\right)}=q<1$ and observe for any $\varepsilon>0$ such that $q_{0}+\varepsilon<1$ there exists $n^{*} \in \mathbb{N}$ such that

$$
\frac{v\left(q^{j+1}, x\right)}{v\left(q^{j}, x\right)}<q_{0}+\varepsilon=\frac{\left(q_{0}+\varepsilon\right)^{j+1}}{\left(q_{0}+\varepsilon\right)^{j}}
$$

for all $j>n^{*}$. Hence, the sequence $v\left(q^{j}, x\right) /\left(q_{0}+\varepsilon\right)^{j}$ is decreasing for large j
and thus uniformly bounded in $(q, x) \in\left(0, q_{0}\right] \times[0,1)$ by

$$
M(\varepsilon)=\max \left\{\frac{v\left(q^{n^{*}+1}, x\right)}{\left(q_{0}+\varepsilon\right)^{n^{*}+1}}, \frac{v\left(q^{n^{*}}, x\right)}{\left(q_{0}+\varepsilon\right)^{n^{*}}}, \ldots, \frac{v(q, x)}{q_{0}+\varepsilon}\right\} .
$$

So, for such $M(\varepsilon)>0$ we have $\left|v\left(q^{j}, x\right)\right| \leq M(\varepsilon)\left(q_{0}+\varepsilon\right)^{j}$ for all $j=1,2, \ldots$ and $(q, x) \in\left(0, q_{0}\right] \times[0,1)$.

Now from (3.2) we get the desired inequality

$$
\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \leq b_{n k}(q ; x) M(\varepsilon) \frac{\left(q_{0}+\varepsilon\right)^{n}}{1-\left(q_{0}+\varepsilon\right)}+b_{\infty k}(q ; x) \frac{q_{0}^{n-k+1}}{1-q_{0}} .
$$

Before proving the main results notice that the following theorem proved in 9] will allow us to reduce the case $q \in(1, \infty)$ to the case $q \in(0,1)$.

Theorem 10 Let $f \in C[0,1], g(x):=f(1-x)$. Then for any $q>1$,

$$
R_{n, q}(f, x)=R_{n, \frac{1}{q}}(g, 1-x) \quad \text { and } \quad R_{\infty, q}(f, x)=R_{\infty, \frac{1}{q}}(g, 1-x) .
$$

Using Lemma 9 we prove the following quantitative result for the rate of local convergence of $R_{n, q}(f, x)$ in terms of the first modulus of continuity.

Theorem 11 Let $0<q<1$ and $f \in C[0,1]$. Then for all $0 \leq x<1$ we have

$$
\left|R_{n, q}(f, x)-R_{\infty, q}(f, x)\right| \leq \frac{2}{1-q} \frac{1}{1-x} \omega\left(f, q^{n}\right)
$$

Proof. Consider
$\Delta(x):=R_{n, q}(f, x)-R_{\infty, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) b_{n k}(q ; x)-\sum_{k=0}^{\infty} f\left(1-q^{k}\right) b_{\infty k}(q ; x)$.
Since $R_{n, q}(f, x)$ and $R_{\infty, q}(f, x)$ possess the end point interpolation property $\Delta(0)=$ $\Delta(1)=0$. For all $x \in(0,1)$ we rewrite Δ in the following form

$$
\begin{aligned}
\Delta(x)=\sum_{k=0}^{n}\left[f\left(\frac{[k]}{[n]}\right)-\right. & \left.f\left(1-q^{k}\right)\right] b_{n k}(q ; x) \\
& +\sum_{k=0}^{n}\left[f\left(1-q^{k}\right)-f(1)\right]\left(b_{n k}(q ; x)-b_{\infty k}(q ; x)\right) \\
& -\sum_{k=n+1}^{\infty}\left[f\left(1-q^{k}\right)-f(1)\right] b_{\infty k}(q ; x)=: I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

We start with estimation of I_{1} and I_{3}. Since

$$
\begin{aligned}
& 0 \leq \frac{[k]}{[n]}-\left(1-q^{k}\right)=\frac{1-q^{k}}{1-q^{n}}-\left(1-q^{k}\right)=q^{n} \frac{1-q^{k}}{1-q^{n}} \leq q^{n}, \\
& 0 \leq 1-\left(1-q^{k}\right)=q^{k} \leq q^{n}, \quad k>n
\end{aligned}
$$

we get

$$
\begin{align*}
& \left|I_{1}\right| \leq \omega\left(f, q^{n}\right) \sum_{k=0}^{n} b_{n k}(q ; x)=\omega\left(f, q^{n}\right), \tag{3.3}\\
& \left|I_{3}\right| \leq \omega\left(f, q^{n}\right) \sum_{k=n+1}^{\infty} b_{\infty k}(q ; x) \leq \omega\left(f, q^{n}\right) . \tag{3.4}
\end{align*}
$$

Finally we estimate I_{2}. Using the property of the modulus of continuity

$$
\omega(f, \lambda t) \leq(1+\lambda) \omega(f, t), \quad \lambda>0
$$

and Lemma 9 we get

$$
\begin{align*}
\left|I_{2}\right| & \leq \sum_{k=0}^{n} \omega\left(f, q^{k}\right)\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \\
& \leq \omega\left(f, q^{n}\right) \sum_{k=0}^{n}\left(1+q^{k-n}\right)\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \\
& \leq 2 \omega\left(f, q^{n}\right) \frac{1}{q^{n}} \sum_{k=0}^{n} q^{k}\left|b_{n k}(q ; x)-b_{\infty k}(q ; x)\right| \\
& \leq 2 \omega\left(f, q^{n}\right) \frac{1}{q^{n}} \sum_{k=0}^{n} q^{k}\left(b_{n k}(q ; x) \frac{x}{1-x} \frac{q^{n}}{1-q}+b_{\infty k}(q ; x) \frac{q^{n-k+1}}{1-q}\right) \\
& \leq \frac{2}{1-q}\left(\frac{x}{1-x}+1\right) \omega\left(f, q^{n}\right)=\frac{2}{1-q} \frac{1}{1-x} \omega\left(f, q^{n}\right) . \tag{3.5}
\end{align*}
$$

From (3.3), (3.4), and (3.5), we conclude the desired estimation.
Corollary 12 Let $q>1$ and $f \in C[0,1]$. Then for all $0<x \leq 1$ we have

$$
\left|R_{n, q}(f, x)-R_{\infty, q}(f, x)\right| \leq \frac{2 q}{q-1} \frac{1}{x} \omega\left(g, q^{-n}\right) .
$$

Proof. Proof follows from Theorems 11 and 10 .
Next corollary gives quantitative result for the rate of uniform convergence of $R_{n, q}(f, x)$ in $C[0, a]$ and $C[a, 1], 0<a<1$.

Corollary 13 Let $f \in C[0,1], 0<a<1$.
(1) If $0<q<1$, then

$$
\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\|_{C[0, a]} \leq \frac{2}{1-q} \frac{1}{1-a} \omega\left(f, q^{n}\right)
$$

(2) If $q>1$, then

$$
\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\|_{C[a, 1]} \leq \frac{2 q}{q-1} \frac{1}{a} \omega\left(g, q^{-n}\right)
$$

In order to prove the estimation in terms of the second modulus of continuity we need the following theorem proved in [16].

Theorem 14 [16] Let $\left\{T_{n}\right\}$ be a sequence of positive linear operators on $C[0,1]$ satisfying the following conditions:
(A) the sequence $\left\{T_{n}\left(t^{2}\right)(x)\right\}$ converges uniformly on $[0,1]$;
(B) the sequence $\left\{T_{n}(f)(x)\right\}$ is nonincreasing in n for any convex function f and any $x \in[0,1]$.
Then there exists an operator T_{∞} on $C[0,1]$ such that

$$
T_{n}(f)(x) \rightarrow T_{\infty}(f)(x)
$$

as $n \rightarrow \infty$ uniformly on $[0,1]$. In addition, the following estimation holds:

$$
\left|T_{n}(f)(x)-T_{\infty}(f)(x)\right| \leq C \omega_{2}\left(f ; \sqrt{\lambda_{n}(x)}\right)
$$

where ω_{2} is the second modulus of smoothness, $\lambda_{n}(x)=\left|T_{n}\left(t^{2}\right)(x)-T_{\infty}\left(t^{2}\right)(x)\right|$, and C is a constant depending only on $T_{1}(1)$.

Theorem 15 Let $0<q<1$. Then

$$
\begin{equation*}
\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\| \leq c \omega_{2}\left(f, \sqrt{q^{n}}\right) . \tag{3.6}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\sup _{0<q \leq 1}\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\| \leq c \omega_{2}\left(f, n^{-1 / 2}\right) \tag{3.7}
\end{equation*}
$$

where c is a constant.
Proof. From [6], we know that the q-Bernstein operators satisfy condition (B) of Theorem 14. On the other hand

$$
\begin{equation*}
0 \leq R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)=\frac{q^{n}}{[n]} x(1-v(q, x)) \leq q^{n} \frac{x(1-x)}{1-x+q x} \leq q^{n} \tag{3.8}
\end{equation*}
$$

and

$$
\sup _{0<q<1}\left|R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)\right|=\sup _{0<q<1} \frac{q^{n}}{[n]} \frac{x(1-x)}{1-x+q x}=\frac{x(1-x)}{n}
$$

Since

$$
\left|R_{n, 1}\left(t^{2}, x\right)-x^{2}\right|=\frac{x(1-x)}{n}
$$

we conclude that

$$
\begin{equation*}
\sup _{0<q \leq 1}\left|R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)\right| \leq \frac{x(1-x)}{n} \leq \frac{1}{n} \tag{3.9}
\end{equation*}
$$

Theorem follows from (3.9), (3.8) and Theorem 14.
Theorem 16 Let $q>1$. Then

$$
\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\| \leq c \omega_{2}\left(g, \sqrt{q^{-n}}\right)
$$

Moreover,

$$
\begin{equation*}
\sup _{1 \leq q<\infty}\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\| \leq c \omega_{2}\left(g, n^{-1 / 2}\right) \tag{3.10}
\end{equation*}
$$

where c is a constant.
Proof. The proof is similar to that of Theorem 15,
Remark 17 From (3.7) and (3.10), we conclude that the rate of convergence $\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\|$ can be dominated by $c \omega_{2}\left(f, n^{-1 / 2}\right)$ uniformly with respect to $q \neq 1$.

Remark 18 We may observe here that for $f(x)=x^{2}$, we have

$$
\left\|R_{n, q}(f)-R_{\infty, q}(f)\right\| \asymp q^{n} \asymp \omega_{2}\left(f, \sqrt{q^{n}}\right), \quad 0<q<1
$$

where $A(n) \asymp B(n)$ means that $A(n) \ll B(n)$ and $A(n) \gg B(n)$, and $A(n) \ll$ $B(n)$ means that there exists a positive constant c independent of n such that $A(n) \leq c B(n)$. Hence the estimate (3.6) is sharp in the following sense: the sequence q^{n} in (3.6) cannot be replaced by any other sequence decreasing to zero more rapidly as $n \rightarrow \infty$.

4 Voronovskaja type results

Theorem 19 Let $0<q<1, f \in C^{2}[0,1]$. Then there exists a positive absolute constant K such that

$$
\begin{align*}
& \left|\frac{[n]}{q^{n}}\left(R_{n, q}(f, x)-R_{\infty, q}(f, x)\right)-\frac{f^{\prime \prime}(x)}{2} x(1-v(q, x))\right| \tag{4.1}\\
& \leq K x(1-v(q, x)) \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right) .
\end{align*}
$$

Proof. Let $x \in(0,1)$ be fixed. We set

$$
g(t)=f(t)-\left(f(x)+f^{\prime}(x)(t-x)+\frac{f^{\prime \prime}(x)}{2}(t-x)^{2}\right)
$$

It is known that (see [6]) if the function h is convex on $[0,1]$, then

$$
R_{n, q}(h, x) \geq R_{n+1, q}(h, x) \geq \ldots \geq R_{\infty, q}(h, x)
$$

and therefore,

$$
L_{n, q}(h, x):=R_{n, q}(h, x)-R_{\infty, q}(h, x) \geq 0
$$

Thus $L_{n, q}$ is positive on the set of convex functions on $[0,1]$. But in general $L_{n, q}$ is not positive on $C[0,1]$.

Simple calculation gives

$$
L_{n, q}(g, x)=\left(R_{n, q}(f, x)-R_{\infty, q}(f, x)\right)-\frac{q^{n}}{[n]} \frac{f^{\prime \prime}(x)}{2} x(1-v(q, x)) .
$$

In order to prove the theorem, we need to estimate $L_{n, q}(g, x)$. To do this, it is enough to choose a function $S(t)$ such that the functions $S(t) \pm g(t)$ are convex on $[0,1]$. Then $L_{n, q}(S \pm g, x) \geq 0$, and therefore,

$$
\left|L_{n, q}(g(t), x)\right| \leq L_{n, q}(S(t), x) .
$$

So the first thing to do is to find such function $S(t)$. Using the well-known inequality $\omega(f, \lambda \delta) \leq\left(1+\lambda^{2}\right) \omega(f, \delta)(\lambda, \delta>0)$, we get

$$
\begin{aligned}
\left|g^{\prime \prime}(t)\right| & =\left|f^{\prime \prime}(t)-f^{\prime \prime}(x)\right| \leq \omega\left(f^{\prime \prime},|t-x|\right) \\
& =\omega\left(f^{\prime \prime}, \frac{1}{[n]^{\frac{1}{2}}}[n]^{\frac{1}{2}}|t-x|\right) \leq \omega\left(f^{\prime \prime}, \frac{1}{[n]^{\frac{1}{2}}}\right)\left(\left(1+[n](t-x)^{2}\right)\right) .
\end{aligned}
$$

Define $S(t)=\omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left[\frac{1}{2}(t-x)^{2}+\frac{1}{12}[n](t-x)^{4}\right]$. Then

$$
\left|g^{\prime \prime}(t)\right| \leq \frac{1}{6} \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left(3(t-x)^{2}+\frac{1}{2}[n](t-x)^{4}\right)_{t}^{\prime \prime}=S^{\prime \prime}(t)
$$

Hence the functions $S(t) \pm g(t)$ are convex on $[0,1]$, and therefore,

$$
\left|L_{n, q}(g(t), x)\right| \leq L_{n, q}(S(t), x),
$$

and

$$
L_{n, q}(S(t), x)=\frac{1}{6} \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left(\frac{3 q^{n}}{[n]} x(1-v(q, x))+\frac{1}{2}[n] L_{n, q}\left((t-x)^{4}, x\right)\right) .
$$

Since by the formula (2.11)

$$
\begin{equation*}
L_{n, q}\left((t-x)^{4}, x\right) \leq K_{1} \frac{q^{n}}{[n]^{2}} x(1-v(q, x)) \tag{4.2}
\end{equation*}
$$

we have
$L_{n, q}(S(t), x) \leq \frac{1}{6} \omega\left(f^{\prime \prime},[n]^{-\frac{1}{2}}\right)\left(3 \frac{q^{n}}{[n]} x(1-v(q, x))+\frac{1}{2}[n] K_{1} \frac{q^{n}}{[n]^{2}} x(1-v(q, x))\right)$.
By (4.2) and (4.3), we obtain (4.1). Theorem is proved.
Corollary 20 Let $q>1, f \in C^{2}[0,1]$. Then there exists a positive absolute
constant K such that

$$
\begin{aligned}
& \left|q^{n}[n]_{\frac{1}{q}}\left(R_{n, q}(f, x)-R_{\infty, q}(f, x)\right)-\frac{f^{\prime \prime}(1-x)}{2} v(q, x)(1-x)\right| \\
& \leq K v(q, x)(1-x) \omega\left(g^{\prime \prime},[n]_{\frac{1}{q}}^{-\frac{1}{2}}\right) .
\end{aligned}
$$

Corollary 21 If $f \in C^{2}[0,1]$ and $q_{n} \rightarrow 1$ as $n \rightarrow \infty$, then

$$
\begin{align*}
& \lim _{q_{n} \uparrow 1}[n]_{q_{n}}\left(R_{n, q_{n}}(f, x)-f(x)\right)=\frac{f^{\prime \prime}(x)}{2} x(1-x), \tag{4.4}\\
& \lim _{q_{n} \downarrow 1}[n]_{\frac{1}{q_{n}}}\left(R_{n, q_{n}}(f, x)-f(x)\right)=\frac{f^{\prime \prime}(1-x)}{2} x(1-x)
\end{align*}
$$

uniformly on $[0,1]$.
Remark 22 When $q_{n} \equiv 1$, (4.4) reduces to the classical Voronovskaja's formula. For the function $f(t)=t^{2}$, the exact equality

$$
\begin{aligned}
\frac{[n]_{q}}{q^{n}}\left(R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)\right) & =x(1-v(q, x)), & 0<q<1, \\
q^{n}[n]_{\frac{1}{q}}\left(R_{n, q}\left(t^{2}, x\right)-R_{\infty, q}\left(t^{2}, x\right)\right) & =v(q, x)(1-x), & q>1,
\end{aligned}
$$

takes place without passing to the limit, but in contrast to the Phillips q-analogue of the Bernstein polynomials the right hand side depends on q. In contrast to the classical Bernstein polynomials and Phillips q-analogue of the Bernstein polynomials the exact equality

$$
[n]\left(B_{n, q}\left(t^{2}, x\right)-x^{2}\right)=\left(x^{2}\right)^{\prime \prime} x(1-x) / 2
$$

does not hold for the Lupas q-analogue of the Bernstein polynomials.

References

[1] Adell, José A., Badía, F. Germán; de la Cal, Jesús On the iterates of some Bernstein-type operators. J. Math. Anal. Appl. 209, 529-541 (1997).
[2] Altomare, F., Campiti, M.: Korovkin-Type Approximation Theory and Its Applications, vol. 17 of De Gruyter Studies in Mathematics,Walter de Gruyter, Berlin, Germany, 1994.
[3] Goodman, T.N.T., Oruc, H., Phillips, G.M.: Convexity and generalized Bernstein polynomials, Proceedings of the Edinburgh Mathematical Society, 42, 179-190 (1999).
[4] II'nskii, A., Ostrovska, S.: Convergence of generalized Bernstein polynomials, Journal of Approximation Theory, 116, 100-112 (2002).
[5] Lewanowicz, S., Wozny, P.: Generalized Bernstein polynomials, BIT, 44, 63-78 (2004).
[6] Lupaş, A.: A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9, (1987).
[7] Oruc, H., Phillips, G.M.: A generalization of the Bernstein polynomials, Proceedings of the Edinburgh Mathematical Society, 42, 403-413 (1999).
[8] Ostrovska, S.: The first decade of the q-Bernstein polynomials: results and perspectives, Journal of Mathematical Analysis and Approximation Theory 2, 3551 (2007).
[9] Ostrovska, S.: On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain Journal of Mathematics, 36, 1615-1629 (2006).
[10] Phillips, G.M.: Bernstein polynomials based on the q-integers, Annals of Numerical Mathematics, 4, 511-518 (1997).
[11] Phillips, G.M.: On generalized Bernstein polynomials. Numerical analysis, 263-269, World Sci. Publ., River Edge, NJ, (1996).
[12] Videnskii, V.S.: On some classes of q-parametric positive linear operators, Selected topics in complex analysis, 213-222, Oper. Theory Adv. Appl., 158, Birkhäuser, Basel, 2005.
[13] Wang, H.: Voronovskaya-type formulas and saturation of convergence for q Bernstein polynomials for $0<q<1$, J. Approx. Theory 145, 182-195 (2007).
[14] Wang, H.: Meng, F.:The rate of convergence of q-Bernstein polynomials for $0<$ $q<1$, J. Approx. Theory 136, 151-158 (2005).
[15] Wang, H.: Properties of convergence for the q-Meyer-König and Zeller operators. J. Math. Anal. Appl. 335, 1360-1373 (2007).
[16] Wang, H.: Korovkin-type theorem and application, J. Approx. Theory, 132, 258-264 (2005).

