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HALF-FLAT STRUCTURES ON DECOMPOSABLE LIE GROUPS

MARCO FREIBERT AND FABIAN SCHULTE-HENGESBACH

Abstract. Half-flat SU(3)-structures are the natural initial values for Hitchin’s evolution equations whose solutions
define parallel G2-structures. Together with the results of [15], the results of this article completely solve the
existence problem of left-invariant half-flat SU(3)-structures on decomposable Lie groups. The proof is supported
by the calculation of the Lie algebra cohomology for all indecomposable five-dimensional Lie algebras which refines
and clarifies the existing classification of five-dimensional Lie algebras.

1. Introduction

An SU(3)-structure on a six-dimensional real manifold M consists of an almost Hermitian structure (g, J, ω) and
a unit (3, 0)-form Ψ. The structure is called half-flat if it satisfies the exterior system

dReΨ = 0 , d(ω ∧ ω) = 0.

Half-flat SU(3)-structures first appeared as initial values for the Hitchin flow [7] which is still the main motivation
for studying their properties. In the physics literature, half-flat SU(3)-structures are considered as internal spaces
for string compactifications [6]. For an account of the known results on half-flat structures and further references,
the reader may consult for instance [15].

In order to obtain explicit examples and classification results, we assume a high degree of symmetry and consider
left-invariant half-flat SU(3)-structures on Lie groups. Due to the left-invariance, the structure is completely deter-
mined by the solution of an algebraic system on the Lie algebra, which we refer to as a half-flat SU(3)-structure on
a Lie algebra. A precise definition is given in section 2.

So far, the problem of classifying six-dimensional Lie algebras admitting a half-flat SU(3)-structure has been
solved for nilpotent Lie algebras [2] and direct sums of three-dimensional Lie algebras [15]. The proof of both
results is obtained by the following method. For each case in the known list of the Lie algebras in question, either
a certain obstruction condition is applied or an explicit example for a half-flat SU(3)-structure is given.

In this article, the remaining decomposable six-dimensional Lie algebras are considered, separately dealing with
direct sums of four- and two-dimensional Lie algebras and direct sums of a five-dimensional Lie algebra and R.
In particular, we use the classification of four- and five-dimensional Lie algebras which has been obtained by
Mubarakzyanov, [10], [11]. More accessible lists can be found in [12] whose notation we adopt. In the four-
dimensional case, a new complete proof of the classification was recently given in [1] including a thorough overview
of the literature on four-dimensional Lie algebras.

A general problem of the existing classification lists is the appearance of families of Lie algebras depending on
continuous parameters. For instance, the unimodularity of these families depends in many cases on the value of
the parameters. In consequence, isomorphism classes with completely different properties are summed up in one
”class”. In the appendix, we give new lists of four- and five-dimensional Lie algebras in which the existing classes
are subdivided according to the dimensions hk(g) of the Lie algebra cohomology groups and the dimension of the
center. Not surprisingly, the distinction by Lie algebra cohomology turns out to be useful for our classification
problem concerning closed three- and four-forms. The complexity and length of the new lists illustrate the diversity
of the class of solvable Lie algebras which is well-known to be rapidly increasing with the dimension. A further
subdivision of the classes using finer invariants seems to be possible. In fact, in one case even the existence or
non-existence of a left-invariant half-flat SU(3)-structure singles out certain parameter values with identical Lie
algebra cohomology.

We summarize the results of this article in the following theorems which are also charted in the tables of the
appendix. The nilradical of a Lie algebra g is denoted by Nil(g).
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Theorem 1.1. Let g be a four-dimensional Lie algebra.

(a) The direct sum g ⊕ R2 admits a half-flat SU(3)-structure if and only if g = u ⊕ R for a unimodular three-
dimensional Lie algebra u.

(b) The direct sum g⊕ r2 admits a half-flat SU(3)-structure if and only if

(i) g is unimodular and not in { A
−

1
2
,− 1

2

4,5 , h3 ⊕ R, R4 } or

(ii) g is in { A
−

1
2

4,9 , A4,12, r2 ⊕ r2 }.

Theorem 1.2. Let g be an indecomposable five-dimensional Lie algebra.

(a) If g is unimodular, then g⊕ R admits a half-flat SU(3)-structure if and only if
(i) g is nilpotent and g 6= A5,3 or

(ii) Nil(g) is four-dimensional, h2(g) ≥ 2 and g 6= A
−1,−1
5,9 or

(iii) Nil(g) is R3 or R2.
(b) If g is non-unimodular, then g⊕ R admits a half-flat SU(3)-structure if and only if

(i) Nil(g) is h3 or

(ii) g is in { A
−1,3
5,19 , A

2,−3
5,19 , A

0
5,30 }.

Theorem 1.1 and Theorem 1.2 are both proved in section 3. Obviously, the unimodular Lie algebras show a
tendency to admit a half-flat SU(3)-structure, whereas the existence is obstructed on all non-unimodular solvable
Lie algebras apart from two one-parameter families and few exceptions. Recall that unimodular Lie algebras are
particularly interesting since unimodularity is a necessary condition for the existence of a cocompact lattice.

We remark that our results are in accordance with the following results concerning the existence of left-invariant
hypo SU(2)-structures on five-dimensional Lie groups. The existence problem is solved for the nilpotent case in [4]
and, very recently, for the solvable case in [3]. A hypo SU(2)-structure on a five-dimensional Lie algebra h induces a
half-flat SU(3)-structure on the six-dimensional Lie algebra g = h⊕R. Conversely, given a half-flat SU(3)-structure
on a six-dimensional Lie algebra g = h⊕R, one can define a hypo SU(2)-structure on the five-dimensional Lie algebra
h if the decomposition g = h⊕R is orthogonal with respect to the induced euclidean metric. For all five-dimensional
hypo structures constructed in [3] we independently found six-dimensional half-flat examples. However, for two five-

dimensional, indecomposable Lie algebras which do not admit a hypo SU(2)-structure, namely A
−1,3
5,19 and A5,37,

we were able to find a half-flat SU(3)-structure on the corresponding six-dimensional Lie algebras A−1,3
5,19 ⊕ R and

A5,37 ⊕ R such that the summands are not orthogonal, see Table 4.
In Section 4, we prove a number of secondary results concerning the existence of closed stable forms on Lie algebras

and the existence of half-flat structures with indefinite metrics. More precisely, we determine the decomposable
Lie algebras which do not admit closed stable forms and those which only admit closed stable forms ρ inducing a
para-complex structure. In consequence, the first group of Lie algebras does not admit any half-flat structure and
the second group does not admit half-flat SU(p, q)-structures, p+ q = 3.

The authors thank the University of Hamburg for financial support and Vicente Cortés for suggesting the project.

2. Preliminaries

Due to the formalism of stable forms [8], it is possible to completely describe an SU(3)-structure by a pair (ω, ρ) of
a two-form and three-form satisfying certain compatibilities. In fact, the formalism covers also SU(p, q)-structures,
p + q = 3 and SL(3,R)-structures. A thorough introduction including proofs is for instance given in [5] and [15]
and we restrict ourself to a short repetition of the formulas we need.

2.1. Stable forms in dimension six. A p-form on a vector space V is called stable if its orbit under GL(V ) is
open. We only consider the case when V is an oriented six-dimensional real vector space. Let κ : Λ5V ∗ → V ⊗Λ6V ∗

be the canonical isomorphism κ(ξ) := X ⊗ ν with Xy ν = ξ. By defining

Kρ(v) :=κ ((vy ρ) ∧ ρ) ∈ V ⊗ Λ6V ∗,

λ(ρ) :=
1

6
trK2

ρ ∈
(

Λ6V ∗
)⊗2

,

a quartic invariant λ is associated to each three-form ρ ∈ Λ3V ∗. Since ρ is stable if and only if λ(ρ) 6= 0, a stable
three-form ρ defines a volume form by

φ(ρ) :=
√

|λ(ρ)| ∈ Λ6V ∗,
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where the positively oriented root is chosen. The endomorphism

Jρ :=
1

φ(ρ)
Kρ

turns out to be a complex structure if λ(ρ) < 0 and a para-complex structure if λ(ρ) > 0. In both cases, a (3, 0)-form
Ψ can be defined by Re(Ψ) = ρ and Im(Ψ) = J∗

ρρ. On one-forms, the (para-)complex structure acts by the formula

J∗

ρα(v)φ(ρ) = α ∧ (vy ρ) ∧ ρ, v ∈ V, α ∈ V ∗.(2.1)

A two-form ω ∈ Λ2V ∗ is stable if and only if it is non-degenerate, i.e.

φ(ω) :=
1

6
ω3 6= 0.

A pair (ω, ρ) ∈ Λ2V ∗ × Λ3V ∗ of stable forms is called compatible if

ω ∧ ρ = 0.

Such a pair induces a pseudo-Euclidean metric g = ω(Jρ . , .) on V . On one-forms, the induced metric satisfies the
identity

α ∧ J∗

ρβ ∧ ω2 =
1

2
g(α, β)ω3, α, β ∈ V ∗,(2.2)

if the pair (ω, ρ) is normalized by the condition

φ(ρ) = 2φ(ω) ⇐⇒ J∗

ρρ ∧ ρ =
2

3
ω3.

2.2. Half-flat structures on Lie algebras. By definition, an SU(3)-structure on a six-manifold M is a reduction
of the frame bundle of M to SU(3). It is well-known that there is a one-to-one correspondence between SU(3)-
structures and quadrupels (g, J, ω,Ψ) where (g, J, ω) is an almost Hermitian structure and Ψ is a unit (3, 0)-form.
Due to the formalism of stable forms, SU(3)-structures are also one-to-one with pairs (ω, ρ) ∈ Ω2M × Ω3M such
that (ωp, ρp) is for every p ∈ M a compatible and normalized pair of stable forms on TpM with λ(ρp) < 0 inducing
a Riemannian metric.

Completely analogously, one can deal with indefinite metrics leading to SU(p, q)-structures, p+ q = 3, and even
almost para-complex instead of almost complex structures leading to SL(3,R)-structures with λ(ρ) > 0. Since we
are mainly concerned with the Riemannian case in this article, we refer the reader to [5] and [14] for definitions and
properties of these structures and further references.

Unifying all cases, a half-flat structure is defined as an everywhere compatible and normalized pair (ω, ρ) ∈
Ω2M × Ω3M of stable forms satisfying the exterior system dρ = 0, dω2 = 0.

For a Lie algebra g of a Lie group G, the well-known formula

dα(X,Y ) = −α([X,Y ])

holds for all X,Y ∈ g and α ∈ g∗ when identifying one-forms α ∈ g∗ with left-invariant one-forms on G. For an
abstract Lie algebra, one can define an exterior derivative d on Λ∗g∗ by this formula. In consequence, the structure
of a Lie algebra is equivalently encoded in a dual way by the exterior derivative on one-forms. Since the Jacobi
identity holds if and only if d2 vanishes, (Λ∗g∗, d) defines a cohomology H∗(g) called Lie algebra cohomology or
Chevalley-Eilenberg cohomology with respect to the trivial representation.

We define a half-flat structure on a Lie algebra g as a compatible and normalized pair (ω, ρ) ∈ Λ2(g∗)× Λ3(g∗)
of stable forms satisfying the algebraic system

dρ = 0, dω2 = 0.

By left-multiplication, a half-flat structure on a Lie algebra can obviously be extended to a half-flat structure on
every corresponding Lie group. Hence, it suffices to consider half-flat structures on Lie algebras for the classification
results we are interested in.



4 MARCO FREIBERT AND FABIAN SCHULTE-HENGESBACH

3. Obstruction theory for half-flat SU(3)-structures

An obstruction to the existence of a half-flat SU(3)-structure on a Lie algebra is proved in [2, Theorem 2] which
is based on the vanishing of two cohomology groups of a certain double complex. The idea is simplified in [15,
Proposition 4.2]. These obstruction conditions are the essential means in proving the classification results obtained
in [2] and [15]. However, for a small number of special cases the obstruction condition fails, although there do not
exist half-flat SU(3)-structures. In [2, Lemma 8] and [15, Lemma 4.9], refined obstructions are applied to these
special cases. The ideas of both refinements are clarified and generalized in the following proposition.

Proposition 3.1. Let M be a six-manifold. If there is a point p ∈ M with a neighborhood U and a one-form
α ∈ Ω1(U) with αp 6= 0 which satisfies the identity

(3.1) (α ∧ J∗

ρα ∧ σ)p = 0

for all closed stable three-forms ρ ∈ Ω3(U) and all closed stable four-forms σ ∈ Ω4(U), then M does not admit a
half-flat SU(3)-structure.

Proof. Suppose (ω, ρ) is a half-flat SU(3)-structure on M . In particular, the restrictions ρ ∈ Ω3(U) and σ =
1
2ω

2 ∈ Ω4(U) are closed. However, a one-form αp in T ∗
pM satisfying equation (3.1) is a non-trivial null-vector

according to identity (2.2). This proves the proposition by contradiction since the metric of an SU(3)-structure is
Riemannian. �

The application of this condition seems to be difficult in general, since an explicit solution of the PDE system
dρ = 0, dσ = 0 will be hard to obtain. For the algebraic case of half-flat structures on Lie algebras, however, a
solution is easy to find as the exterior system reduces to a linear system. For a Lie algebra g, let Zp denote the
space of closed p-forms in Λpg∗.

Corollary 3.2. Let g be a six-dimensional Lie algebra with a volume form ν ∈ Λ6g∗. If there is a one-form α ∈ g∗

satisfying

(3.2) α ∧ J̃∗

ρα ∧ σ = 0

for all ρ ∈ Z3 and all σ ∈ Z4, where J̃∗
ρα is defined for X ∈ g by

J̃∗

ρα(X) ν = α ∧ (Xy ρ) ∧ ρ,(3.3)

then g does not admit a half-flat SU(3)-structure.

Proof. If ρ is a stable form, the one-form J̃∗
ρα is a non-trivial multiple of J∗

ρα by equation (2.1). Thus, the corollary
follows immediately when applying Proposition 3.1 to a corresponding Lie group. �

Proposition 3.3. Let g be an indecomposable four-dimensional Lie algebra.

(i) The direct sum g⊕ R2 does not admit a half-flat SU(3)-structure.

(ii) The direct sum g⊕ r2 does not admit a half-flat SU(3)-structure if g is not unimodular and not A
−

1
2

4,9 or A4,12.

(iii) The direct sum A
−

1
2
,− 1

2

4,5 ⊕ r2 does not admit a half-flat SU(3)-structure.

Proof. We apply Corollary 3.2 for all cases separately according to Table 1. Let (e1, . . . , e6) be a basis of g∗ ⊕ h∗,
h = r2 or h = R2, such that (e1, . . . , e4) is the standard basis of g∗ given in Table 1 and (e5, e6) is a basis of h∗.
If h = r2 we always choose (e5, e6) such that de5 = 0, de6 = e56. We claim that α = e4 is for all cases except

A
−

1
2
,− 1

2

4,5 ⊕ r2 a one-form satisfying the obstruction condition (3.2).
In fact, the equation can be efficiently verified by a computer algebra system as follows. Let ρ be a three-form

and σ a four-form involving altogether 35 coefficients when expressed with respect to the induced basis on forms.
Due to our distinction of the Lie algebra classes in Table 1, the coefficient equations of dρ = dσ = 0 can be solved in
a closed form, independently of the parameters in the Lie bracket. Thus, the computer can almost instantaneously
provide us with explicit expressions for the general closed three-form ρ ∈ Z3 and also for the general closed four-form
σ ∈ Z4 by eliminating a number of parameters. Now, it is straightforward to compute J̃ρ via (3.3) with respect to
the basis. The result allows us to verify equation (3.2) for α = e4 and all ρ ∈ Z3 and all σ ∈ Z4 for each Lie algebra
which falls into case (i) or (ii).

Unfortunately, the non-existence of a half-flat SU(3)-structure cannot be proved with this method in case (iii).

However, a different obstruction can be established as follows. On the Lie algebra A
−

1
2
,− 1

2

4,5 ⊕ r2, a straightforward
calculation yields the identity

e5 ∧ J̃∗

ρ e
4 ∧ σ = −e4 ∧ J̃∗

ρ e
5 ∧ σ = (e4 +

√
2e5) ∧ J̃∗

ρ (e
4 +

√
2e5) ∧ σ
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for all ρ ∈ Z3 and all σ ∈ Z4. Suppose that A
−

1
2
,− 1

2

4,5 ⊕ r2 admits a half-flat SU(3)-structure (ρ0, ω0). In particular,

the forms ρ0 and σ0 := 1
2ω

2
0 are closed and fulfill the previous identity. Hence, if g0 denotes the induced Euclidean

metric, formula (2.2) shows

g0(e
5, e4) = −g0(e

4, e5) = g0(e
4 +

√
2e5, e4 +

√
2e5).

This is not possible since e4 +
√
2e5 would be a null-vector and we have proved that there cannot exist a half-flat

SU(3)-structure on A
−

1
2
,− 1

2

4,5 ⊕ r2. �

Proof of Theorem 1.1. In order to determine all Lie algebras admitting a half-flat SU(3)-structure, we need to prove
the existence or non-existence of a half-flat SU(3)-structure in every case. For the direct sums admitting a half-flat
SU(3)-structure, an explicit example can be found either in Table 3 or in [15] or in [2]. On the remaining direct
sums with decomposable four-dimensional summand, the existence is obstructed in [15]. The non-existence for the
direct sums with indecomposable four-dimensional summand is proved in Proposition 3.3. Since we have covered
all Lie algebras with a four-dimensional summand, the proof is finished. �

Proof of Theorem 1.2. The direct sums of indecomposable five-dimensional Lie algebras and R can be dealt with
completely analogous to the direct sums considered before thanks to Table 2. Again, for all direct sums admitting
a half-flat SU(3)-structure, an explicit example can be found either in Table 4 or in [2]. For the remaining direct
sums g⊕ R, let (e1, . . . , e6) be a basis of the dual space such that (e1, . . . , e5) is the standard basis given in Table
2 and e6 is closed. Then, for all remaining cases, Corollary 3.2 can be applied with α = e5 which has been verified
with Maple as explained in the proof of Proposition 3.3. �

4. Closed stable three-forms on decomposable Lie algebras

In this section, we turn to the problem of determining the decomposable Lie algebras which do not admit a closed
stable three-form ρ with λ(ρ) < 0. In fact, such Lie algebras do obviously not admit a half-flat SU(p, q)-structure,
p+ q = 3, not even with an indefinite metric. Note that this question has already been answered for direct sums of
three-dimensional Lie algebras in [15, Proposition 5.1].

Additionally, we can prove for a number of Lie algebras the non-existence of any closed stable three-form. Thus,
there cannot exist a half-flat structure on these Lie algebras, not even a half-flat SL(3,R)-structure.

Proposition 4.1. Let ρ ∈ Λ3g∗ be a closed three-form with quartic invariant λ(ρ) on a Lie algebra g = g4 ⊕ g2
such that the summand g4 is indecomposable.

(i) If g2 = R2 and g4 not in {A4,1, A
−1,1
4,5 , A

−
1
2

4,9 , A4,12}, then λ(ρ) ≥ 0.

(ii) If g2 = r2 and Nil(g4) = R3 and h∗(g4) = (1, 0, 0, 0), then λ(ρ) ≥ 0.
(iii) If g2 = R2 and h∗(g4) = (1, 0, 0, 0), then λ(ρ) = 0.

Proof. Let ρ be a closed three-form on g. In the proof of Proposition 3.3, we explained that the general closed
three-form is very straightforward to determine with computer support when g4 is one of the classes appearing in
Table 1. When calculating the quartic invariant λ(ρ) for all Lie algebras in the proposition with the help of Maple,
those with λ = 0 are easily determined. The cases with λ ≥ 0 have been determined by applying the useful Maple
function factor to λ(ρ). �

Analogously, we can prove the following proposition.

Proposition 4.2. Let ρ ∈ Λ3g∗ be a closed three-form with quartic invariant λ(ρ) on a Lie algebra g = g5⊕R such
that the summand g5 is indecomposable.

(i) If the column λ ≥ 0 in Table 2 is checked for g5, then λ(ρ) ≥ 0.
(ii) If Nil(g5) = R4 and h3(g5) = 0, then λ(ρ) = 0.

Unfortunately, there seems to be no consistent pattern for the Lie algebras with λ(ρ) ≥ 0 except that the
nilradical has to be either R4 or h3 ⊕ R.

5. Appendix

Tables 1 and 2 contain all indecomposable four- and five-dimensional Lie algebras ordered by nilradical. All the
Lie algebras are solvable except for the last one A5,40. In the first column, the names used in [12] are listed. For
the four-dimensional case, a second column is added which contains the names used in [1]. We remark that there
is a clear summary of all naming conventions for four-dimensional Lie algebras in [1].
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The standard Lie bracket is encoded dually as explained in section 2. In both tables, we denote by e1, . . . , edim(g)

a basis of g∗ and the Lie bracket column contains the images of the basis one-forms under d. We use the abbreviation
eij for ei ∧ ej . In the column z, we have listed the dimension of the center. The column labeled h∗(g) contains the
vector (h1(g), . . . , hdim(g)) of the dimensions of the Lie algebra cohomology groups, where h0(g) is omitted since it
always equals one. The numbers h∗(g) have been calculated with the Maple package LieAlgebras which is a native
Maple package since version 11. However, the distinction of the parameter values with different cohomology had to
be carried out by hand since the functions of the LieAlgebras package assume generic parameter values (without
further notification).

The following additional information can be read off directly from the column h∗(g). A Lie algebra is in fact
unimodular if and only if the top cohomology group Hdim(g)(g) does not vanish, see for instance [15, Lemma 2.4].
Thus, we have highlighted the unimodular Lie algebras by a bold and underlined hdim(g). Moreover, since the first
cohomology group H1(g) equals the annihilator of the derived algebra [g, g], see for instance [13, Lemma 1.1] it
holds dim([g, g]) = dim(g) − h1(g). The step length s(g) of the derived series can be determined as follows. Since
the derived Lie algebra [g, g] is nilpotent for a solvable Lie algebra, it holds [g, g] ⊂ Nil(g). In most cases, equality
follows for dimensional reasons and then we have s(g) = s(Nil(g)) + 1. In the remaining cases, the derived algebra
[g, g] is easily determined due to its low dimension.

Last but not least, we have also charted the results of this article in Tables 1 and 2. In the four-dimensional
case, the column labeled half-flat is checked if and only if g ⊕ r2 admits a half-flat SU(3)-structure. Recall that
g ⊕ R2 never admits a half-flat SU(3)-structure. The two columns labeled λ ≥ 0 are checked if λ(ρ) ≥ 0 for all
closed three-forms ρ on g ⊕ r2 or g ⊕ R2, respectively. Similarly, the column λ = 0 is checked if λ(ρ) = 0 for all
closed three-forms ρ on g⊕R

2. In fact, none of the Lie algebras g⊕ r2 satisfies λ(ρ) = 0 for all closed three-forms ρ.
In the five-dimensional case, the column half-flat is checked if and only if g⊕R admits a half-flat SU(3)-structure.
Analogously, the columns λ ≥ 0 and λ = 0 are checked if λ(ρ) ≥ 0 or λ(ρ) = 0, respectively, for all closed three-forms
ρ on g⊕ R.

In Tables 3 and 4, we list explicit examples (ω, ρ) of half-flat SU(3)-structures. The tables contain all decom-
posable Lie algebras which admit a half-flat SU(3)-structure and which are not contained in [2] or [15]. For the
convenience of the reader, we added an explicit expression for the metric g induced by the pair (ω, ρ). The label
ONB indicates that the basis we consider is orthonormal with respect to g. Similarly, OB stands for orthogonal
basis and is followed by the length of all non-unit basis one-forms.
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Table 1: Indecomposable four-dimensional Lie algebras

g [1] Lie bracket z h∗(g) half-flat λ ≥ 0 λ = 0

⊕r2 ⊕r2 ⊕R2 ⊕R2

nilpotent

A4,1 n4 (e24, e34, 0, 0) 0 (2,2,2,1) X – – –

Nilradical R3

Aα
4,2 r4, 1

α
(αe14, e24 + e34, e34, 0)

α 6= −2,−1, 0 0 (1,0,0,0) – X X X

α = −2 0 (1,0,1,1) X – X –

α = −1 0 (1,1,1,0) – – X –

A4,3 r4,0 (e14, e34, 0, 0) 1 (2,2,1,0) – – X –

A4,4 r4 (e14 + e24, e24 + e34, e34, 0) 0 (1,0,0,0) – X X X

A
α,β
4,5 r4,α,β (e14, αe24, βe34, 0)

1 −1 < α ≤ β ≤ 1, αβ 6= 0, β 6= −α,−(α+ 1) 0 (1,0,0,0) – X X X

−1 < α < − 1
2 , β = −(α+ 1) 0 (1,0,1,1) X – X –

α = − 1
2 , β = − 1

2
0 (1,0,1,1) – – X –

α = −1, β > 0, β 6= 1 0 (1,1,1,0) – – X –

α = −1, β = 1 0 (1,2,2,0) – – – –

A
α,β
4,6 r′4,α,β (αe14, βe24 + e34, e42 + βe34, 0)

α > 0, β 6= 0,− 1
2α 0 (1,0,0,0) – X X X

α > 0, β = − 1
2α 0 (1,0,1,1) X – X –

α > 0, β = 0 0 (1,1,1,0) – – X –

Nilradical h3

A4,7 h4 (2e14 + e23, e24 + e34, e34, 0) 0 (1,0,0,0) – – X X

A4,8 d4 (e23, e24, e43, 0) 1 (1,0,1,1) X – X –

Aα
4,9 d4, 1

1+α
((α + 1)e14 + e23, e24, αe34, 0)

−1 < α ≤ 1, α 6= − 1
2 , 0 0 (1,0,0,0) – – X X

α = − 1
2

0 (1,1,1,0) X – – –

α = 0 0 (2,1,0,0) – – X –

A4,10 d′4,0 (e23, e34, e42, 0) 1 (1,0,1,1) X – X –

Aα
4,11 d′4,α (2αe14 + e23, αe24 + e34, e42 + αe34, 0), α > 0 0 (1,0,0,0) – – X X

Nilradical R2

A4,12 aff(C) (e13 + e24, e41 + e23, 0, 0) 0 (2,1,0,0) X – – –

1A
α,−α
4,5

∼= A
−1, 1

α
4,5 for all α 6= 0 and A

−1,β
4,5

∼= A
−1,−β
4,5 for all β 6= 0.
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Table 2: Indecomposable five-dimensional Lie algebras

g Lie bracket z h∗(g) half-flat λ ≥ 0 λ = 0

nilpotent

A5,1 (e35, e45, 0, 0, 0) 2 (3,6,6,3,1) X – –

A5,2 (e25, e35, e45, 0, 0) 1 (2,3,3,2,1) X – –

A5,3 (e35, e34, e45, 0, 0) 2 (2,3,3,2,1) – – –

A5,4 (e24 + e35, 0, 0, 0, 0) 1 (4,5,5,4,1) X – –

A5,5 (e25 + e34, e35, 0, 0, 0) 1 (3,4,4,3,1) X – –

A5,6 (e25 + e34, e35, e45, 0, 0) 1 (2,3,3,2,1) X – –

Nilradical R4

A
α,β,γ
5,7 (e15, αe25, βe35, γe45, 0)

2 −1 < α ≤ β ≤ γ ≤ 1, αβγ 6= 0, β 6= −α,−(α+ 1),
γ 6= −α,−(α+ 1), −β,−(β + 1), −(α+ β),−(α + β + 1)

0 (1,0,0,0,0) – X X

α = −1, βγ 6= 0, −1 < β ≤ γ, γ 6= −β,−β ± 1 0 (1,1,1,0,0) – X –

α = −1, β = −1, γ 6= −1, 0, 1, 2 0 (1,2,2,0,0) – X –

α = −1, β = −1, γ = −1 0 (1,3,3,0,0) – X –

α = −1, β = −1, γ = 1 0 (1,4,4,1,1) X – –

α = −1, β = −1, γ = 2 0 (1,2,3,1,0) – – –

α = −1, 0 < β < 1, γ = −β 0 (1,2,2,1,1) X – –

α = −1, β 6= 0, 1, γ = −β − 1 0 (1,1,2,1,0) – – –

α = 1, β = 1, γ = −2 0 (1,0,3,3,0) – X –

−1 < α ≤ β ≤ γ ≤ 1, αβγ 6= 0, β 6= −α, γ = −α− β − 1 0 (1,0,0,1,1) – X X

α 6= −1, 0, 1,±β,±γ, −1 < β ≤ − 1
2 , γ = −β − 1 0 (1,0,1,1,0) – X –

α = 1, β ≤ − 1
2 , β 6= −2,−1, γ = −β − 1 0 (1,0,2,2,0) – X –

Aα
5,8 (e25, 0, e35, αe45, 0)

−1 < α ≤ 1, α 6= 0 1 (2,2,1,0,0) – X –

α = −1 1 (2,3,3,2,1) X – –

A
α,β
5,9 (e15 + e25, e25, αe35, βe45, 0)

3
α 6= −2,−1, 0, β ≥ α, β 6= −2,−1, 0,−α, −α− 1, −α− 2 0 (1,0,0,0,0) – X X

α = −2, β 6= −2,−1, 0, 1, 2 0 (1,0,1,1,0) – X –

α = −2, β = −2, 1 0 (1,0,2,2,0) – X –

α = −2, β = −1, 2 0 (1,1,2,1,0) – – –

α = −1, β 6= −2,−1, 0, 1 0 (1,1,1,0,0) – X –

2 A
α,−α,γ
5,7

∼= A
−1, 1

α
,
γ
α

5,7 , A
α,β,−(α+β)
5,7

∼= A
1
α
,
β
α
,−( β

α
+1)

5,7 , A
α,α,−(α+1)
5,7

∼= A
1, 1

α
,−( 1

α
+1)

5,7 , A
α,β,−(β+1)
5,7

∼= A
α
β
, 1
β
,−( 1

β
+1)

5,7
3A

α,β
5,9

∼= A
β,α
5,9 , Aα,0

5,9 is decomposable.
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Table 2 (continued) : Indecomposable five-dimensional Lie algebras

g Lie bracket z h∗(g) half-flat λ ≥ 0 λ = 0

α = −1, β = −1 0 (1,2,2,1,1) – X –

α = −1, β = 1 0 (1,2,2,0,0) – X –

α < 0, α 6= −2,−1, β = −α 0 (1,1,1,0,0) – X –

α ≤ − 1
2 , α 6= −2,−1, β = −α− 1 0 (1,0,1,1,0) – X –

α < −1, α 6= −2, β = −α− 2 0 (1,0,0,1,1) – X X

A5,10 (e25, e35, 0, e45, 0) 1 (2,2,2,1,0) – X –

Aα
5,11 (e15 + e25, e25 + e35, e35, αe45, 0)

α 6= −3,−2,−1, 0 0 (1,0,0,0,0) – X X

α = −3 0 (1,0,0,1,1) – X X

α = −2 0 (1,0,1,1,0) – X –

α = −1 0 (1,1,1,0,0) – X –

A5,12 (e15 + e25, e25 + e35, e35 + e45, e45, 0) 0 (1,0,0,0,0) – X X

A
α,β,γ
5,13 (e15, αe25, βe35 + γe45,−γe35 + βe45, 0)

4 −1 < α ≤ 1, α 6= 0, β 6= − 1
2 , 0,− 1

2α, − 1
2 (α+ 1), γ > 0 0 (1,0,0,0,0) – X X

α = −1, β > 0, β 6= 0, 1
2 , γ > 0 0 (1,1,1,0,0) – X –

α = −1, β = 0, γ > 0 0 (1,2,2,1,1) X – –

α = −1, β = 1
2 , γ > 0 0 (1,1,2,1,0) – – –

−1 < α ≤ 1, α 6= 0, β = 0, γ > 0 0 (1,1,1,0,0) – X –

α 6= −1, 0, 1, β = − 1
2 , γ > 0 0 (1,0,1,1,0) – X –

α = 1, β = − 1
2 , γ > 0 0 (1,0,2,2,0) – X –

−1 < α ≤ 1, α 6= 0, β = − 1
2 (α+ 1), γ > 0 0 (1,0,0,1,1) – X X

Aα
5,14 (e25, 0, αe35 + e45,−e35 + αe45, 0)

α 6= 0 1 (2,2,1,0,0) – X –

α = 0 1 (2,3,3,2,1) X – –

Aα
5,15 (e15 + e25, e25, αe35 + e45, αe45, 0)

0 < |α| ≤ 1, α 6= −1,− 1
2

0 (1,0,0,0,0) – X X

α = −1 0 (1,2,2,1,1) X – –

α = − 1
2

0 (1,0,1,1,0) – X –

α = 0 1 (2,2,1,0,0) – X –

A
α,β
5,16 (e15 + e25, e25, αe35 + βe45,−βe35 + αe45, 0)

5
α 6= −1,− 1

2 , 0, β > 0 0 (1,0,0,0,0) – X X

4A
α,β,0
5,13 = A

α,β,β
5,7 , Aα,β,γ

5,13
∼= A

α,β,−γ
5,13 , A−1,β,γ

5,13
∼= A

−1,−β,−γ
5,13 , A0,α,β

5,13 is decomposable.
5A

α,β
5,16

∼= A
α,−β
5,16 , Aα,0

5,16 = A
α,α
5,9
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Table 2 (continued) : Indecomposable five-dimensional Lie algebras

g Lie bracket z h∗(g) half-flat λ ≥ 0 λ = 0

α = −1, β > 0 0 (1,0,0,1,1) – X X

α = − 1
2 , β > 0 0 (1,0,1,1,0) – X –

α = 0, β > 0 0 (1,1,1,0,0) – X –

A
α,β,γ
5,17 (αe15 + e25,−e15 + αe25, βe35 + γe45,−γe35 + βe45, 0)

6
α > 0, β 6= 0,−α, 0 < γ ≤ 1 0 (1,0,0,0,0) – X X

α > 0, β = −α, 0 < γ < 1 0 (1,0,0,1,1) – X X

α > 0, β = −α, γ = 1 0 (1,2,2,1,1) X – –

α = 0, β > 0, γ > 0 0 (1,1,1,0,0) – X –

α = 0, β = 0, 0 < γ < 1 0 (1,2,2,1,1) X – –

α = 0, β = 0, γ = 1 0 (1,4,4,1,1) X – –

Aα
5,18 (αe15 + e25 + e35,−e15 +αe25 + e45, αe35 + e45,−e35 +αe45, 0)

α > 0 0 (1,0,0,0,0) – X X

α = 0 0 (1,2,2,1,1) X – –

Nilradical h3 ⊕ R

A
α,β
5,19 (αe15 + e23, e25, (α− 1)e35, βe45, 0)

7 0 < α ≤ 2, α 6= 1
2 , 1, β 6= −1, 0, −2α, −2α+1, −α− 1, −α+1 0 (1,0,0,0,0) – X –

α = −1, β 6= 0,−1, 2, 3 0 (1,1,1,0,0) – – –

α = −1, β = −1 0 (1,2,2,0,0) – – –

α = −1, β = 2 0 (1,2,2,1,1) X – –

α = −1, β = 3 0 (1,1,2,1,0) X – –

α = 0, β > 0 1 (1,0,1,1,0) – X –

α = 0, β = 1 1 (1,1,3,2,0) – – –

α = 1, β 6= −2,−1, 0 0 (2,1,0,0,0) – X –

α = 1, β = −2 0 (2,1,1,2,1) – – –

α = 1, β = −1 0 (2,2,2,1,0) – – –

α 6= −1, 0, 1, 12 , 2, β = −1 0 (1,1,1,0,0) – X –

α = 2, β = −1 0 (1,2,2,0,0) – X –

α 6= −1, 0, 1, 12 , 2, β = −1− α 0 (1,0,1,1,0) – – –

α = 2, β = −3 0 (1,0,2,2,0) X – –

0 < α ≤ 2, α 6= 1
2 , 1, β = −2α 0 (1,0,0,1,1) – X –

Aα
5,20 (αe15 + e23 + e45, e25, (α− 1)e35, αe45, 0)

6A
α,β,0
5,17

∼= A
1,α

β
, 1
β

5,13 for β 6= 0, Aα,β,γ
5,17

∼= A
α,β,−γ
5,17

∼= A
−α,−β,γ
5,17

∼= A
β
γ
,α
γ
, 1
γ

5,17 for γ 6= 0, Aα,0,0
5,17 is decomposable.

7A
α,β
5,19

∼= A
α

α−1
,

β
α−1

5,19 for α 6= 1, A0,β
5,19

∼= A
0,−β
5,19 , Aα,0

5,19 is decomposable.
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Table 2 (continued) : Indecomposable five-dimensional Lie algebras

g Lie bracket z h∗(g) half-flat λ ≥ 0 λ = 0

α 6= −1, − 1
2 , 0,

1
3 ,

1
2 , 1 0 (1,0,0,0,0) – X –

α = −1, 1
2

0 (1,1,1,0,0) – X –

α = − 1
2 ,

1
3

0 (1,0,1,1,0) – – –

α = 0 1 (2,1,1,2,1) – – –

α = 1 0 (2,1,0,0,0) – X –

A5,21 (2e15 + e23, e25, e25 + e35, e35 + e45, 0) 0 (1,0,0,0,0) – X –

A5,22 (e23, 0, e25, e45, 0) 1 (2,2,2,1,0) – – –

Aα
5,23 (2e15 + e23, e25, e25 + e35, αe45, 0)

α 6= −4,−3,−1, 0 0 (1,0,0,0,0) – X –

α = −4 0 (1,0,0,1,1) – X –

α = −3 0 (1,0,1,1,0) – – –

α = −1 0 (1,1,1,0,0) – X –

A5,24
8
(2e15 + e23 + e45, e25, e25 + e35, 2e45, 0) 0 (1,0,0,0,0) – X –

A
α,β
5,25 (2βe15 + e23, βe25 − e35, e25 + βe35, αe45, 0)

α 6= 0, β 6= 0,− 1
4α 0 (1,0,0,0,0) – X –

α 6= 0, β = 0 1 (1,0,1,1,0) – X –

α 6= 0, β = − 1
4α 0 (1,0,0,1,1) – X –

A
α,ε
5,26 (2αe15 + e23 + εe45, αe25 − e35, e25 + αe35, 2αe45, 0)

α 6= 0, ε = ±1 0 (1,0,0,0,0) – X –

α = 0, ε = ±1 1 (2,1,1,2,1) – X –

A5,27 (e15 + e23 + e45, 0, e35, e35 + e45, 0) 0 (2,1,0,0,0) – X –

Aα
5,28 (αe15 + e23, (α− 1)e25, e35, e35 + e45, 0)

α 6= −2, −1, − 1
2 , 0,

1
2 , 1 0 (1,0,0,0,0) – X –

α = −2 0 (1,0,1,1,0) – – –

α = −1, 1
2

0 (1,1,1,0,0) – – –

α = − 1
2

0 (1,0,0,1,1) – X –

α = 0 1 (1,1,2,1,0) – – –

α = 1 0 (2,1,0,0,0) – X –

A5,29 (e15 + e24, e25, e45, 0, 0) 1 (2,2,1,0,0) – X –

Nilradical A4,1

Aα
5,30 ((α+ 1)e15 + e24, αe25 + e34, (α − 1)e35, e45, 0)

α 6= −2, −1, − 1
3 , 0,

1
2 , 1 0 (1,0,0,0,0) – – –

8The parameter in [12] is not necessary.
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Table 2 (continued) : Indecomposable five-dimensional Lie algebras

g Lie bracket z h∗(g) half-flat λ ≥ 0 λ = 0

α = −2, 1
2

0 (1,1,1,0,0) – – –

α = −1 1 (1,0,1,1,0) – – –

α = − 1
3

0 (1,0,0,1,1) – – –

α = 0 0 (1,0,1,1,0) X – –

α = 1 0 (2,1,0,0,0) – – –

A5,31 (3e15 + e24, 2e25 + e34, e35 + e45, e45, 0) 0 (1,0,0,0,0) – – –

Aε
5,32 (e15 + e24 + εe35, e25 + e34, e35, 0, 0), ε = ±1 0 (2,1,0,0,0) – – –

Nilradical R3

A
α,β
5,33 (e14, e25, βe34 + αe35, 0, 0)

9
α, β ∈ R∗, (α, β) 6= (−1,−1) 0 (2,1,0,0,0) – – –

α = −1, β = −1 0 (2,1,1,2,1) X – –

Aα
5,34 (αe14 + e15, e24 + e35, e34, 0, 0), α ∈ R 0 (2,1,0,0,0) – – –

A
α,β
5,35 (βe14 + αe15, e24 + e35,−e25 + e34, 0, 0)

(α, β) 6= (0,−2), (0, 0) 0 (2,1,0,0,0) – – –

α = 0, β = −2 0 (2,1,1,2,1) X – –

A5,38 (e14, e25, e45, 0, 0) 1 (2,2,1,0,0) – – –

A5,39 (e14 + e25,−e15 + e24, e45, 0, 0) 1 (2,2,1,0,0) – – –

Nilradical h3

A5,36 (e14 + e23, e24 − e25, e35, 0, 0) 0 (2,1,0,0,0) X – –

A5,37 (2e14 + e23, e24 + e35,−e25 + e34, 0, 0) 0 (2,1,0,0,0) X – –

non-solvable, Nilradical R2

A5,40 (2e12,−e13, 2e23, e24 + e35, e14 − e25) 0 (0,1,1,0,1) X – –

Table 3: Direct sums of a four-dimensional and a two-dimensional Lie algebra which admit
a half-flat SU(3)-structure and which are not contained in [15]

Lie algebra Normalized half-flat SU(3)-structure 10

A4,1 ⊕ r2 ω = −e16 + e25 − e34, ρ = e123 − e145 + e156 − e246 + e345 − 2e356

g = (e1)2 + (e2)2 + 2(e3)2 + (e4)2 + (e5)2 + 2(e6)2 − 2e1 ·e3 + 2e4 ·e6

Bβ ⊕ r2, β > 0 11 ω = e15 + e24 + e36, ρ = e123 − e146 + e256 + e345, ONB

9A
α,0
5,33 and A

0,β
5,33 are decomposable.

10In each case except Bβ , the basis (e1, . . . , e4) satisfies the Lie bracket given in Table 1, whereas de5 = 0 and de6 = e56.
11The basis (e1, e2, e3, e4) of Bβ satisfies the Lie bracket

(

βe14 − e24, e14,−βe34, 0
)

. The family Bβ unifies the cases A−2
4,5,

A
α,−(α+1)
4,5 for −1 < α < − 1

2
and A

α,− 1
2
α

4,6 for α > 0 in Table 1 since Bβ ∼= A

2β√
4−β2

,−
β√

4−β2

4,6 for 0 < β < 2, B2 ∼= A−2
4,2 and

Bβ ∼= A
−

1
2
−

√
β2

−4

2β
,− 1

2
+

√
β2

−4

2β

4,5 for β > 2.
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Lie algebra Normalized half-flat SU(3)-structure

A4,8 ⊕ r2 ω = −e14 + e16 − e24 + e25 + e34 + e35, ρ = 2e123 + 4e124 + 4e134 − 2e156

−2e234 + 2e236 − e245 + 3e246 − 3e256 + e345 + 3e346 + 3e356 + 12e456

g = 2(e1)2 + 4(e2)2 + 4(e3)2 + 57(e4)2 + 2(e5)2 + 3(e6)2 + 4e1 ·e2 − 4e1 ·e3 − 18e1 ·e4

+2e1 ·e6 − 4e2 ·e3 − 26e2 ·e4 − 2e2 ·e5 + 4e2 ·e6 + 26e3 ·e4 − 2e3 ·e5 − 4e3 ·e6 − 18e4 ·e6

A
−

1
2

4,9 ⊕ r2 ω = e16 − 3e24 + 2e25 + e35

ρ =
√
3
(

e124 + 2e134 − e135 + e146 − 2e156 + 2e236 + 4e245 − e345 + 29
2 e456

)

g = (e1)2 + 4(e2)2 + 4(e3)2 + 84(e4)2 + 17(e5)2 + 29(e6)2

−18e1 ·e4 + 8e1 ·e5 + 4e2 ·e3 + 16e2 ·e6 − 4e3 ·e6 − 75e4 ·e5

A4,10 ⊕ r2 ω = −e14 − e16 − e25 − e36, ρ = e123 − e156 + e234 + e236 + e246 − e345 + e356 − e456

g = (e1)2 + (e2)2 + (e3)2 + 2(e4)2 + (e5)2 + 3(e6)2 + 2e1 ·e4 + 2e1 ·e6 + 4e4 ·e6

A4,12 ⊕ r2 ω = e16 − 2e23 + e25 + e34 − e36, ρ = e123 + 2e134 − e136 + e145 + e156 − e235 − e246 + 2e356

g = (e1)2 + (e2)2 + 9(e3)2 + (e4)2 + 2(e5)2 + 3(e6)2

+4e1 ·e3 − 2e1 ·e5 − 2e2 ·e6 − 8e3 ·e5 − 2e4 ·e6

r2 ⊕ r2 ⊕ r2
12 ω = e12 − e23 − e25 − e35 + e46, ρ = e124 − e126 + 2e134 + 3e156 − e234 + e256 + e345 + 2e356

g = 6(e1)2 + (e2)2 + 4(e3)2 + (e4)2 + 3(e5)2 + 2(e6)2

+8e1 ·e3 + 6e1 ·e5 + 2e2 ·e3 − 2e2 ·e5 + 2e3 ·e5 + 2e4 ·e6

Table 4: Direct sums of indecomposable non-nilpotent five-dimensional Lie algebras and the
one-dimensional Lie algebra admitting a half-flat SU(3)-structure

Lie algebra Normalized half-flat SU(3)-structure13

A
−1,β,−β
5,7 ⊕ R, A−1,−1,1

5,7 ⊕ R,

A−1
5,8 ⊕ R, A−1,0,γ

5,13 ⊕ R,

A0
5,14 ⊕ R, A0,0,γ

5,17 ⊕ R,

A
0,0,1
5,17 ⊕ R

ω = −e13 + e24 + e56, ρ = e126 + e145 + e235 + e346, ONB

A−1
5,15 ⊕ R, Aα,−α,1

5,17 ⊕ R ω = e13 + e24 − e56, ρ = e125 + e146 − e236 − e345, ONB

A0
5,18 ⊕ R ω = e12 − e34 − e56, ρ = e136 + e145 − e235 + e246, ONB

A
−1,2
5,19 ⊕ R ω = e13 + e24 − 2e25 − e56, ρ = −e126 + e145 − e234 + e346 − e356,

g = (e1)2 + 2(e2)2 + (e3)2 + (e4)2 + 2(e5)2 + (e6)2 − 2e2 ·e6 − 2e4 ·e5

A
−1,3
5,19 ⊕ R ω = e13 − 2e25 − e46, ρ = e126 − 2e145 + e234 + 2e356, OB, ||e5||2 = 2

A
2,−3
5,19 ⊕ R ω = e12 + 2e35 − e46, ρ = e134 + 2e156 + e236 + 2e245, OB, ||e5||2 = 2

A0
5,30 ⊕ R ω = e16 + e25 + e34, ρ = e123 + 2e145 − e156 − e246 − e345 + e356,

g = 2(e1)2 + (e2)2 + (e3)2 + 2(e4)2 + (e5)2 + (e6)2 − 2e1 ·e3 + 2e4 ·e6

A
−1,−1
5,33 ⊕ R ω = e12 − e36 − e45, ρ = −e135 + e146 + e234 + e256, ONB

12The basis satisfies the Lie bracket (0, e12, 0, e34, 0, e56).
13In each case, (e1, . . . , e6) denotes a basis such that e1, . . . , e5 satisfy the Lie algebra structure given in Table 2 and e6 is closed.
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Lie algebra Normalized half-flat SU(3)-structure

A
0,−2
5,35 ⊕ R ω = e16 + e25 + 3e26 + e34, ρ = e123 + e145 + 2e146 + e245 + e246 + e356,

g = (e1)2 + 2(e2)2 + (e3)2 + (e4)2 + (e5)2 + 5(e6)2 + 2e1 ·e2 + 4e5 ·e6

A5,36 ⊕ R ω = 1
12e

12 + e13 + e16 − 1
4e

24 + e46 + e56

ρ = − 1
6e

124 + 1
12e

125 − e134 − e135 + 4e146 + 4e236 + 3e345 + 3e456

g = 5
12 (e

1)2 + 1
12 (e

2)2 + 12(e3)2 + 7
4 (e

4)2 + 1
4 (e

5)2 + 28(e6)2

+ 3
2e

1 ·e4 − 1
2e

1 ·e5 + 2e2 ·e6 + 24e3 ·e6 − e4 ·e5

A5,37 ⊕ R ω = − 1
3e

16 + 3e24 + e35

ρ = −e125 + 3e134 + 2e146 + e236 + 6e345 − 13
3 e456

g = (e1)2 + 3(e2)2 + 3(e3)2 + 3(e4)2 + 13
3 (e5)2 + 13

9 (e
6)2 + 4e1 ·e5 − 4e3 ·e6

A5,40 ⊕ R ω = e14 + e25 + e34 − e36, ρ = e124 − e126 − e135 + e234 + e456

g = (e1)2 + (e2)2 + (e3)2 + 2(e4)2 + (e5)2 + (e6)2 − 2e4 ·e6
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