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Abstract

The name “K3 surfaces” was coined by A. Weil in 1957 when he formu-
lated a research programme for these surfaces and their moduli. Since
then, irreducible holomorphic symplectic manifolds have been intro-
duced as a higher dimensional analogue of K3 surfaces. In this paper
we present a review of this theory starting from the definition of K3
surfaces and going as far as the global Torelli theorem for irreducible
holomorphic symplectic manifolds as recently proved by M. Verbitsky.

For many years the last open question ofWeil’s programme was that
of the geometric type of the moduli spaces of polarised K3 surfaces. We
explain how this problem has been solved. Our method uses algebraic
geometry, modular forms and Borcherds automorphic products. We
collect and discuss the relevant facts from the theory of modular forms
with respect to the orthogonal group O(2, n). We also give a detailed
description of quasi pull-back of automorphic Borcherds products. This
part contains previously unpublished results.
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1 Introduction

The history of K3 surfaces goes back to classical algebraic geometry. In
modern complex algebraic geometry a K3 surface is a compact complex
surface S whose canonical bundle is trivial, i.e. KS

∼= OS , and whose ir-
regularity q(S) = h1(S,OS) = 0. These two facts immediately imply that
H0(S,Ω1

S) = H0(S, TS) = H2(S, TS) = 0.
The easiest examples of algebraic K3 surfaces are smooth quartic surfaces

in P3. Further examples are complete intersections of type (2, 3) in P4 and of
type (2, 2, 2) in P5. Another classical example is the Kummer surfaces, i.e.
the (desingularised) quotient of a 2-dimensional torus A by the involution
ι : x 7→ −x.

The modern name “K3 surface” was coined by A. Weil in his famous
“Final report on research contract AF 18(603)-57” [Wei, Vol II, pp 390–
395]. In his comments on this report [Wei, Vol II, p 546] Weil writes: “Dans
la seconde partie de mon rapport, il s’agit des variétés kählériennes dites
K3, ainsi nommées en l’honneur de Kummer, Kodaira, Kähler et de la belle
montagne K2 au Cachemire.”

In that report the following conjectures, due to Andreotti and Weil, were
stated:

(i) K3 surfaces form one family;

(ii) all K3 surfaces are Kähler;

(iii) the period map is surjective;

(iv) a form of global Torelli theorem holds.

Weil also remarked that the structure of the moduli space of (polarised)
K3 surfaces must be closely related to the theory of automorphic forms. It
should be noted though that Weil’s definition of K3 surface was different
from the standard definition used nowadays. For him a surface was K3 if
its underlying differentiable structure was that of a quartic surface in P3.
Using results of Kodaira and from Seiberg-Witten theory one can show that
this definition coincides with the one given above.

By now all of these questions have been answered positively and much
progress has been made in understanding the moduli spaces of K3 surfaces.
Conjecture (i) was proved by Kodaira [Kod, Part I, theorem 19]. Conjecture
(ii) was first shown by Siu [Siu, Sect. 14]. Nowadays it can be derived from
the more general theorem, due to Buchdahl and Lammari, that a compact
complex surface is Kähler if and only if its first Betti number is even ([BHPV,
Theorem IV.3.1], [Bu],[La]). Surjectivity of the period map (conjecture (iii))
was proved for special K3 surfaces in various papers by Shah [Sha1], [Sha2],
[Sha3] and by Horikawa [Hor]. Kulikov [Kul] gave a proof for projective
K3 surfaces, with some points clarified by Persson and Pinkham [PP]. The
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general result for Kähler K3 surfaces was proved by Todorov [Tod] and
Looijenga [Lo]. The strong Torelli theorem (i.e. conjecture (iv)) for algebraic
K3 surfaces was first proved by Piatetskii-Shapiro and Shafarevich [P-SS]
with amendments by Rapoport and Shioda. It was proved for Kähler K3
surfaces (and hence for all) by Burns and Rapoport [BR]. A detailed and
supplemented account of the original proof was written by Looijenga and
Peters [LP]. Finally, Friedman [Fr] gave a proof using degenerations.

Moduli spaces of polarised K3 surfaces are a historically old subject,
studied by the classical Italian geometers (starting with the spaces of double
sextics and plane quartics in P3). Mukai extended the classical constructions
and unirationality results for the moduli spaces F2d parametrising polarised
K3 surfaces of degree 2d to many more cases, going as high as d = 19.
See [Mu1], [Mu2], [Mu3], [Mu4] and [Mu5] for details. Kondō [Ko1] proved
that the moduli spaces F2p2 are of general type for sufficiently large prime
numbers p, but without giving an effective bound. Finally, it was shown
in [GHS1] that the moduli spaces F2d are of general type for d > 61 and
d = 46, 50, 54, 57, 58, 60, and later it was noticed by A. Peterson [PeSa] that
this proof also works for d = 52: see Theorem 6.1 below. For an account of
these results see also Voisin’s Bourbaki exposé [Vo1].

In higher dimension K3 surfaces can be generalised in two ways, namely to
Calabi-Yau varieties or to irreducible symplectic manifolds (or hyperkähler
manifolds). In fact, together with tori, these three classes of manifolds
are the building blocks of all compact Kähler manifolds with trivial first
Chern class (over R), also called Ricci flat manifolds: every such manifold
admits a finite cover which is a product of tori, Calabi-Yau manifolds and
irreducible symplectic manifolds (see [Be], [Bog2]). The first examples of
irreducible symplectic manifolds, by now regarded as classical, were studied
by Beauville in [Be], namely the Hilbert schemes of points on K3 surfaces
and generalised Kummer varieties (and their deformations). Two further
classes of examples were later found by O’Grady [OG1], [OG2]. The theory
of irreducible symplectic manifolds, which started from work of Bogomolov
and Beauville, was significantly advanced by Huybrechts [Huy1] who, among
other results, proved surjectivity of the period map. It was noticed early
on by Debarre [Deb] and Namikawa [Nam] that the obvious generalisations
of the Torelli theorem are false. Nevertheless, one can use the period map
to exhibit moduli spaces of polarised irreducible symplectic manifolds as
dominant finite to one covers of quotients of type IV domains by arithmetic
groups. This was used in [GHS5] and [GHS6] to obtain general type results
for many of these moduli spaces (Theorem 6.2 and Theorem 6.3 below).

Very recently Verbitsky [Ver] has announced a Torelli theorem for irre-
ducible symplectic manifolds. The consequences of Verbitsky’s result for the
moduli problem of polarised irreducible symplectic manifolds were worked
out in detail by Markman [Mar4]. We also refer the reader to Huybrecht’s
forthcoming Bourbaki talk [Huy2].
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The theory of K3 surfaces and irreducible symplectic manifolds is a fas-
cinating and vast subject. We have started this introduction by giving the
definition of K3 surfaces in complex geometry (which also allows for non-
algebraic surfaces). The notion of K3 surface also makes perfect sense in al-
gebraic geometry over arbitrary fields: a K3 surface is an irreducible smooth
algebraic surface S defined over a field k with trivial canonical bundle and
irregularity q = h1(S,OS) = 0. In this article we shall, however, concentrate
on the theory over the complex numbers, and especially on moduli problems.
We are fully aware that we thus exclude a large area of interesting questions.
Concerning K3 surfaces in positive characteristic we refer the reader to the
papers by Artin [Ar], Ogus [Ogu] and Nygaard [Nyg] for a first introduc-
tion. Another aspect, which we will not touch upon, is the arithmetic of
K3 surfaces. An introduction to this field can be found in Schütt’s survey
paper [Sch].

In this article we mainly survey known results. Theorem 8.11 is new,
however (special cases occur in the literature) and so is Proposition 9.2.

2 Periods of K3 surfaces and the Torelli theorem

In this section we will discuss the period domain and the period map for K3
surfaces, and the local and global Torelli theorems. The case of K3 surfaces
presents several special features and the existence of a straightforward global
Torelli theorem is one of them.

2.1 Lattices

Let S be a K3 surface. Then the second cohomology group H2(S,Z) is a
free Z-module of rank 22. The intersection form defines a non-degenerate
symmetric bilinear form on H2(S,Z), which gives the second cohomology
group the structure of a lattice. It is well known that up to isomorphism
this lattice is independent of the surface S: it is the K3 lattice

LK3 := 3U ⊕ 2E8(−1) (1)

where U is the hyperbolic plane (the unique even unimodular lattice of
signature (1, 1)) and E8 is the unique even unimodular positive definite
rank 8 lattice. For any lattice L and m ∈ Z, the notation L(m) indicates
that the quadratic form is multiplied by m, so E8(−1) is negative definite.
Hence LK3 has signature (3, 19).

It was proven by Siu [Siu] that every K3 surface is Kähler. Today, it is
known that a compact complex surface is Kähler if and only if its first Betti
number is even [BHPV, Theorem IV.3.1], which immediately implies Siu’s
result. Hence H2(S,C) has a Hodge decomposition

H2(S,C) = H2,0(S)⊕H1,1(S)⊕H0,2(S).
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Since KS
∼= OS it follows that H2,0(S) = H0(S,KS) is 1-dimensional and

thus H1,1(S) has dimension 20.
Since the second cohomology has no torsion we can, via the universal

coefficient theorem, consider H2(S,Z) as a lattice in H2(S,C). The Néron-
Severi group is the intersection NS(S) = H2(S,Z) ∩H1,1(S), which, in this
case, coincides with the Picard group Pic(S). The transcendental lattice
is defined as the orthogonal complement T (S) = NS(S)⊥ in H2(S,Z) of
the Néron-Severi group. This is the smallest lattice whose complexification
contains a generator ω of H0(S,KS). Note that for a general K3 surface S
we have no algebraic classes, i.e. T (S) = H2(S,Z). The Picard number ρ(S)
of S is the rank of the Néron-Severi group NS(S).

For future use we also need the Kähler cone of a K3 surface. This lives in
H1,1(S,R) = H1,1(S)∩H2(S,R). The restriction of the intersection product
to H1,1(S,R) has signature (1, 19). Let

CS ⊂ {x ∈ H1,1(S,R) | (x, x) > 0}

be the connected component that contains one (and hence all) Kähler classes.
This is called the positive cone of S.

A class in H2(S,Z) is called effective if it is represented by an effective
divisor. By a nodal class we mean the class δ of an effective divisor D of
self-intersection D2 = −2. We denote by ∆ the set of all nodal classes.
Every nodal class δ ∈ ∆ defines a reflection

sδ : H
2(S,Z) → H2(S,Z)

given by sδ(x) = x+(x, δ)δ and called the Picard-Lefschetz reflection defined
by δ. We shall denote the R- and C-linear extensions of sδ by the same
symbol. Clearly sδ is the reflection in the hyperplane Hδ orthogonal to
δ. The set of effective classes on S is the semi-group generated by the
nodal classes and the integral points in the closure of CS . The connected
components of the set CS \

⋃
δ∈∆Hδ are called the chambers of CS . The

chamber
C+
S = {x ∈ CS | (x, e) > 0 for all effective e}

is the Kähler cone of S: see [BHPV, Corollary VIII.3.9].

2.2 Markings and the period map

A marking of a K3 surface is an isometry φ : H2(S,Z) → LK3 and we refer
to a pair (S, φ) as a marked K3 surface. If ω is a non-zero 2-form on S then
Cφ(ω) = φ(H2,0(S)) is a line in the complex vector space LK3 ⊗ C.

For any indefinite lattice L we define

ΩL = {[x] ∈ P(LK3 ⊗ C) | (x, x) = 0, (x, x̄) > 0}. (2)

5



In the case of the K3 lattice, Ω = ΩLK3
is a connected complex manifold of

dimension 20, called the period domain of K3 surfaces. Since (ω, ω) = 0 and
(ω, ω̄) > 0 it follows that [φ(ω)] ∈ Ω. This is the period point of the marked
K3 surface (S, φ).

Let p : S → U be a flat family of K3 surfaces over some sufficiently small
contractible open set U . If φ0 : H

2(S0,Z) → LK3 is a marking then this
can be extended to a marking φU : R2p∗ZU → (LK3)U where (LK3)U is
the constant sheaf with fibre LK3 on U . This defines a holomorphic map
πU : U → Ω, called the period map defined by the family p : S → U .

2.3 The Torelli theorem

The Torelli problem asks how much information about an algebraic variety
can be reconstructed from its Hodge structure. In the case of K3 surfaces
this means whether one can recover a K3 surface S from a period point.
This question can be made precise in different ways. As we shall see, one
can prove a very strong form of the Torelli theorem in the case of K3 surfaces.

We start by discussing the local Torelli theorem. For this let p : S → U
be a representative of the Kuranishi family (or versal deformation) of S.
Since H0(S, TS) = H2(S, TS) = 0 the base space of the Kuranshi family is
smooth of dimension h1(S, TS) = h1,1(S) = 20. Choosing any marking of
the central fibre of the Kuranishi family defines a marking for the entire
family (we shall choose U sufficiently small and contractible) and hence a
period map π : U → Ω.

Theorem 2.1 (Local Torelli) The base space of the Kuranishi family is
smooth of dimension 20. It is universal for all points in a sufficiently small
neighbourhood of the origin. The differential of the period map is an iso-
morphism and thus the period map is a local isomorphism.

Proof. See [BHPV, Theorem VIII.7.3]. 2

In order to discuss the global Torelli theorem we need the notion of Hodge
isometry. Let S and S′ be K3 surfaces. An isomorphism of Z-modules
Φ: H2(S,Z) → H2(S′,Z) is called a Hodge isometry if it is an isometry and
if its C-linear extension ΦC : H

2(S,C) → H2(S′,C) preserves the Hodge
decomposition. It is moreover called effective if it maps CS to C′

S and maps
effective classes to effective classes.

Proposition 2.2 Let S and S′ be K3 surfaces. Then the following are
equivalent for a Hodge isometry Φ: H2(S,Z) → H2(S′,Z):

(i) Φ is effective,

(ii) Φ(C+
S ) ⊂ C+

S′ , i.e. Φ maps the Kähler cone of S into that of S′.
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(iii) Φ maps one element of the Kähler cone of S into the Kähler cone of
the surface S′.

Proof. See [BHPV, Proposition VIII.3.11]. 2

The crucial result for the theory of moduli of K3 surfaces is the following.

Theorem 2.3 (Strong Torelli) Let S and S′ be two K3 surfaces and suppose
Φ: H2(S′,Z) → H2(S,Z) is an effective Hodge isometry. Then there is an
isomorphism f : S → S′ that induces Φ, i.e. such that Φ = f∗.

A proof of this theorem can be found in [BHPV, Sections 7–11]. Very
roughly speaking the idea is to prove the Torelli theorem for projective Kum-
mer surfaces first. The second step then consists of showing that the period
points of marked Kummer surfaces are dense (in the complex topology) in
the period domain Ω. The final step is then to prove the Torelli theorem
for all K3 surfaces by approximating them by Kummer surfaces and taking
suitable limits in the Barlet topology.

The following weaker form of the Torelli theorem is still useful.

Theorem 2.4 (Weak Torelli theorem) Two K3 surfaces S and S′ are iso-
morphic if and only if there is a Hodge isometry H2(S′,Z) → H2(S,Z).

Proof. Assume that Φ: H2(S′,Z) → H2(S,Z) is a Hodge isometry. Let WS

be the group of isometries of H2(S,Z) generated by the Picard-Lefschetz
reflections. This group acts on the positive cone CS properly discontinuously.
The closure of the Kähler cone in the positive cone is a fundamental domain
for this action (cf. [BHPV, Proposition VIII.3.10]). Hence we can choose an
element w ∈WS such that for a suitable choice of sign ±w ◦Φ is an effective
Hodge isometry by Proposition 2.2 and thus is induced by an isomorphism
f : S → S′ by Theorem 2.3. 2

2.4 The universal family of marked K3 surfaces

For each K3 surface S we choose a representative p : S → U of the Kuranishi
family with U contractible and sufficiently small such that the following hold:

(i) p : S → U is the Kuranishi family for each point s ∈ S.

(ii) If φ : p∗2ZS → (LK3)U is a marking, then the associated period map
π : U → Ω is injective.

We consider all marked Kuranishi families, i.e. pairs (p : S → U, φ), hav-
ing the above properties. We can glue the various copies of U by identifying
those points where the marked K3 surfaces are isomorphic. This defines a
space M1 all of whose points have neighbourhoods isomorphic to some U .
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HenceM1 is a 20-dimensional analytic manifold, but possibly not Hausdorff.
It is also possible to show (cf. [BHPV, Theorem VIII.10.6]) that one can
glue the Kuranishi families to obtain a global family of K3 surfaces over M1.

It turns out that the spaceM1 is indeed not Hausdorff. This follows from
an example due to Atiyah (also referred to as Atiyah’s flop and nowadays
crucial in higher-dimensional birational geometry). Consider the following
1-parameter family St of quartic (and hence K3) surfaces in P3, which is
given in affine coordinates by

x2(x2 − 2) + y2(y2 − 2) + z2(z2 − 2) = 2t2.

Let the parameter t vary in a small neighbourhood B of the origin. For
t 6= 0 these surfaces are smooth, whereas the surface S0 has an ordinary
double point at (0, 0, 0). This is also the only singularity, again an ordinary
double point, of the total space S. Blowing up this node one obtains a
smooth 3-fold S̃ which contains a quadric P1 × P1 as exceptional divisor
E. The proper transform Ŝ0 of S0 is a smooth K3 surface intersecting the
exceptional divisor E in a rational curve of bidegree (1, 1). This is a nodal
curve on Ŝ0. The two rulings on E can each be contracted giving rise to
smooth 3-dimensional spaces p1 : S1 → B and p2 : S2 → B. These families
are by construction identical over B \ 0. They are, however, not identical
over all of B, since the identity on S \S0 would, otherwise, have to extend to
an automorphism of the total space acting non-trivially on the tangent cone
of the double point, which is clearly impossible. Now choose a marking for
p1. This also defines a marking for p2. Since the families coincide outside
the origin, the period maps π1 and π2 also coincide away from 0. However,
the markings differ for the central fibre (namely by the Picard-Lefschetz
reflection defined by the nodal curve on Ŝ0). This shows that M1 cannot
be Hausdorff. One can show that all non-Hausdorff points of M1 are of this
type.

There is another formulation of the Torelli theorem, which we will now
describe. For this we consider

KΩ = {(κ, [ω]) ∈ (LK3 ⊗ R)× Ω | (κ,Re(ω)) = (κ, Im(ω)) = 0, (κ, κ) > 0}

and define E(κ, ω) as the oriented 3-dimensional space spanned by the or-
dered basis {κ,Re(ω), Im(ω)}. By mapping each point (κ, [ω]) to the space
E(κ, ω) we obtain a fibration

Π: KΩ → Gr+(3, LK3 ⊗ R)

over the Grassmannian Gr+(3, LK3 ⊗ R) of oriented 3-planes in LK3 ⊗ R

on which the form ( , ) is positive definite. This is an SO(3,R)-fibre
bundle and the projection Π is equivariant with respect to the action of the
orthogonal group Aut(LK3 ⊗ R) ∼= O(3, 19). We define

(KΩ)0 := {(κ, [ω]) ∈ KΩ | (κ, d) 6= 0 for d ∈ LK3, (d, d) = −2, (ω, d) = 0}.
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This is an open subset of KΩ.
For every point ω ∈ Ω we consider the cone

Cω = {x ∈ LK3 ⊗ R | (x, ω) = 0, (x, x) > 0}.

This has two connected components and varies differentiably with ω. Since Ω
is connected and simply connected, we can globally choose one of these com-
ponents, say C+

ω . Let (S, φ) be a marked K3 surface and let κ ∈ H1,1(S,R)
be a Kähler class. Then we say that (S, κ), or more precisely ((S, φ), κ), is
a marked pair if φC(κ) ∈ C+

ω , where ω is the period point defined by (S, φ).
Let M ′

2 be the real analytic vector bundle with fibre H1,1(St) over the
base M1 of the universal family of marked K3 surfaces and let M2 ⊂ M ′

2

be the subset of Kähler classes. This is open by [KS, Theorem 15]. In
particular, M2 is real analytic of dimension 60 = 40 + 20, where 40 is the
real dimension of the base M1 and 20 is the dimension of the fibre. We can
now define a real-analytic map

π2 : M2 → (KΩ)0

by mapping κ ∈ H1,1(St), t ∈M1 to π2(κ) = (φC(κ), π(t)). This is called the
refined period map. In this way we obtain the obvious commutative diagram

M2
π2−−−−→ (KΩ)0

y
y

M1
π1−−−−→ Ω.

The Torelli theorem can now be reformulated as follows.

Theorem 2.5 The map π2 is injective (and thus M2 is Hausdorff).

Using this one can finally prove that the period map is surjective.

Theorem 2.6 (Surjectivity of the period map) The refined period map π2
is surjective. In particular, every point of Ω appears as the period point of
some marked K3 surface.

Proof. This is proven in [BHPV, Section VIII.14]. 2

The surjectivity of the period map was one of the major questions in the
theory of K3 surfaces. A. Todorov [Tod] was the first to give a proof; the
argument given in [BHPV] is due to Looijenga.

In view of Theorem 2.4 and Theorem 2.6 we now have

Theorem 2.7 The set O(LK3)\Ω is in 1 : 1 correspondence with the set of
isomorphism classes of K3 surfaces.
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We can thus think of O(LK3)\Ω as the “moduli space of K3 surfaces”. It
must be pointed out, however, that the action of the group O(LK3) is not
well behaved. In particular, it is not properly discontinuous. We shall now
turn to the case of polarised K3 surfaces where we shall see that the situation
is much better.

2.5 Moduli spaces of polarised K3 surfaces

A polarisation on a K3 surface is an ample line bundle L. Since the irregu-
larity of K3 surfaces is 0 and the Picard group has no torsion we can identify
a line bundle L with its first Chern class h = c1(L) ∈ H2(S,Z). An ample
line bundle L is nef and big, and conversely a nef and big line bundle on
a K3 surface is ample if there are no (−2)-curves C with h.C = 0. This
follows easily from Reider’s theorem. Throughout, we shall only consider
primitive polarisations, i.e. we shall assume that the class h is non-divisible
in the K3 lattice. The degree of a polarisation is deg(L) = h2 = 2d. Note
that the degree is always even.

We denote by 〈−2d〉 the rank 1 lattice whose generator has square −2d.

Lemma 2.8 Suppose h ∈ LK3 is a primitive vector with h2 = 2d > 0. Then
the orthogonal complement Lh = h⊥LK3

of h is isometric to L2d, where L2d,
the lattice L2d associated with K3 surfaces with a polarisation of degree 2d,
is defined by

L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉. (3)

Proof. It follows from Eichler’s criterion (see Lemma 7.5 and Example 7.6
below) that there is a unique O(LK3)-orbit of primitive vectors h of given
degree in the K3 lattice LK3 = 3U ⊕ 2E8(−1). Hence we can assume that h
is in one of the copies of the hyperbolic plane and that h = e+df where e, f
are a basis of a copy of U with e2 = f2 = 0 and (e, f) = 1. The structure of
Lh is clear in this case. 2

The lattice L2d is an even lattice of signature (2, 19). The period domain
Ω2d = ΩL2d

has two connected components, D2d and D′
2d, interchanged by

complex conjugation. The domain D2d is a 19-dimensional symmetric ho-
mogeneous domain of type IV: see [Sat, Appendix 6]. One can also describe
Ω2d as the intersection of the domain Ω with the hyperplane h⊥LK3

.
We shall fix h ∈ LK3 once and for all. For each polarised K3 sur-

face (S,L) of degree 2d we can consider polarised markings, i.e. markings
φ : H2(S,Z) → LK3 with φ(c1(L)) = h. Any two such markings differ by an
element in the group

O(LK3, h) = {g ∈ O(LK3) | g(h) = h}. (4)

This group leaves the orthogonal complement L2d of h invariant and hence
is a subgroup of O(L2d).
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For any lattice L we denote by L∨ = Hom(L,Z) its dual lattice. The
discriminant group D(L) = L∨/L is a finite abelian group of order |detL|
and carries a discriminant quadratic form qL (if L is even) and a discriminant
bilinear form bL, with values in Q/2Z and Q/Z respectively (see [Nik2,
Section 1.3]). The stable orthogonal group of an even lattice L is defined as
the kernel

Õ(L) = ker(O(L) → O(D(L)). (5)

If L is indefinite, the subgroup O+(L) is defined to be the group of elements
of real spinor norm 1 (see [GHS4] for a definition of the real spinor norm).
We define

Õ
+
(L) = Õ(L) ∩O+(L) (6)

and generally, for any subgroup G < O(L), we use G+ to denote the kernel
of the real spinor norm and G̃ to denote the stable subgroup, the kernel of
G→ O(D(L)).

For h ∈ LK3 with h2 = 2d, it follows from Nikulin’s theory [Nik2, Corol-
lary 1.5.2] that

O(LK3, h) = Õ(L2d)

considered as subgroups of O(L2d). The two connected components D2d and
D′

2d are interchanged by the group O(L2d). The index 2 subgroup that fixes
the components is O+(L2d). Finally we define

F2d = Õ(L2d)\Ω2d = Õ
+
(L2d)\D2d. (7)

It is important to note that the situation is much better here than in
the non-polarised case. The reason lies in the change of signature which is
now (2, 19) rather than (3, 19). We are thus dealing with locally symmetric
hermitian domains and, as a result, the action of the group O(L2d) on Ω2d is
properly discontinuous. Hence the quotient space of Ω2d by any subgroup of
O(L2d) of finite index (i.e. an arithmetic subgroup) is a complex space with
only finite quotient singularities (also sometimes called a V -manifold). By
a famous result of Baily and Borel [BB] these quotients are quasi-projective
and thus carry a natural structure of an algebraic variety. We shall dis-
cuss various compactifications of these quasi-projective varieties below in
Section 5.

In order to describe the moduli space of polarised K3 surfaces we need
one more ingredient. For h ∈ LK3 we define

∆h = {δ ∈ LK3 | δ
2 = −2, (δ, h) = 0}.

For each δ ∈ ∆h we define the hyperplane Hδ = δ⊥LK3
, i.e. the hyperplane

fixed by the Picard-Lefschetz reflection defined by δ. We set

Ω0
2d = Ω2d \

⋃

δ∈∆h

(
Hδ ∩ Ω2d

)
.
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There are only finitely many Õ(L2d)-orbits in ∆h and, since the group acts
properly discontinuously on Ω, the hyperplanes Hδ for δ ∈ ∆h form a locally
finite collection. Clearly, the action of the group Õ(L2d) on Ω2d restricts to
an action on Ω0

2d. We define

F0
2d = Õ(L2d)\Ω

0
2d.

Note that this is again a quasi-projective variety (it arises from F2d by
removing finitely many divisors) with only finite quotient singularities.

Theorem 2.9 The variety F0
2d is the moduli space of polarised K3 surfaces

of degree 2d, i.e. its points are in 1 : 1 correspondence with polarised K3
surfaces of degree 2d.

Proof. Let (S,L) be a polarised K3 surface with deg(L) = 2d. We con-
sider polarised markings φ : H2(S,Z) → LK3 with φ(c1(L)) = h. Since
(ωS , c1(L)) = 0 we find that φ(ωS) ∈ Ω2d. In fact, since L is ample it has
positive degree on all (−2)-curves and hence φ(ωS) lies in Ω0

2d. Any two po-

larised markings differ by an element in O(LK3, h) = Õ(L2d) and hence we
obtain a well-defined map which associates to an isomorphism class (S,L)
a point in F0

2d. This map is injective: assume that a point in F0
2d arises

from two polarised surfaces (S,L) and (S′,L′). Then there exists a Hodge
isometry H2(S′,Z) → H2(S,Z) mapping the ample class c1(L

′) to c1(L). It
then follows from the strong Torelli Theorem (Theorem 2.3) that this map
is induced by an isomorphism (S,L) ∼= (S′,L′). Thus we get an injective
map from the set of isomorphism classes of degree 2d polarised K3 surfaces
into F0

2d. Finally, the surjectivity of this map follows from the surjectivity
of the period map, Theorem 2.6. 2

In the literature one often finds references to F2d as the moduli space of
polarised K3 surfaces. One can interpret the points in the complement of
F0
2d as weakly- or semi-polarised K3 surfaces, i.e. L has positive degree and is

nef, but not ample, as it has degree 0 on some nodal class(es). Alternatively,
one can consider ample line bundles on singular K3 surfaces with rational
double points. There is still a version of the strong Torelli theorem for weakly
polarised K3 surfaces due to D. Morrison [Mo], but the precise formulation is
subtle. For purposes of the birational geometry of these spaces, it obviously
does not matter whether one works with F2d or its open part F0

2d.
The notion of polarised K3 surfaces was generalised by Nikulin [Nik1]

to that of lattice-polarised K3 surfaces: see also Dolgachev’s paper [Do] for
a concise account, in particular in connection with mirror symmetry. To
describe this, we fix a lattice M of signature (1, t), which we assume can be
embedded primitively into the K3-lattice LK3. The cone VM = {x ∈ MR |
(x, x) > 0} has two connected components: we fix one and denote it by CM .
Let

∆M = {d ∈M | (d, d) = −2}
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and choose a decomposition ∆M = ∆+
M ∪ (−∆+

M). Moreover let

C+
M = {h ∈ V (M)+ ∩M | (h, d) > 0 for all d ∈ ∆+

M}.

An M -polarised K3 surface is then a pair (S, j) where S is a K3 surface and
j : M →֒ Pic(S) is a primitive embedding. We call (S, j) ample (or pseudo-
ample), if j(C+

M ) contains an ample (or pseudo-ample) class. The classical
case of polarised K3 surfaces is the case where t = 0 and M = 〈2d〉.

The theory of moduli of polarised K3 surfaces carries over naturally to
lattice polarised K3 surfaces. For this, one has to consider the domain
ΩM = {ω ∈ Ω | (w,M) = 0} and the group O(LK3,M) of orthogonal
transformations of the K3 lattice which fixes M . The role of the variety F2d

is then taken by the quotient

FM = O(LK3,M)\ΩM .

Lattice polarised K3 surfaces play a role in mirror symmetry. For this
we consider admissible lattices, i.e. lattices M which admit an embedding
j : M →֒ LK3 such that

M⊥
LK3

∼= U(m)⊕ M̃.

The choice of such a splitting determines a primitive embedding ̃ : M̃ →֒
LK3. The lattice M̃ is hyperbolic: more precisely, its signature is (1, 18− t).
The variety F

M̃
is then a mirror family to FM . There are more ingredients

to the concept of mirror symmetry which we will not describe here, such as
the Yukawa coupling and the mirror map. For details we refer to [Do]: see
also [GN4], [GN5].

Finally, we want to comment on the relationship between the construction
of moduli spaces of K3 surfaces as quotients of homogeneous domains and
GIT constructions. By Viehweg’s results [Vi] moduli spaces of polarised
varieties with trivial canonical bundle exist and can be constructed as GIT
quotients. For this we first fix a Hilbert polynomial P (m) of a line bundle
on a K3 surface. This is of the form P (m) = m2d+2 where the degree of the
line bundle is 2d. Let M2d be the GIT moduli space of degree 2d polarised
K3 surfaces. We want to relate this to F2d.

We first note that for any ample line bundle L on a K3 surface S its
third power L⊗3 is very ample. For this, see [S-D], but in general one can
use Matsusaka’s big theorem ([Mat], [LM]) to show that there is a positive
integer m0 such that L⊗m0 is very ample for all polarised varieties (X,L)
with fixed Hilbert polynomial. Now let m0 ≥ 3 be sufficiently big. Then
we have embeddings f|L⊗m0 | : S → PN−1 where N = h0(S,L⊗m0) = P (m0).

Such an embedding depends on the choice of a basis of H0(S,L⊗m0). Let H
be an irreducible component of the Hilbert scheme HilbP (P

N−1) containing
at least one point corresponding to a smooth K3 surface S. Let Hsm be

13



the open part of H parametrising smooth surfaces. Then it is easy to prove
that Hsm is smooth and that every point in Hsm parametrises a K3 surface.
There exists a universal family Ssm → Hsm. The group SL(N,C) acts on
Hsm and every irreducible component of the GIT moduli space of degree
2d polarised K3 surfaces is of the form SL(N,C)\Hsm. Let M′

2d be such a
component. Choosing local polarised markings for the universal family one
can construct a map Hsm → F0

2d, which clearly factors through the action
of SL(N,C), i.e. gives rise to a map π : M′

2d → F0
2d. By construction this

is a holomorphic map. On the other hand both M′
2d and F2d are quasi-

projective varieties. It then follows from a theorem of Borel [Bl] that π is a
morphism of quasi-projective varieties.

We claim that π is an isomorphism and that M2d has only one com-
ponent. First of all we note that one can, as in the proof of [GHS5,
Theorem 1.5], take a finite étale cover H ′

sm → Hsm such that the action
of SL(N + 1,C) lifts to a free action on H ′

sm as well as on the pullback
S ′
sm → H ′

sm of the universal family. This gives a quotient family over
Zsm = SL(N + 1,Z)\H ′

sm which is smooth and maps finite-to-one to M2d.
By the local Torelli theorem the natural map Zsm → F0

2d has discrete fibres
and hence the same is true for π. But then π must be dominant. Now
we can use Theorem 2.9 to conclude that M2d is irreducible and that π
is a bijection. Since F0

2d is a normal variety, it also follows that π is an
isomorphism. We can thus summarise our discussion as follows.

Theorem 2.10 There is an isomorphism M2d
∼= F0

2d, i.e. the GIT moduli
space M2d is isomorphic to the modular variety F0

2d.

3 Irreducible symplectic manifolds

In this section we recall the main properties of irreducible symplectic man-
ifolds, discuss the Torelli theorem and give basic facts about moduli spaces
of polarised symplectic manifolds.

3.1 Basic theory of irreducible symplectic manifolds

The theory of irreducible symplectic manifolds is less developed than that
of K3 surfaces. Nevertheless, several results have been proved over the last
30 years.

Definition 3.1 A complex manifold X is called an irreducible symplectic
manifold or hyperkähler manifold if the following conditions are fulfilled:

(i) X is a compact Kähler manifold;

(ii) X is simply-connected;
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(iii) H0(X,Ω2
X)

∼= Cω where ω is an everywhere nondegenerate holomor-
phic 2-form.

According to the Bogomolov decomposition theorem [Bog2], irreducible
symplectic manifolds are one of the building blocks for compact Kähler man-
ifolds with trivial canonical bundle: see also [Be, Théorème 2]. The others
are abelian varieties and Calabi-Yau varieties (here we mean Calabi-Yau in
its strictest sense, i.e. a compact Kähler manifold X such that π1(X) = 1
and H0(X,ΩiX) = 0 for 0 < i < dimX).

In dimension two the only irreducible symplectic manifolds are K3 sur-
faces. Although irreducible symplectic manifolds have now been studied for
nearly 30 years, only four classes of such manifolds have so far been discov-
ered and it is a wide open problem whether other types exist or not. The
known examples are:

(i) The length n Hilbert scheme S[n] = Hilbn(S) for a K3 surface S, and
its deformations. Note that the deformation space of such a variety has
dimension 21 and that, since K3 surfaces only depend on 20 parameters,
a general deformation will not itself be of the form S[n]. We shall refer to
these varieties as irreducible symplectic manifolds of deformation K3[n] type
or deformation K3[n] manifolds.

(ii) Let A be a 2-dimensional complex torus and consider the length-
(n + 1) Hilbert scheme A[n+1] = Hilbn+1(A) together with the morphism
p : A[n+1] → A given by addition. Then X = p−1(0) is an irreducible sym-
plectic manifold, called a generalised Kummer variety (even though it is
not necessarily algebraic). The deformation space of these manifolds has
dimension 5, again one more than for 2-dimensional complex tori.

(iii) O’Grady’s irreducible symplectic manifolds of dimension 6, described
in [OG2]. These are deformations of (desingularised) moduli spaces of
sheaves on an abelian surface and depend on 6 parameters.

(iv) O’Grady’s irreducible symplectic manifolds of dimension 10, de-
scribed in [OG1]. These are deformations of (desingularised) moduli spaces
of sheaves on a K3 surface and depend on 22 parameters.

In many ways irreducible symplectic manifolds behave like K3 surfaces,
but there are also important differences, as we shall see later. We first
notice that it follows immediately from the definition that X must have
even dimension 2n over C and that its canonical bundle ωX is trivial (an
n-fold exterior power of a generator ω of H0(X,Ω2

X) will define a trivi-
alisation of the canonical bundle). Clearly h2,0(X) = h0,2(X) = 1 and
h1,0(X) = h0,1(X) = 0. By a result of Bogomolov [Bog1], the deformation
space of X is unobstructed. This result was generalised to Ricci-flat man-
ifolds by Tian [Ti] and Todorov [Tod], and algebraic proofs were given by
Kawamata [Kaw] and Ran [Ran] (see also [Fuj]). Since

T[0]Def(X) ∼= H1(X,TX ) ∼= H1(X,Ω1
X)
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the dimension of the deformation space is b2(X)− 2.
As in the K3 case we have a Hodge decomposition H2(X,C) = H2,0 ⊕

H1,1⊕H0,2 with H2,0 and H0,2 both 1-dimensional. Unlike the K3 case the
intersection form does not immediately provide H2(S,Z) with the structure
of a lattice. It was, however, shown by Beauville [Be] that H2(X,Z) does
carry a natural structure as a lattice. To define this, let ω ∈ H2,0(X) be
such that

∫
X(ωω)

n = 1 and define

q′X(α) =
n

2

∫

X
α2(ωω)n−1 + (1− n)

(∫

X
αωn−1ωn

)(∫

X
αωnωn−1

)
.

After multiplication by a positive constant γ the quadratic form qX =
γq′X defines an indivisible integral symmetric bilinear form ( , )X on
H2(X,Z): this is the Beauville form. Clearly (ω, ω)X = 0 and (ω, ω)X > 0.

There is another way to introduce the Beauville form. For this let v(α) =
α2n be given by the cup product. Then, by a result of Fujiki [Fuj, Theorem
4.7], there is a positive rational number c, the Fujiki invariant, such that

v(α) = cqX(α)
n

for all α ∈ H2(X,Z). In this sense the Beauville form can be derived from
the cup product of the cohomology.

Proposition 3.2 The Beauville lattices and Fujiki invariants for the known
examples of irreducible symplectic manifolds are as follows:

(i) The Beauville lattice of a deformation K3[n] manifold is LK3,2n−2 =
3U⊕2E8(−1)⊕〈−2(n − 1)〉. It has rank 23, one more than the K3 lattice, to
which it is closely related. If X = S[n] for a K3 surface S, then 3U⊕2E8(−1)
comes from H2(S,Z) and the summand 〈−2(n − 1)〉 is generated (over Q)
by the exceptional divisor E, which is the blow-up of the diagonal in the
symmetric product S(n). As an element in the Picard group the divisor E
is 2-divisible. The Beauville lattice remains constant under deformations.
The Fujiki invariant is c = (2n)!/(n!2n).

(ii) The Beauville lattice of a generalised Kummer variety (or defor-
mation thereof) is 3U ⊕ 〈−2(n− 1)〉 and the Fujiki invariant is c = (n +
1)(2n)!/(n!2n).

(iii) The Beauville lattice of the 6-dimensional example of O’Grady is
3U ⊕ 〈−2〉 ⊕ 〈−2〉 and the Fujiki invariant is c = 60.

(iv) The Beauville lattice of the 10-dimensional example of O’Grady is
3U ⊕ 2E8(−1) ⊕A2(−1) and the Fujiki invariant is c = 945.

For details, see [Rap]. Note that all these lattices are even. It is, however,
not known whether this is a general fact for irreducible symplectic manifolds.

Let L be an abstract lattice which is isomorphic to (H2(X,Z), qX ) for
some irreducible symplectic manifold X. A marking is an isomorphism of
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lattices φ : H2(X,Z)
∼
→ L. Let p : X → U be a representative of the Ku-

ranishi family of deformations of X with sufficiently small and contractible
base. Note that by unobstructedness the base space of the Kuranishi family
is smooth and of dimension b2(X)−2. The marking φ for X defines a mark-
ing for X and we obtain a period map πU : U → ΩL to the period domain
defined by (2). As in the K3 case we have we have a local Torelli theorem.

Theorem 3.3 (Beauville) The differential of the period map defined by
the Kuranishi family is an isomorphism and thus the period map is a local
isomorphism.

Proof. See [Bog2], [Be]. 2

As in the K3 case one can define a moduli space of marked irreducible
symplectic manifolds (of a given type). Again, this will not be Hausdorff.
Another result which carries over from the K3 case is surjectivity of the
period map.

Theorem 3.4 (Huybrechts) Let L be a lattice of an irreducible symplectic
manifold and let ΩL be the associated period domain. If M′

L is a non-empty
component of the moduli space ML of irreducible symplectic manifolds with
Beauville lattice L, then the period map π : M′

L → ΩL is surjective.

Proof. A proof can be found in [Huy1, Section 8]. 2

3.2 Hodge theoretic Torelli theorem

So far, many results from K3 surfaces have carried over to other irreducible
symplectic manifolds. The situation changes when it comes to the global
Torelli theorem. The first counterexample to this is due to Debarre [Deb]. He
showed the following: let S be a K3 surface containing only one curve, which
is a smooth rational curve C, and consider the Hilbert scheme X = S[n]

with n ≥ 2. Then X contains Sn(C) ∼= Pn. One can perform an elemen-
tary transformation on X by first blowing up Sn(C) and then contracting
the exceptional divisor in another direction. This gives another irreducible
symplectic manifold X ′ which is birational, but not isomorphic, to X. Since
the natural birational transformation f : X ′ → X defines a Hodge isometry
f∗ : H2(X,Z) → H2(X ′,Z) this gives a counterexample to the global Torelli
theorem. It should be noted, though, that neither the surface S nor the va-
rieties X and X ′ are projective. Moreover, the existence of (−2)-curves on
a K3 surface S is exactly the cause for the failure of the Hausdorff property
for the base of the universal family.

Debarre’s counterexample would still allow for a version of the Torelli
theorem where the existence of a Hodge isometry only implies birational
equivalence, not an isomorphism (for K3 surfaces the two notions coincide).
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However, this is also ruled out by the following counterexample which is due
to Y. Namikawa [Nam]. For this one starts with a generic abelian surface
A with a polarisation of type (1, 3). Then the dual abelian surface Â also
carries a (1, 3)-polarisation. Let X = Km[2]A and X̂ = Km[2](Â) be the
associated generalised Kummer varieties of dimension 4. Then X and X̂ are
birationally equivalent if and only if A and Â are isomorphic abelian surfaces.
The reason for this is the following: every birational isomomorphism must
send the exceptional divisor E on X to the exceptional divisor Ê on X̂.
Since the Albanese of E and Ê are A and Â respectively, this implies that A
and Â are isomorphic. This is not the case for general A. This shows that
Namikawa’s example gives a counterexample even to the birational global
Torelli theorem. Moreover, one can easily make this into a counterexample
to the polarised Torelli theorem. This can be done by choosing polarisations
of the form mL− δ and mL̂− δ̂, where m is sufficiently large, L and L̂ are
induced from the polarisation on A and Â respectively, δ = 2E and δ̂ = 2Ê
(the exceptional divisors are 2-divisible in the Picard group). The Hodge
isomorphism respects these polarisations.

At first, these counterexamples seem to indicate that there is no chance
of proving a version of the global Torelli theorem for irreducible symplectic
manifolds. However, the above example is not as surprising as it seems at
a first glance. It is well known, and also well understood in terms of pe-
riod domains and arithmetic groups, that A and Â are not isomorphic as
polarised abelian surfaces (their period points in the Siegel space are in-
equivalent under the paramodular group), but that the associated Kummer
surfaces Km(A) and Km(Â) are isomorphic (and their period points in the
corresponding type IV domain are equivalent under the orthogonal group).
Details can be found in [GH2]. An analysis of this situation suggests that a
version of the Torelli theorem could hold if one considers Hodge isometries
with extra conditions.

Verbitsky [Ver] has announced a global Torelli theorem for irreducible
symplectic manifolds (see also Huybrecht’s upcoming Bourbaki talk [Huy2]).
His results were further elucidated by Markman [Mar4]. The crucial idea
here is to use monodromy operators and parallel transport operators. Mark-
man first noticed the importance of these operators for the study of ir-
reducible symplectic manifolds, developing his ideas in a series of papers
[Mar1], [Mar2], [Mar3]. To define them, let X1,X2 be irreducible symplec-
tic manifolds. We say that f : H∗(X1,Z) → H∗(X2,Z) is a parallel transport
operator if there exists a smooth, proper flat family π : X → B of irreducible
symplectic manifolds together with points b1, b2 ∈ B such that there are iso-
morphisms αi : Xi

∼
→ Xbi and a continuous path γ : [0, 1] → B with γ(0) = b1

and γ(1) = b2, such that the parallel transport in the local system Rπ∗Z
along γ induces the isomorphism (α−1

2 )∗ ◦ f ◦α∗
1 : H

∗(Xb2 ,Z) → H∗(Xb1 ,Z).
For a single irreducible symplectic manifold X, we call an automorphism

f : H∗(X,Z) → H∗(X,Z) a monodromy operator if it is a parallel transport
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operator (with X1 = X2 = X). The monodromy group Mon(X) is de-
fined as the subgroup of GL(H∗(X,Z)) generated by monodromy operators.
Restricting the group action to the second cohomology group we obtain a
subgroup Mon2(X) of GL(H2(X,Z)). Since monodromy operators preserve
the Beauville form we obtain a subgroup Mon2(X) ⊂ O(H2(X,Z)).

Based on Verbitsky’s results [Ver], Markman [Mar4] has formulated the
following Hodge theoretic Torelli theorem.

Theorem 3.5 (Hodge theoretic Torelli) Suppose that X and Y are irre-
ducible symplectic manifolds.

(i) If f : H2(Y,Z) → H2(X,Z) is an isomorphism of integral Hodge struc-
tures which is a parallel transport operator, then X and Y are bimero-
morphic.

(ii) If, moreover, f maps a Kähler class of Y to a Kähler class of X, then
X and Y are isomorphic.

Proof. The first part of the theorem follows easily from Verbitsky’s re-
sults. The second part uses in addition results on the Kähler cone of ir-
reducible symplectic manifolds. For a more detailed discussion see [Mar4,
Theorem 1.3] and [Mar4, Section 3.2]. 2

3.3 Moduli spaces of polarised irreducible symplectic mani-

folds

We shall now turn to the case of polarised irreducible symplectic manifolds.
In the K3 case we saw that the degree is the only invariant of a polarisation,
or, equivalently, that there is only one O(LK3)-orbit of primitive vectors of
given length. This is no longer true in general, as can already be seen in the
case of S[2]. Recall that the Beauville lattice in this case is isomorphic to
LK3,2 = 3U ⊕ 2E8(−1)⊕ 〈−2〉. If h is a primitive vector the number div(h)
(the divisor of h: see Equation (35) below) is the positive generator of the
ideal (h,LK3,2), which is the biggest positive integer by which one can divide
h as a vector in the dual lattice L∨

K3,2. Since LK3,2 is not unimodular, but
has determinant 2, the divisor div(h) can be 1 or 2. Indeed, both of these
happen when d ≡ −1 mod 4 and accordingly we have one O(LK3,2)-orbit if
d 6≡ −1 mod 4 and two if d ≡ −1 mod 4. Details of this can be found in
[GHS5]. These two cases are referred to as the split case (div(h) = 1) and the
non-split case (div(h) = 2). The reason for this terminology is the behaviour
of the orthogonal lattice: if h2 = 2d the possibilities for Lh = h⊥LK3,2

are (see

Example 7.7 below)

Lh = 2U ⊕ 2E8(−1)⊕ 〈−2〉 ⊕ 〈−2d〉 for div(h) = 1 (8)
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and

Lh = 2U ⊕ 2E8(−1)⊕

(
−2 1

1 −d+1
2

)
for div(h) = 2. (9)

For the higher dimensional case of S[n] the situation becomes more involved
as the possibilities for the divisor of h increase in number. Whenever the
primitive vectors of length d form more than one orbit, the moduli space of
polarised irreducible symplectic manifolds of degree d will not be connected:
see [GHS5].

In order to discuss moduli spaces of polarised irreducible symplectic mani-
folds we first fix some discrete data: the dimension 2n, the Beauville lattice
(considered as an abstract lattice L), and the Fujiki invariant c. Together
L and c define the numerical type of the irreducible symplectic manifold,
denoted by N. Next we choose a polarisation type, i.e. an O(L)-orbit of a
primitive vector h ∈ L. Viehweg’s theory gives us the existence of a mod-
uli space Mn,N,h parametrising polarised irreducible symplectic manifolds
(X,L) of dimension 2n with the chosen Beauville lattice, Fujiki invariant
and polarisation type. This is a quasi-projective variety and can be con-
structed as a GIT quotient as in the K3 case, the only difference being that
we must here invoke Matsusaka’s Big Theorem [Mat] to be guaranteed a
uniform bound N0 such that L⊗N0 is very ample for all pairs (X,L).

Although there is not a Torelli theorem as in the K3 case, these moduli
spaces are still related to quotients of homogeneous domains of type IV. Let
ΩL be the period domain defined by the lattice L and let Lh = h⊥L . This is a
lattice of signature (2, rk(L)− 3) and defines a homogeneous domain ΩLh

of
type IV. Let O(L, h) be the stabiliser of h in O(L). This can be considered
as a subgroup of O(Lh). The domain ΩLh

has two connected components,
of which we choose one, which we denote by DLh

. Again O+(L, h), the sub-
group of O(L, h) of real spinor norm 1, is the subgroup fixing the components
of ΩLh

.

Theorem 3.6 For every component M′
n,N,h of the moduli space Mn,N,h

there exists a finite to one dominant morphism

ψ : M′
n,N,h → O+(L, h)\DLh

.

The proof of this is analogous to the proof of Theorem 2.10. There are,
however, differences compared to the K3 case. In general, ψ will not be
injective (see the discussion below). There is also a difference concerning the
image of ψ. In the K3 case we know that a big and nef line bundle is ample if
and only if it has positive degree on the nodal curves. Hence it is necessary
and sufficient to remove the hyperplanes orthogonal to the nodal classes.
So far, no complete analogue is known for the higher dimensional case, but
Hassett and Tschinkel have proved partial results for n = 2 in [HT1], and
more precise results in a special case in [HT2].
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Nevertheless, Theorem 3.6 is enough to prove results on the Kodaira
dimension of moduli spaces of polarised irreducible symplectic manifolds.
This was done in [GHS5], [GHS6]: see Theorem 6.2 and Theorem 6.3 below.

Very recent work of Verbitsky [Ver] and Markman [Mar4] improves The-
orem 3.6, using a polarised analogue of the monodromy group Mon2(X) ⊂
O(H2(X),Z). Let H be an ample divisor on X. We call an element in
f ∈ Mon(X) a polarised parallel transport operator of the pair (X,H) if
it is a parallel transport operator for a family π : X → B with base point
b0 ∈ B and isomorphism α : X → Xb0 which fixes c1(H), such that there
exists a flat section h of R2π∗Z with h(b0) = α∗(c1(H)) and h(b) an am-
ple class in H2(Xb,Z) for all b ∈ B. These operators define a subgroup
Mon2(X,H) ⊂ O(H2(X),Z). It was shown by Markman [Mar4, Proposi-
tion 1.7] that Mon2(X,H) is the stabiliser of c1(H) in Mon2(X). Given a
marking φ : H2(X,Z) → L this defines a subgroup

Γ = φ(Mon2(X,H)) ⊂ O(L, h), (10)

which can be shown to be independent of the marking φ: see [Mar4, Sec-
tion 7.1].

Let M′
n,N,h be a component of the moduli space of polarised irreducible

symplectic manifolds with fixed numerical type and polarisation type. Given
an element (X,H) in this component one thus obtains a group Γ ⊂ O(L, h)
as above, which is also independent of the chosen pair (X,H) by the results
of [Mar4, Section 7.1]. In fact Γ ⊂ O+(L, h), as monodromy operators pre-
serve the orientation [Mar4, Theorem 8.5]. Thus Γ acts on the homogeneous
domain DLh

.

Theorem 3.7 The map ψ from Theorem 3.6 lifts to an open immersion

ψ̃ : M′
n,N,h → Γ\DLh

,

where Γ is as in Equation (10).

Proof. It is easy to see that the map ψ : M′
n,N,h → O+(L, h)\DLh

lifts

to a map ψ̃ : M′
n,N,h → Γ\DLh

(see the beginning of the proof of [GHS5,

Theorem 2.3]). The hard part is the injectivity of ψ̃ and this is where the
Torelli theorem for irreducible symplectic manifolds is used. For details we
refer the reader to [Mar4]. 2

Remark 3.8 We note that in general the projective group Γ/±1 is a proper
subgroup of O+(L, h)/ ± 1 and thus Theorem 3.7 is a substantial improve-
ment of Theorem 3.6.

In the case of irreducible symplectic manifolds of K3[n] type this can be
made explicit. For an even lattice L we define Ref(L) to be the subgroup
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generated by −2-reflections and the negative of +2-reflections. This is a
subgroup of O+(L). If X is an irreducible symplectic manifold of K3[n]

type, then we define Ref(X) accordingly.

Theorem 3.9 (Markman) If X is a deformation K3[n] manifold then

Mon2(X) = Ref(X).

Proof. This is proved in [Mar2, Theorem 1.2]. 2

For a lattice L we let

Ô(L) = {g ∈ O(L) | g|L∨/L = ± idL∨/L}

and given an element h ∈ L we set Ô(L, h) = {g ∈ Ô(L) | g(h) = h}. Recall
the convention of Equation (6) and that by Proposition 3.2(i) the Beauville
lattice is LK3,2n−2.

It then follows from Theorem 3.9 in conjunction with Kneser’s result [Kn,
Satz 4] that

Ref(LK3,2n−2) = Ô
+
(LK3,2n−2). (11)

Combining this with Theorem 3.7 we thus obtain

Theorem 3.10 LetM′
h be an irreducible component of the moduli space of

polarised deformation K3[n] manifolds. Then the map ψ of Theorem 3.6 fac-

tors through the finite cover Ô
+
(LK3,2n−2, h)\DLh

→ O+(LK3,2n−2, h)\DLh

that is, there is a commutative diagram

M′
h

ψ̃ //

ψ

''PPPPPPPPPPPPPP Ô
+
(LK3,2n−2, h)\DLh

��
O+(LK3,2n−2, h)\DLh

.

Moreover the map ψ̃ is an open immersion.

Remark 3.11 In [GHS5, Proposition 2.3] we stated that the map ψ lifts

to the quotient Õ
+
(LK3,2n−2, h)\DLh

. This is not correct since, contrary

to what was said in the proof, the projective groups Õ
+
(LK3,2n−2, h)/ ± 1

and Ô
+
(LK3,2n−2, h)/ ± 1 are not identical if n > 2. In that case, in fact,

Õ
+
(LK3,2n−2, h)/ ± 1 is an index 2 subgroup of Ô

+
(LK3,2n−2, h)/ ± 1. If,

however, n = 2, then the two groups coincide since Õ
+
(LK3,2) = Ô

+
(LK3,2)

and thus the results of [GHS5] are not affected by this error.

Remark 3.12 Theorem 3.10 gives an affirmative answer to [GHS5, Ques-
tion 2.6] (with the correct group).
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Remark 3.13 The results discussed so far do not given an answer to the
question whether moduli spaces of polarised irreducible symplectic mani-
folds of given deformation type and given type of polarisation are always
connected. Apostolov [Ap] has obtained some results on this. For example
in the Hilb[n] case these moduli spaces are always connected for n = 2 (both
in the split and the non-split case), but in general there can be more than
one component.

4 Projective models

Besides the abstract theory of moduli spaces there is a vast literature which
deals with concrete geometric descriptions of K3 surfaces, and to a much
lesser degree, also of irreducible symplectic manifolds of higher dimension.
The easiest example is degree 4 surfaces in P3. Any smooth quartic surface
is a K3 surface and counting parameters one obtains a family of dimension
34−15 = 19, because 34 is the number of quartics and 15 is the dimension of
PGL(4,C). This argument shows that the moduli space F4 of polarised K3
surfaces of degree 4 is unirational. The same approach yields unirationality
for degrees 2d = 2, 6 and 8, as these correspond to double covers of the
projective plane branched along a sextic curve, complete intersections of type
(2, 3) in P4, and complete intersections of type (2, 2, 2) in P5 respectively.

In general it can be very hard to decide whether a moduli space of
polarised K3 surfaces of low degree is unirational or not. Mukai ([Mu1],
[Mu2],[Mu3], [Mu4], [Mu5]) has contributed most significantly to this prob-
lem. So far there are three approaches to proving unirationality.

(1) Describing the K3 surfaces as complete intersections in homogeneous
spaces (this can be used for 1 ≤ d ≤ 9, d = 11, 12, 17, 19).

(2) Using non-abelian Brill-Noether theory of vector bundles over alge-
braic curves (here one obtains results for d = 6, 8, 10, 16).

(3) Using specific geometric constructions for certain degrees (d = 11, 12,
15, 19). An example is Mukai’s most recent work ([Mu5]) for d = 15
where he describes K3 surfaces of degree 30 as a complete intersection
in a certain rank 10 vector bundle on the Ellingsrud-Piene-Strømme
moduli space of twisted cubics.

As far as we are aware, there are no results at all about rationality for these
cases.

For a discussion of low degree cases we also refer the reader to Voisin’s
Bourbaki exposé [Vo2]. One can summarise the results as follows.

Theorem 4.1 The moduli spaces F2d of polarised K3 surfaces of degree 2d
are unirational for 1 ≤ d ≤ 12 and d = 15, 16, 17, 19.
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Much less is known in the case of irreducible symplectic manifolds, but
some cases have been studied.

Example 4.2 A classical case is the Fano variety of lines contained in a cu-
bic fourfold, which was studied in detail by Voisin [Vo1]. These are varieties
of K3[2] type.In our terminology this corresponds to the degree 6 non-split
case and the lattice Lh orthogonal to the polarisation vector is isomorphic
to 2U ⊕ 2E8(−1)⊕A2(−1).

Example 4.3 O’Grady studied double covers of Eisenbud-Popescu-Walter
sextics in [OG4]. This is the case of split polarisation of minimal degree
(degree 2) for the K3[2]-type. The lattice Lh is 2U ⊕2E8(−1)⊕〈−2〉⊕〈−2〉.

Example 4.4 Iliev and Ranestad ([IR1], [IR2]) have shown that the variety
of sums of powers VSP(F, 10) of presentations of a general cubic form F in
6 variables as a sum of 10 cubes is an irreducible symplectic 4-fold These are
deformations of length 2 Hilbert schemes of K3 surfaces with a degree 14 po-
larisation.The precise nature of the polarisation of the irreducible symplectic
manifold is unknown.

Example 4.5 Debarre and Voisin ([DV]) have constructed examples in
the Grassmannian Gr(6, V ) where V is a 10-dimensional complex vector
space.Starting with a sufficiently general form σ : ∧3 V → C they show that
the subspace of Gr(6, V ) consisting of 6-planes L such that σ|∧3L = 0 is an
irreducible symplectic fourfold of K3[2]-type. This defines a 20-dimensional
family with polarisation of non-split Beauville degree 2d = 22: the lattice

Lh is 2U ⊕ 2E8(−1)⊕

(
−2 1
1 −6

)
.

5 Compactifications

The spaces F2d (defined by (7) above) and the other quotients of period
domains described in Section 4 are complex analytic spaces by construc-
tion. We observed above that they are in fact quasi-projective varieties by
the results of Baily and Borel, and the GIT moduli spaces of polarised K3
surfaces and of irreducible symplectic manifolds are quasi-projective by the
general results of Viehweg. Nevertheless, we require projective models and
preferably smooth, or nearly smooth, models also.

In this section we describe the most commonly used compactifications
and we give some results about the singularities that arise. We begin by
describing the class of spaces we wish to compactify.
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5.1 Modular varieties of orthogonal type

As usual we let L be an integral lattice of signature (2, n), n ≥ 3, and
consider the symmetric space

DL = {x ∈ P(L⊗ C) | (x, x) = 0, (x, x̄) > 0}+ (12)

where the superscript + denotes a choice of one of the two connected com-
ponents of ΩL. We let Γ be a subgroup of finite index in O+(L). Any such
Γ acts properly discontinuously on DL, but in general there are elements of
finite order in Γ and they have fixed points in DL.

The quotient
FL(Γ) = Γ\D(L) (13)

is called a modular variety of orthogonal type or orthogonal modular vari-
ety. In particular it is a locally symmetric variety, i.e. a variety that is the
quotient of a symmetric space by a discrete group of automorphisms. It is
not compact and is by its construction a complex analytic space: if Γ is
torsion-free it is a complex manifold. In fact it is a quasi-projective variety
by [BB].

Some particularly important examples of orthogonal modular varieties
are:

(a) the moduli spaces of polarised K3 surfaces (the signature is (2, 19));

(b) the moduli spaces of lattice-polarised K3 surfaces (signature (2, n),
with n < 19);

(c) the moduli spaces of polarised abelian or Kummer surfaces (signature
(2, 3));

(d) the moduli space of Enriques surfaces (signature (2, 10));

(e) quotients of the period domains of polarised irreducible symplectic
varieties (signature (2, 4), (2, 5), (2, 20) and (2, 21) in the known cases).

For nearly all the orthogonal modular varieties FL(Γ) that occur in this
article, Γ is not torsion-free. The fixed points can lead to singularities of
FL(Γ). Since the stabiliser of any point of DL is finite, the singularities are
finite quotient singularities: that is, locally analytically they are isomorphic
to a quotient of Cn by a finite subgroup G of GL(n,C). They are not ar-
bitrary finite quotient singularities, though, and we give some details about
them in Section 5.6.

The quotient Cn/G may in fact be smooth, however. This happensby
a result of Chevalley [Ch] if and only if G is generated by quasi-reflections
(see Definition 5.8). More importantly for us, the ramification divisors of
DL → FL(Γ) are precisely the fixed loci of elements of Γ acting as quasi-
reflections on the tangent space. In fact the only quasi-reflections that occur
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for orthogonal modular varieties are reflections. (Let us emphasise that here
we are discussing the action of an element of G, not of Γ: being a reflection
on the tangent space to DL at a fixed point is not the same as being a
reflection as an element of O(L).)

The existence of elements acting as reflections, and thus of ramification
divisors, is a significant feature of orthogonal modular varieties. For Siegel
modular varieties (the symplectic group rather than the orthogonal group)
there are no ramification divisors, except in the case of Siegel modular 3-
folds. Siegel modular 3-folds, however, may also be regarded as orthogonal
modular varieties because of the isogeny between Sp2 and SO(2, 3).

Differential forms on FL(Γ) may be interpreted as modular forms for Γ:
see Section 6.1 for more details. Therefore arithmetic information (modu-
lar forms) may be used to obtain geometric information about FL(Γ). In
particular we can use modular forms to decide whether FL(Γ) is of general
type, or more generally to try to determine its Kodaira dimension. If Y is a
connected smooth projective variety of dimension n, the Kodaira dimension
κ(Y ) of Y is defined by

κ(Y ) = tr.deg
(⊕

k≥0

H0(Y, kKY )
)
− 1,

or −∞ if H0(Y, kKY ) = 0 for all k > 0. Thus h0(Y, kKY ) ∼ kκ(Y ) for k
sufficiently divisible. The possible values of κ(Y ) are ∞, 0, 1, . . . , n = dimY ,
and Y is said to be of general type if κ(Y ). The Kodaira dimension is
a bimeromorphic invariant so it makes sense to extend the definition to
arbitrary irreducible quasi-projective varieties X by putting κ(X) = κ(X̃)
for X̃ a desingularisation of a compactification of X.

With this in mind, we now turn to describing some algebraic compact-
ifications of FL(Γ), and the singularities that can occur. Much further in-
formation about compactifications of locally symmetric varieties (not all
algebraic) may be found in the book [BJ], especially in [BJ, Part III], and
the references there. However, the emphasis there is on the geometry and
topology of symmetric and locally symmetric spaces as real manifolds.

We are interested in two kinds of compactification: the Baily-Borel com-
pactification FL(Γ)

∗ and and the toroidal compactifications FL(Γ). We shall
describe the construction and some of the properties of each.

Remark 5.1 The constructions can also be made if Γ is an arithmetic sub-
group of O+(L ⊗ Q); that is, if Γ < O(L ⊗ Q) and Γ ∩ O+(L) is of finite
index in both Γ and O+(L).

In some important ways the generalisation to arithmetic subgroups does
not change things much. If we are willing to change the lattice, by Propo-
sition 5.2 we can always assume that Γ is contained in O(L), so that we
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do not need rational entries in the matrices. In particular the results of
Sections 5.5–5.7 still hold.

Proposition 5.2 If Γ < O(L⊗ Q) is arithmetic then there exists a lattice
M ⊂ L⊗Q such that Γ < O(M).

Proof. Let us consider g(L) for all g ∈ Γ. The index [Γ : Γ ∩O(L)] is finite,
therefore the number of different copies g(L) of L is finite. Therefore the
Z-module generated by the union of all g(L) (g ∈ Γ) is finitely generated.
Denote this lattice byM . Then Γ is a subgroup of O(M) by the definition of
M , and the quadratic form on M is induced by the quadratic form on L. If
the quadratic form is not even integral, then we can make it integral taking
a renormalisation by an integral constant c, i.e. we set (u, v)M = c(u, v)L.
Doing so does not change the orthogonal group. It follows that Γ can be
considered as a subgroup of O(M) for some even integral lattice M . 2

Notice, though, that the renormalisation by c does change the stable orthog-
onal group.

5.2 The Baily-Borel compactification

The Baily-Borel compactification, which in this context is often also re-
ferred to as the Satake compactification, can be defined very quickly as
Proj

⊕
Mk(Γ, 1), where Mk(Γ, 1) denotes the space of weight k modular

forms with trivial character: see Definition 6.4. A priori, however, it is not
clear that the ring of modular forms is finitely generated, nor that the mod-
ular forms separate points of FL(Γ). Nor does that description immediately
give a picture of the boundary FL(Γ)

∗ \ FL(Γ). Instead the approach of
Baily and Borel is to synthesise FL(Γ) by topological and analytic meth-
ods, adding boundary components, and to show that the resulting space is a
projective variety. Full details are given in [BB], and a more detailed sketch
than we give here may also be found in [BJ].

By writing DL in the form (12) we have exhibited it as a Hermitian do-
main of type IV. As a Riemannian domain, DL

∼= SO0(2, n)/SO(2)×SO(n),
where §00(2, n) is the identity component. The Baily-Borel compactification
is defined for any Hermitian symmetric space D = G/K (instead of DL) and
for any quotient X = Γ\D of D by an arithmetic group Γ. We describe the
construction in general but we keep in mind the case D = DL as above.

An irreducible symmetric space G/K is Hermitian if and only if the centre
of the maximal compact subgroup K has positive dimension: this explains
why we consider only lattices of signature (2, n), because SO(m) × SO(n)
has discrete centre unless n = 2 or m = 2. Any Hermitian symmetric space
of noncompact type can be embedded as a bounded symmetric domain in
the holomorphic tangent space TKD (the Harish-Chandra embedding). For
these facts see [BJ, Prop. I.5.9] or [Hel].
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The Baily-Borel compactification DBB of D is simply the closure of D in
the Harish-Chandra embedding, which in this case is the closure D̄L of DL

in P(L ⊗ C); this in turn is contained in the compact dual, which in this
case is the quadric

Ď = {x ∈ P(L⊗ C) | (x, x) = 0}.

The tangent space to G/K at K is identified, as a complex manifold, with
an open subset of Ď.

A subset of DBB is called a boundary component if it is an analytic
arc component: that is, an equivalence class under the relation x ∼ y if
there exist finitely many holomorphic maps fi : ∆ = {z ∈ C | |z| < 1} →
DBB such that x ∈ f1(∆), y ∈ fk(∆) and fi(∆) ∩ fi+i(∆) 6= ∅ for 1 ≤
i < k. The Baily-Borel compactification DBB decomposes as a disjoint
union of boundary components FP , which are themselves symmetric spaces
associated with certain parabolic subgroups p of G:

DBB = D ∐
∐

P

FP . (14)

Not all parabolic subgroups occur, but only those associated with certain
collections of strongly orthogonal roots. See [BJ, Section I.5] for precise
details.

By construction, G acts on DBB . The normaliser of FP ,

N (FP ) = {g ∈ G | g(FP ) = FP } (15)

is a maximal parabolic subgroup of G (the parabolic subgroup P is in general
not maximal). We shall later also need to consider the centraliser

Z(FP ) = {g ∈ G | g|FP
= id}. (16)

To construct the Baily-Borel compactification of X – in our case, of FL(Γ) =
Γ\DL – one must first restrict to rational boundary components.

Definition 5.3 A boundary component F is called a rational boundary
component if

(i) the normaliser N (F ) of F in G is a parabolic subgroup defined over Q,
and

(ii) the centraliser Z(F ) contains a cocompact subgroup, normal in N (F ),
which is an algebraic subgroup defined over Q.

A boundary component satisfying (i) is called a weakly rational bound-
ary component. It is shown in [BB, Theorem 3.7] that for the Baily-Borel
compactification (ii) follows from (i), so that weakly rational boundary com-
ponents are automatically rational.
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G acts on DBB but of course does not preserve rational boundary com-
ponents. However Γ, being an arithmetic subgroup, does take rational
boundary components to rational boundary components, so it acts on D∗ :=
D ∐

∐
FP rational FP . The effect of condition (ii) is that ΓP = Γ ∩ N (FP ) is

again a discrete group. Moreover, FP is again a Hermitian symmetric space
and ΓP is an arithmetic group acting on FP .

We obtain the Baily-Borel compactification (Γ\D)∗ by taking the quo-
tient of D∗ by the action of Γ. Each boundary component ΓP \FP has the
structure of a complex analytic space and it is shown in [BB] that these
structures can be glued together to give an analytic structure on (Γ\D)∗

extending the analytic structure on Γ\D.
It is at this stage that modular forms enter the picture. Each boundary

component is an analytic space by construction but to show that their union
is also an analytic space one must exhibit local analytic functions, and to
show that the resulting space is projective we need analytic functions that
separate points. Baily and Borel do this by using the Siegel domain re-
alisation of D over a boundary, which we describe below (Section 8.2) for
the cases we need here. For a more general description, see [Sat]. In these
coordinates one may write down suitable series (Poincaré-Eisenstein series)
that define modular forms having the required properties.

Theorem 5.4 The Baily-Borel compactification (Γ\D)∗ is an irreducible
normal projective variety over C. It contains Γ\D (which in our case is
FL(Γ)) as a Zariski-open subset, and may be decomposed as

(Γ\X)∗ = Γ\D ∐
∐

P

ΓP\XP , (17)

where P runs through representatives of Γ-equivalence classes of parabolic
subgroups determining rational boundary components.

Although we defined rational boundary components in terms of DBB,
they determin, according to condition (i) above, rational maximal parabolic
subgroups of G. If G is simple, which will always be the case for us, the
boundary components of DBB correspond precisely to the maximal real
parabolic subgroups: see [AMRT, §3.2, Proposition 2].

At least for the classical groups, the rational maximal parabolic sub-
groups can be described in combinatorial terms. In the case of O(L) with
L of signature (2, n) they are the stabilisers of isotropic subspaces of L⊗Q.
Because of the signature, such spaces have dimension 2 or 1 (or 0, cor-
responding to the “boundary” component Γ\DL).Therefore we obtain the
following description of FL(Γ)

∗.

Theorem 5.5 FL(Γ)
∗ decomposes into boundary components as

FL(Γ)
∗ = FL(Γ) ∐

∐

Π

XΠ ∐
∐

ℓ

Qℓ, (18)
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where ℓ and Π run through representatives of the finitely many Γ-orbits of
isotropic lines and isotropic planes in L ⊗ Q respectively. Each XΠ is a
modular curve, each Qℓ is a point, and Qℓ is contained in the closure of XΠ

if and only if the representatives may be chosen so that ℓ ⊂ Π.

XΠ and Qℓ are usually referred to as 1-dimensional and 0-dimensional
boundary components, or corank 1 and corank-2 boundary components. The
boundary components of the Baily-Borel compactification are also known as
the cusps.

5.3 Toroidal compactifications

Toroidal compactifications in general are described in the book [AMRT].
They are made by adding a divisor at each cusp. Locally in the analytic
topology near a cusp, the toroidal compactification is a quotient of an open
part of a toric variety over the cusp: this variety is determined by a choice of
admissible fan in a suitable cone, and the choices must be made so as to be
compatible with inclusions among the closures of the Baily-Borel boundary
components. A summary may be found in [AMRT, Chapter III, §5].

The case we are concerned with, of O(2, n), is simpler than the general
case because only the 0-dimensional cusps need any attention. However, we
shall begin by describing the general theory, starting with D = G/K and an
action of an arithmetic group Γ.

Let F be a boundary component: we may as well assume immediately
that it is a rational boundary component. In general one has a description
of D as a Siegel domain, an analytic open subset inside

D(F ) := F × V (F )× U(F )C. (19)

In this decomposition, U(F ) is the centre of the unipotent radical W (F ) of
N (F ), the normaliser of F in G, and V (F ) ∼= W (F )/U(F ) is an abelian
Lie group. This is not a holomorphic decomposition (V (F ) does not have
a natural complex structure) but U(F )C acts holomorphically on D(F ) and
in the diagram

D(F )

πF

��

π′
F

$$HH
HH

HH
HH

H

D(F )′

pF

zzuuu
uu

uu
uu

u

= D(F )/U(F )C

F

all the maps are holomorphic.
Now D is given by a tube domain condition: there is a cone C(F ) ⊂ U(F )

such that
D = {x ∈ D(F ) | Im(prU (x)) ∈ C(F )}. (20)
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where prU : D(F ) → U(F )C is the projection map from the decomposi-
tion (19): this is a holomorphic map, even though (19) is not a holomorphic
product decomposition.

In fact, there is a holomorphic product decomposition of D(F ) which is
(perhaps confusingly) similar:

D(F ) ∼= U(F )C × Ck × F, (21)

where, of course, k = 1
2 dimR V (F ) but Ck is not naturally identified with

V (F ).
Denoting the map x ∈ D(F ) 7→ Im(prU (x)) ∈ U(F ) by φF , as in [AMRT],

we have the diagram

C(F ) ⊂ U(F )

D

φF

OO

((QQQQQQQQQQQQQQQQ

πF

��

⊂ D(F )

φF

OO

π′
F

��

⊂ Ď

D(F )′

pF

vvllllllllllllllll

F

in which π′F : D(F ) → D(F )′ and pF : D(F )′ → F are principal homogeneous
spaces for U(F )C and V (F ) respectively.

When Γ acts, the group that acts on D(F ) and on D is N (F )Z =
Γ ∩N (F ), which is a discrete group because F is a rational boundary com-
ponent. So, looking at the action of U(F )Z = Γ ∩ U(F ), we get a principal
fibre bundle

D(F )/U(F )Z −→ D(F )′ (22)

whose fibre is T (F ) = U(F )C/U(F )Z, an algebraic torus over C.
Toroidal compactification proceeds by replacing this torus with a toric

variety XΣ(F ) and taking the closure of D/U(F )Z in the XΣ(F )-bundle over
D(F )′ that results. Doing this for each cusp F separately one can then take
the quotients of each such XΣ(F ) by N (F )Z and (under suitable conditions)
glue the resulting pieces together by identifying the copies of D/Γ contained
in each one.

In this process Σ(F ) is in general very far from unique. It is a fan in
C(F ) (more precisely, of the convex hull of the rational points of the closure
of C(F )), i.e. a decomposition of C(F ) into rational polyhedral cones (the
integral structure is given by the lattice U(F )Z ⊂ U(F )), which is required
to be N (F )Z-equivariant and locally finite, but is not itself finite except in
trivial cases: thus XΣ(F ) is locally Noetherian, but not Noetherian.
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In general, in order for the gluing procedure to work, the fans must
satisfy a compatibility condition between fans for different cusps that arises
when one cusp is in the closure of another, but in the case of O(2, n) the
condition is automatically satisfied. The reason is that the 1-dimensional
cusps have dimR U(F ) = 1 and C(F ) = R+, and the cone decomposition is
therefore unique, and trivial. At the 0-dimensional cusps, in contrast, one
has dimR U(F ), so D is actually a tube domain in D(F ): we describe this
situation explicitly in Section 8.2.

At the 0-dimensional cusps, therefore, many different choices of compact-
ification are possible. Below we shall choose one that suits our purpose.

In the end we need to take the quotient by N (F )Z, not just U(F )Z.
This has two consequences. First, this is why it is necessary to choose
Σ(F ) and hence XΣ(F ) in such a way that N(F )Z still acts; secondly, even if
XΣ(F ) is chosen to be smooth, the action of N(F )Z may reintroduce quotient
singularities into the finished toroidal compactification. It is easy to choose
XΣ(F ) to be smooth, by the usual method of subdivision to resolve toric
singularities.

Theorem 5.6 A suitable choice of fans {Σ(F )} for rational boundary com-
ponents F determines a toroidal compactification D/Γ of D/Γ. This com-
pactification may be chosen to be projective, and to have at worst finite
quotient singularities.

Proof. The only part not described above is the assertion that the compact-
ification may be chosen to be projective. This is shown in [AMRT, Ch.IV,
§2] with the extra assumption that Γ is neat, which is harmless because one
may work with a neat normal subgroup Γ′ < Γ of finite index and then use
the Γ/Γ′-action. See also [FC, V.5] for more details in the Siegel (symplectic
group) case, in a more arithmetic framework. 2

5.4 Canonical singularities

In this part, we give sufficient conditions for the moduli space or a suitable
toroidal compactification of it to have canonical singularities. We outline
the proof, from [GHS1, Section 2], that orthogonal modular varieties of
dimension n ≥ 9 satisfy these conditions.

Definition 5.7 A normal complex variety X is said to have canonical sin-
gularities if it is Q-Gorenstein and for some (hence any) resolution of sin-
gularities f : X̃ → X the discrepancy ∆ = KX̃ − f∗KX is an effective Weil
Q-divisor.

Recall that X being Q-Gorenstein means that for some r ∈ N, if KX is a
canonical (Weil) divisor on X then rKX is Cartier. Therefore f∗KX makes
sense: by definition it is the Q-Cartier divisor 1

rf
∗(rKX).
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∆ =
∑
αiEi is supported on the irreducible exceptional divisors Ei for

f , so X has canonical singularities if and only if the rational numbers αi
are all non-negative. Equivalently, X has canonical singularities if and only
if on any open set U ⊂ X, any pluricanonical form (i.e. section of rKx for
some r) on the smooth part of U extends holomorphically to the whole of
Ũ . For more detail on canonical singularities, see [Re].

A point P ∈ X is said to be a canonical singularity if some neighbourhood
X0 of P has canonical singularities.

As we saw in Section 5.1, the singularities of F are finite quotient sin-
gularities, arising at the images of points of D whose stabiliser in Γ is a
non-trivial finite group. Any such action can be linearised locally [Ca]: we
therefore consider the action of a finite subgroup G < GL(n,C) on Cn and
the singularities of the quotient X = Cn/G. Any element g ∈ G can be
diagonalised since it is of finite order, and the eigenvalues of g are roots of
unity.

Definition 5.8 An element g is a quasi-reflection if exactly one of the eigen-
values is different from 1. It is a reflection if that eigenvalue is −1.

For a cyclic subgroup 〈g〉 ⊂ GL(n,C) of finite order m > 1, we choose a
primitive mth root of unity ζ (without loss of generality, ζ = e2πi/m) and
we define the Reid-Tai sum

Σ(g) =
∑{ai

m

}
(23)

where the eigenvalues of g are ζai and { } denotes the fractional part, 0 ≤
{q} < 1. For convenience we set Σ(1). The usual form of the Reid-Tai
criterion is the following.

Proposition 5.9 Suppose that G is a finite subgroup of GL(n,C) contain-
ing no quasi-reflections. Then Cn/G has canonical singularities if and only
if Σ(g) ≥ 1 for all g ∈ G.

This is sufficient if one wants to classify singularities, since any quotient
singularity is isomorphic to a quotient singularity where there are no quasi-
reflections. In our situation, the isotropy groups sometimes do contain quasi-
reflections, so we want a version of the criterion that can be applied directly
in that case. First, we state a lemma that will allow us to consider the
elements of G one at a time.

Lemma 5.10 SupposeG ⊂ GL(n,C) is a finite group. If Cn/〈g〉 has canon-
ical singularities for every g ∈ G, then Cn/G has canonical singularities.

Proof. Let η be a form on (Cn/G)reg and let π : Cn → Cn/G be the quotient
map. Then π∗(η) is a G-invariant regular form on Cn \ π−1(Cn/G)sing.
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Since π−1(Cn/G)sing has codimension at least 2, the form π∗(η) extends by
Hartog’s theorem to a G-invariant regular form on all of Cn. Now the claim
follows from [Ta, Proposition 3.1], which says that a G-invariant form on
Cn extends to a desingularisation of Cn/G if and only if it extends to a
desingularisation of Cn/〈g〉 for every g ∈ G. 2

The converse of Lemma 5.10 is false.
Suppose that g ∈ GL(n,C) is of order m = sk, where k is the smallest

positive integer such that gk is either a quasi-reflection or the identity. Order
the eigenvectors so that the first n − 1 eigenvalues of gk are equal to 1, so
that the last eigenvalue is a primitive sth root of unity. We define a modified
Reid-Tai sum

Σ′(g) =
{san
m

}
+

∑{ai
m

}
(24)

where again the eigenvalues of g are ζai , and put Σ′(1) = 1. The idea
(originating in an observation of Katharina Ludwig) is that this enables us
to handle the quasi-reflections correctly.

Proposition 5.11 Suppose that G is a finite subgroup of GL(n,C). Then
Cn/G has canonical singularities if Σ′(g) ≥ 1 for all g ∈ G.

Proof. If no power of g is a quasi-reflection then s = 1 and the usual Reid-Tai
criterion (Proposition 5.9) shows that Cn/〈g〉 has canonical singularities.

Otherwise, consider g with gk = h a quasi-reflection as above. The
eigenvalues of g are ζa1 , . . . , ζan , where ζ is a primitive mth root of unity,
hcf(s, an) = 1 and s|ai for i < n. The group 〈h〉 is generated by quasi-
reflections so Cn/〈h〉 ∼= Cn, and we need to look at the action of the group
〈g〉/〈h〉 on Cn/〈h〉. The eigenvalues of the differential of gl〈h〉 on Cn/〈h〉
are ζ la1 , . . . , ζ lan−1 , ζslan , so

Σ(gl〈h〉) = Σ′(gl) ≥ 1. (25)

Thus (Cn/〈h〉/〈g〈h〉〉 ∼= Cn/〈g〉 has canonical singularities and the result
follows by Lemma 5.10. 2

5.5 Singularities of modular varieties

We are interested primarily in the singularities of F2d and the other spaces
mentioned in Section 4, but we may more generally consider the singularities
of compactified locally symmetric varieties associated with the orthogonal
group of a lattice of signature (2, n). Unless n is small, it turns out that the
compactification may be chosen to have canonical singularities.

Theorem 5.12 Let L be a lattice of signature (2, n) with n ≥ 9, and let
Γ < O+(L) be a subgroup of finite index. Then there exists a projective
toroidal compactification FL(Γ) of FL(Γ) = Γ\DL such that FL(Γ) has
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canonical singularities and there are no branch divisors in the boundary.
The branch divisors in FL(Γ) arise from the fixed divisors of ±reflections.

There are three parts to the proof of this theorem. One must first consider
the singularities of the open part, which means working out some details of
the action of Γ on DL. Then there are the possible singularities over the
0-dimensional cusps: these lead to toric questions, and here one must choose
the toroidal compactification appropriately. Finally, in order to deal with
the 1-dimensional cusps we need a full description of the geometry there.

5.6 Singularities in the interior

Here we are interested in the singularities that arise at fixed points of the
action of Γ on DL. Let w ∈ LC and let G ⊂ Γ be the stabiliser of [w] ∈ DL.
For [w] ∈ DL we define W = Cw. Then G acts on W, so g(w) = α(g)w
for some character α : G → C∗, and we put G0 = kerα. We also put
S = (W ⊕ W)⊥ ∩ L (possibly S = {0}) and T = S⊥ ⊂ L. In the case
of polarised K3 surfaces, S is the primitive part of the Picard lattice and
T is the transcendental lattice of the surface corresponding to the period
point w.

It is easy to check that SC ∩ TC = {0} and that G acts on S and on T :
moreover G0 acts trivially on TQ.

Since G/G0 ⊂ AutW ∼= C∗ it is a cyclic group: we denote its order by
rw. So by the above, µrw

∼= G/G0 acts on TQ. (By µr we mean the group
of rth roots of unity in C.)

For any r ∈ N there is a unique faithful irreducible representation of
µr over Q, which we call Vr. The dimension of Vr is ϕ(r), where ϕ is the
Euler ϕ function and, by convention, ϕ(1) = ϕ(2) = 1. The eigenvalues of a
generator of µr in this representation are precisely the primitive rth roots of
unity: V1 is the 1-dimensional trivial representation. Note that −Vd = Vd if
d is even and −Vd = V2d if d is odd.

Using the fact that SC ∩ TC = 0, we may check that TQ splits as a direct
sum of irreducible representations Vrw (in particular, ϕ(rw)|dimTQ) and
that if g ∈ G and α(g) is of order r (so r|rw), then TQ splits as a g-module
into a direct sum of irreducible representations Vr of dimension ϕ(r).

We are interested in the action of G on the tangent space to DL. We
have a natural isomorphism

T[w]DL
∼= Hom(W,W⊥/W) =: V.

Suppose g ∈ G is of order m and α(g) is of order r: as usual we take
ζ = e2πi/m, and henceforth we think of g as an element of GL(V ), with
eigenvalues ζa1 , . . . , ζan .

If ϕ(r) is not very small, the copy of Vr containing w already contributes
at least 1 to Σ(g). The cases r = 1 and r = 2 are also simple.
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Proposition 5.13 Assume that g ∈ G does not act as a quasi-reflection on
V and that ϕ(r) > 4. Then Σ(g) ≥ 1.

Proof. As ξ runs through the mth roots of unity, ξm/r runs through the rth
roots of unity. We denote by k1, . . . , kϕ(r) the integers such that 0 < ki < r
and (ki, r) = 1, in no preferred order. Without loss of generality, we assume
α(g) = ζmk2/r and α(g) = α(g)−1 = ζmk1/r, with k1 ≡ −k2 mod r.

One of the Q-irreducible subrepresentations of g on LC contains the eigen-
vector w: we call this Vw

r (it is the smallest g-invariant complex subspace
of LC that is defined over Q and contains w). It is a copy of Vr ⊗ C: to
distinguish it from other irreducible subrepresentations of the same type we
write Vw

r = Vw
r ⊗ C.

If v is an eigenvector for g with eigenvalue ζmki/r, i 6= 1 (in particular
v 6∈ W), then v ∈ W⊥ since (v,w) = (g(v), g(w)) = ζmki/rα(g)(v,w).
Therefore the eigenvalues of g on Vw

r ∩ W⊥/W include ζmki/r for i ≥ 3,
so the eigenvalues on Hom(W,Vw

r ∩W⊥/W) ⊂ V include ζmk1/rζmki/r for
i ≥ 3. So

Σ(g) ≥

ϕ(r)∑

i=3

{
k1
r

+
ki
r

}
≥ 1, (26)

where the last inequality is an elementary verification. 2

The cases r = 1 and r = 2 are simple to deal with because one always
finds two conjugate eigenvalues, which between them contribute 1 to Σ(g).

So far we have needed no hypothesis on the dimension, but the remaining
cases (r = 3, 4, 5, 6, 8, 10 or 12) do require such a condition because the
contributions to Σ(g) from each Vr are small and we need to have enough
of them. We refer to [GHS1] for details. In the end we find

Theorem 5.14 Assume that g ∈ G does not act as a quasi-reflection on V
and that n ≥ 6. Then Σ(g) ≥ 1.

One must then carry out a similar analysis for quasi-reflections. One more
dimension is needed to guarantee Σ′(g) ≥ 1, because the an term does not
help us. The analysis also has the corollary that the quasi-reflections in the
tangent space V that arise are in this case always reflections, and moreover
that the elements of Γ that they come from are themselves (up to sign)
reflections, considered as elements of O(L).

Corollary 5.15 If n ≥ 7 then FL(Γ) has canonical singularities.

5.7 Singularities at the cusps

We now consider the boundary FL(Γ) \ FL(Γ). Cusps, or boundary com-
ponents in the Baily-Borel compactification, correspond to orbits of totally
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isotropic subspaces E ⊂ LQ. Since L has signature (2, n), the dimension
of E is 1 or 2, corresponding to dimension 0 and dimension 1 boundary
components respectively.

A toroidal compactification over a cusp F coming from an isotropic sub-
space E corresponds to an admissible fan Σ in some cone C(F ) ⊂ U(F ).
We have, as in [AMRT]

DL(F ) := U(F )CDL ⊂ ĎL

where ĎL is the compact dual of DL (see [AMRT, Chapter II, §2]).
The case dimE = 1, that is, isotropic vectors in L, is the case of 0-

dimensional cusps in the Baily-Borel compactification and leads to a purely
toric problem. In this case we have

DL(F ) ∼= F × U(F )C = U(F )C.

Put M(F ) = U(F )Z and define the torus T(F ) = U(F )C/M(F ). In general
(DL/M(F ))Σ is by definition the interior of the closure of DL/M(F ) in
DL(F )/M(F ) ×T(F )XΣ(F ), i.e. in XΣ(F ) in this case, where XΣ(F ) is the
torus embedding corresponding to the torus T(F ) and the fan Σ. We may
choose Σ so that XΣ(F ) is smooth and G(F ) := N(F )Z/U(F )Z acts on
(DL/M(F ))Σ: this is also implicit in [AMRT] and explained in [FC, p.173].
The toroidal compactification is locally isomorphic to XΣ(F )/G(F ). Thus
the problem of determining the singularities is reduced to a question about
toric varieties, which is answered by Theorem 5.16, below.

We take a lattice M of dimension n and denote its dual lattice by N . A
fan Σ in N⊗R determines a toric variety XΣ with torus T = Hom(M,C∗) =
N ⊗ C∗.

Theorem 5.16 Let XΣ be a smooth toric variety and suppose that a finite
group G < Aut(T) = GL(M) of torus automorphisms acts on XΣ. Then
XΣ/G has canonical singularities.

Proof. This is [GHS1, Theorem 2.17]. The proof also shows (with a little
modification) that there are no branch divisors contained in the boundary
over 0-dimensional cusps either. 2

It remains to consider the dimension 1 cusps. We consider a rank 2 totally
isotropic subspace EQ ⊂ LQ, corresponding to a dimension 1 boundary
component F of DL. The idea is to choose standard bases for LQ so as to
be able to identify U(F ), U(F )Z and N(F )Z explicitly, as is done in [Sc] for
maximal K3 lattices, where n = 19. Then, following Kondo [Ko1] one can
analyse the group action in coordinates, using the Siegel domain realisation
of D associated with the given cusp. Both in [Ko1] and in [Sc] there are
special features that allow one to work over Z, but in general one must work
over Q. For details we refer to [GHS1].
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6 Modular forms and Kodaira dimension

One of the main tools in the study of the geometry of the orthogonal modular
varieties FL(Γ) is the theory of modular forms with respect to an orthogonal
group of type O(2, n). One application is to prove that FL(Γ) is often of
general type. The methods described here were used in [GHS1] to prove the
following result.

Theorem 6.1 The moduli space F2d of K3 surfaces with a polarisation of
degree 2d is of general type for any d > 61 and for d = 46, 50, 52, 54, 57,
58 and 60.

If d ≥ 40 and d 6= 41, 44, 45 or 47 then the Kodaira dimension of F2d is
non-negative.

Similar methods apply to irreducible symplectic manifolds and their po-
larisations, discussed in Section 3.3. For deformations of length 2 Hilbert
schemes of K3 surfaces with polarisation of split type (see Equation (8))
there is the following result, from [GHS5].

Theorem 6.2 The variety M
[2],split
2d is of general type if d ≥ 12. Moreover

its Kodaira dimension is non-negative if d = 9 and d = 11.

For the ten-dimensional O’Grady case [OG1], there are again split and non-
split polarisations, and a fairly complete general type result in the split case
was proved in [GHS6].

Theorem 6.3 Let d be a positive integer not equal to 2n with n ≥ 0. Then
every component of the moduli space of ten-dimensional polarised O’Grady
varieties with split polarisation h of Beauville degree h2 = 2d 6= 2n+1 is of
general type.

We do not attempt to prove Theorem 6.3 here but the theory we develop
in the rest of this article will give proofs (though not with full details) of
Theorem 6.1 and Theorem 6.2.

6.1 Modular forms of orthogonal type

In Definition 6.4 below we follow [B1]. An “affine” definition similar to the
one usually given for of SL(2) can be found in [G2].

Definition 6.4 Suppose that L has signature (2, n), with n ≥ 3. Let k ∈ Z

and let χ : Γ → C∗ be a character of a subgroup Γ < O+(L) of finite index.
A holomorphic function F : D•

L → C on the affine cone D•
L over DL is called

a modular form of weight k and character χ for the group Γ if

F (tZ) = t−kF (Z) ∀ t ∈ C∗,
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F (gZ) = χ(g)F (Z) ∀ g ∈ Γ.

A modular form is called a cusp form if it vanishes at every cusp.

The weight as defined here is what is sometimes called arithmetic weight.
Some authors prefer to use the geometric weight, which is k/n, normally
only in contexts where n|k. We shall always use the arithmetic weight. One
may choose a complex volume form dZ on DL such that if F ∈Mnm(Γ) then
F (dZ)m is a Γ-invariant section of mKDL

: see [Bau] for a precise account.
If n < 3 then one has to add to Definition 6.4 the condition that F is

holomorphic at the boundary. According to Koecher’s principle (see [Ba],
[F1], [P-S]) this condition is automatically fulfilled if the dimension of a
maximal isotropic subspace of L ⊗ Q is smaller than n. In particular, this
is always true if n ≥ 3.

We denote the linear spaces of modular and cusp forms of weight k and
character χ by Mk(Γ, χ) and Sk(Γ, χ) respectively. If Mk(Γ, χ) is nonzero
then one knows that k ≥ (n − 2)/2 (see [G2]). The minimal weight k =
(n−2)/2 is called singular. Modular forms of singular weight are very special.
The first example of such forms for orthogonal groups was constructed in
[G1]. Cusp forms are possible only if k > (n − 2)/2. The weight k =
dim(FL(Γ)) is called canonical because by a lemma of Freitag

Sn(Γ,det) ∼= H0
(
F̃L(Γ),KF̃L(Γ)

)
,

where F̃L(Γ) is a smooth compact model of the modular variety FL(Γ) and
K

F̃L(Γ)
is the sheaf of canonical differential forms (see [F1, Hilfssatz 2.1, Kap.

3]). Therefore we have the following important formula for the geometric
genus of the modular variety:

pg(F̃L(Γ)) = dimSn(Γ,det). (27)

Remark 6.5 Below (see Section 8.3) we describe the property of being
holomorphic at the boundary (needed only if n ≤ 2) in terms of the Fourier
expansions.

Remark 6.6 In this article we usually assume that n ≥ 3. In this case the
order of any character χ in Definition 6.4 is finite according to Kazhdan’s
property (T) (see [Ka]).

Remark 6.7 If the lattice L contains two orthogonal copies of the hyper-
bolic plane U ∼= ( 0 1

1 0 ) and if its reduction modulo 2 (respectively 3) is of

rank at least 6 (respectively 5) then Õ
+
(L) has only one non-trivial char-

acter, namely det (see [GHS4]). In particular the modular group Õ
+
(L2d)

related to the polarised K3 surfaces has only one non-trivial character.
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Remark 6.8 If L
(5)
2t = 2U ⊕ 〈−2t〉, of signature (2, 3), then the modular

forms with respect to S̃O
+
(L

(5)
2t ) coincide with Siegel modular forms with

respect to the paramodular group Γt (see [G3], [GH2], [GN1], [GN3]). In par-
ticular, if t = 1 we obtain the Siegel modular forms with respect to Sp2(Z).

In contrast to Remark 6.7 the group S̃O
+
(L

(5)
2t ) has non-trivial characters.

They were described in [GH3, Section 2]. One can construct important cusp
forms of the minimal possible weight 1 with non-trivial character for the full

modular group S̃O
+
(L

(5)
2t )

∼= Γt for some t (see [GN3]).

6.2 Rational quadratic divisors

For any v ∈ L⊗Q such that v2 = (v, v) < 0 we define the rational quadratic
divisor

Dv = Dv(L) = {[Z] ∈ DL | (Z, v) = 0} ∼= Dv⊥
L

(28)

where v⊥L is an even integral lattice of signature (2, n − 1). Therefore Dv is
also a homogeneous domain of type IV. We note that Dv(L) = Dtv(L) for
any t 6= 0. The theory of automorphic Borcherds products (see [B3]) gives a
method of constructing automorphic forms with rational quadratic divisors.
Special divisors of this type (the reflective divisors defined below) play an
important role in the theory of moduli spaces.

The reflection with respect to the hyperplane defined by a non-isotropic
vector r is given by

σr : l 7−→ l −
2(l, r)

(r, r)
r. (29)

If r is primitive in L and the reflection σr fixes L, i.e. σr ∈ O(L), then we
say that r is a reflective vector, also known as a root. If (r, r) = d we say
that r is a d-vector or (if it is a root) a d-root. A 2-vector or a −2-vector is
always a root.

If v ∈ L∨ and (v, v) < 0, the divisor Dv(L) is called a reflective divisor
if σv ∈ O(L). It was proved in [GHS1, Corollary 2.13] that for n ≥ 6 the
branch divisor of the modular projection

πΓ : DL → Γ \ DL

is the union of the reflective divisors with respect to Γ:

Bdiv(πΓ) =
⋃

Zr⊂L, σr∈Γ∪−Γ

Dr(L). (30)

Note that here we have to allow r such that −σr ∈ Γ as well as those with
σr ∈ Γ: compare Remark 6.12 below, concerning modular forms.
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6.3 Low weight cusp form trick

The next theorem, proved in [GHS1, Theorem 1.1], is called the low weight
cusp form trick. It plays a crucial role in the application of modular forms
to moduli problems. If F is a modular form (of any weight or character)
then the divisor divF is the locus in DL given by the equation F (Z) = 0:
this is well-defined in view of Definition 6.4.

Theorem 6.9 Let L be an integral lattice of signature (2, n), n ≥ 9. The
modular variety FL(Γ) is of general type if there exists a non-zero cusp form
F ∈ Sa(Γ, χ) of small weight a < n vanishing with order at least 1 at infinity
such that divF ≥ Bdiv(πΓ).

Proof. We let FL(Γ) be a projective toroidal compactification of FL(Γ) with
canonical singularities and no ramification divisors at infinity, which exists
by Theorem 5.12. We take a smooth projective model Y of FL(Γ) by taking
a resolution of singularities of FL(Γ). We want to show the existence of
many pluricanonical forms on Y .

Suppose that Fnk ∈ Mnk(Γ,det
k). By choosing a 0-dimensional cusp

we may realise DL as a tube domain (see Section 8.2 for details) and use
this to select a holomorphic volume element dZ. Then the differential form
Ω(Fnk) = Fnk (dZ)

k is Γ-invariant and therefore determines a section of the
pluricanonical bundle kK = kKY away from the branch locus of π : DL →
FL(Γ) and the cusps: see [AMRT, p. 292] (but note that weight 1 in the
sense of [AMRT] corresponds to weight n in our definition).

In general Ω(Fnk) will not extend to a global section of kK. We distin-
guish three kinds of obstruction to its doing so. There are elliptic obstruc-
tions, arising because of singularities given by elliptic fixed points of the
action of Γ; reflective obstructions, arising from the ramification divisors in
DL; and cusp obstructions, arising from divisors at infinity.

In order to deal with these obstructions we consider a neat normal sub-
group Γ′ of Γ of finite index and set G := Γ/Γ′. Let X := FL(Γ

′) and let
X := FL(Γ

′) be the toroidal compactification of FL(Γ
′) given by the same

choice of fan as for FL(Γ). Then X is a smooth projective manifold with
FL(Γ) = X/G. Let D := X \ X be the boundary divisor of X. For any
element g ∈ G we define its fixed locus X

g
:= {x ∈ X | g(x) = x} and

denote its divisorial part by X
g
(1). Then R :=

⋃
g 6=1X

g
(1) is the ramification

divisor of the map π : X → X/G.
The results of Section 5.5 (see Theorem 5.12 and Theorem 5.16 can be

summarised as follows:

(i) R does not contain a component of D;

(ii) the ramification index of π : X → X/G along R is 2;

(iii) X/G has canonical singularities.
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We will now apply the low-weight cusp form trick, used for example in [F1]
(for Siegel modular forms), [G2], [GH1] and [GS]. The main point is to use
special cusp forms. For this let the order of χ be N and assume that k is a
multiple of 2N . Then we consider forms F 0

nk ∈ Snk(Γ,det
k) = Snk(Γ, 1) of

the form
F 0
nk = F ka F(n−a)k

where F(n−a)k ∈ M(n−a)k(Γ, 1) is a modular form of weight (n − a)k ≥ k.
We claim that the corresponding forms Ω(F 0

nk) give rise to pluricanonical
forms on Y . To see this, we deal with the three kinds of obstruction in turn.
Cusp obstructions. By definition, Ω(F 0

nk) is a G-invariant holomorphic
section of kKX . Since Fa is a cusp form of weight a < n, the form F 0

nk has
zeroes of order k along the boundary D and hence extends to a G-invariant
holomorphic section of kKX by [AMRT, Chap. IV, Th. 1].
Reflective obstructions. Since R ⊂ div(Fa) by assumption, Ω(F 0

nk) has
zeroes of order k on R\D. By (i) above, Ω(F 0

nk) actually has zeroes of order
k along all of R. By (ii) the form Ω(F 0

nk) descends to a holomorphic section
of kK(X/G)reg

where (X/G)reg is the regular part of X/G.

Elliptic obstructions. By (iii) the form Ω(F 0
nk) extends to a holomorphic

section of kKY .
Therefore F kaM(n−a)k(Γ, 1) is a subspace of H0(Y, kKY ). The theorem

now follows because according to Hirzebruch-Mumford proportionality (see
[Mum]), dimM(n−a)k(Γ, 1) grows like k

n. 2

Remark 6.10 There is another way to deal with the reflective obstructions,
which works even if a cusp form with the right properties cannot be found.
Among forms of very high weight there must be some that vanish along the
reflective divisors, because dimMk(Γ, 1) grows faster with k than the space
of obstructions, which are sections in some bundles on the reflective divisors.
In [GHS3] we estimate these dimensions using Hirzebruch-Mumford propor-
tionality. This method can be used to produce general type results even in
cases where special forms constructed by quasi pull-back are not available,
but if the quasi pull-back method is available it normally produces much
stronger results.

6.4 Reflective modular forms

For Theorem 6.9 we used cusp forms of low weight (k < n) with large
divisor (divF ≥ Bdiv(πΓ)). We construct such modular forms for the moduli
spaces of polarised K3 surfaces and other holomorphic symplectic varieties
in Section 8. Modular forms of high weight (k ≥ n) with small divisor
(divF ≤ Bdiv(πΓ)) also have applications to the theory of moduli spaces
such as Theorem 6.15 below.
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Definition 6.11 A modular form F ∈Mk(Γ, χ) is called reflective if

Supp(divF ) ⊂
⋃

Zr⊂L, σr∈Γ∪−Γ

Dr(L) = Bdiv(πΓ).

We call F strongly reflective if the multiplicity of any irreducible component
of divF is equal to one.

Remark 6.12 In the definition of reflective modular forms given in [GN2]
only the condition σr ∈ Γ was considered. The present definition, allowing
−σr ∈ Γ, is explained by equation (30).

Example 6.13 The most famous example of a strongly reflective modular
form is the Borcherds modular form Φ12 ∈ M12(O

+(II2,26),det) (see [B1]).
This is the unique modular form of singular weight 12 with character det
with respect to the orthogonal group O+(II2,26) of the even unimodular
lattice II2,26 ∼= 2U ⊕ 3E8(−1) of signature (2, 26). The form Φ12 is the
Kac-Weyl-Borcherds denominator function of the Fake Monster Lie algebra.
For any (−2)-vector r ∈ II2,26 we have

Φ12(σr(Z)) = det(σr)Φ12(Z) = −Φ12(Z).

Therefore Φ12 vanishes along Dr(II2,26). According to [B1] the order of
vanishing is 1 and the full divisor of this modular form is the union of the
mirrors of such reflections:

divD(II2,26)Φ12 =
∑

±r∈II2,26

r2=−2

Dr(II2,26).

According to Eichler’s criterion (see Lemma 7.5) all (−2)-vectors of II2,26

constitute one Õ
+
(II2,26)-orbit. In other words, the ramification divisor of

the 26-dimensional modular variety FII2,26(Õ
+
(II2,26)) is irreducible.

Remark 6.14 Modular forms of canonical weight have special properties.
Suppose L has signature (2, n) and F ∈ Mn(Γ,det). If σr ∈ Γ, then
F (σr(Z)) = −F (Z). Hence F vanishes along Dr(L). If −σr ∈ Γ, then

(−1)nF (σr(Z)) = F ((−σr)(Z)) = det(−σr)F (Z) = (−1)n+1F (Z)

and F also vanishes along Dr(L). Therefore any Γ-modular form of canonical
weight with character det vanishes along Bdiv(πΓ).

If Sn(Γ,det) 6= 0 then the Kodaira dimension of FL(Γ) is non-negative
(with no restriction needed on the dimension n), because if Fn ∈ Sn(Γ,det)
then by Freitag’s lemma Fn(Z)dZ defines an element of H0(FL(Γ),KFL(Γ)

).

Therefore pg(FL(Γ)) ≥ 1 and the plurigenera do not all vanish.
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The next theorem was proved in [G4] and contrasts with Theorem 6.9.

Theorem 6.15 Suppose that L has signature (2, n), with n ≥ 3. Let Fk ∈
Mk(Γ, χ) be a strongly reflective modular form of weight k and character χ
for a subgroup Γ < O+(L) of finite index. Then

κ(FL(Γ)) = −∞ (31)

if k > n, or if k and Fk is not a cusp form. If k and Fn is a cusp form whose
order of zero at infinity is at least 1 then

κ(Γχ\DL) = 0, (32)

where Γχ = ker(χ · det) is a subgroup of Γ.

Proof. The requirement that the cusp form should have order of vanishing
at least 1 is almost always satisfied: see [GHS4].

To prove (31) we have to show that there are no pluricanonical differential
forms on FL(Γ). Any such differential form can be obtained using a modular
form (see the proof of Theorem 6.9). The differential form Fnm (dZ)m is Γ-
invariant and it determines a section of the pluricanonical bundle mK over
a smooth open part of the modular variety away from the branch locus of
π : DL → FL(Γ) and the cusps. In the proof of Theorem 6.9 we indicated
three kinds of obstruction to extending Fnm (dZ)m to a global section of
mK. In the proof of this theorem we use the reflective obstruction, arising
from the ramification divisor in DL by ± reflections in Γ (see Equation (30)).
Therefore if Fnm determines a global section then Fnm has zeroes of order at
least m on Bdiv(πΓ). The modular form Fk ∈Mk(Γ, χ) is strongly reflective
of weight k ≥ n. Hence Fnm/F

m
k is a holomorphic modular form of weight

m(n − k) ≤ 0. According to Koecher’s principle (n ≥ 3) this function is
constant. Therefore Fnm ≡ 0 if k > n or Fnm = C · Fmn if k. If the strongly
reflective form Fn is non-cuspidal of weight n, then Fmn (dZ)⊗m cannot be
extended to the compact model because of cusp obstructions (Fmn should
have zeroes of order at least m along the boundary). If Fn is a cusp form
of weight k then we can consider Fn as a cusp form with respect to the
subgroup Γχ.

Then Fn(Z) dZ is Γχ-invariant and, according to Freitag’s lemma, it can
be extended to a global section of the canonical bundle ΩFL(Γχ)

for any

smooth compact model FL(Γχ) of FL(Γχ). Moreover Koecher’s princi-
ple shows that any m-pluricanonical form is equal, up to a constant, to
Fmn (dZ)⊗m, proving (32). The strongly reflective cusp form of canonical
weight determines essentially the unique m-pluricanonical differential form
on FL(Γχ). 2

We can apply Theorem 6.15 to find examples of moduli spaces of lattice-
polarised K3 surfaces having κ = −∞ and κ = 0: see [G4].
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7 Orthogonal groups and reflections

The material in this and subsequent sections is not so easily found in the
literature, so from here on we shall give slightly more detail.

For applications, the most important subgroups of O(L) are the stable

orthogonal groups Õ(L), Õ
+
(L) and S̃O

+
(L), as defined in Equations (5)

and (6). The reason for using the word “stable” to describe Õ(L) is the
following property.

Lemma 7.1 For any sublattice S of a lattice L the group Õ(S) can be
considered as a subgroup of Õ(L).

Proof. Let S⊥ be the orthogonal complement of S in L. We have

S ⊕ S⊥ ⊂ L ⊂ L∨ ⊂ S∨ ⊕ (S⊥)∨ (33)

where S ⊕ S⊥ is a sublattice of finite index in L. We can extend g ∈ Õ(S)
on S ⊕ S⊥ putting g|S⊥ ≡ id. It is clear that g ∈ Õ(S ⊕ S⊥). We consider
g ∈ Õ(S ⊕ S⊥) as an element of O(S∨ ⊕ (S⊥)∨). For any l∨ ∈ L∨ we have
g(l∨) ∈ l∨+(S⊕S⊥). In particular, g(l) ∈ L for any l ∈ L and g ∈ Õ(L). 2

Let S be a primitive sublattice of L. We define the groups

O(L,S) = {g ∈ O(L) | g|S ∈ Õ(S)} and Õ(L,S) = O(L,S) ∩ Õ(L).

Note that O(L,Zh) = O(L, h) if h2 6= ±2. The technique of discriminant
forms developed by Nikulin in [Nik2] is very useful here, and we describe the
main ideas behind it below. For simplicity we assume that all the lattices
we consider are even.

Let S⊥ be the orthogonal complement of a primitive nondegenerate sub-
lattice S in L. As in the proof of Lemma 7.1 we have the inclusions (33).
The overlattice L is defined by the finite subgroup

H = L/(S⊥ ⊕ S) < (S⊥)∨/S⊥ ⊕ S∨/S = D(S⊥)⊕D(S) (34)

which is an isotropic subgroup of D(S⊥) ⊕D(S). Moreover L/(S ⊕ S⊥) ∼=
L∨/(S∨ ⊕ (S⊥)∨). We define φ : L → S∨ by φ(l)(s) = (l, s). Then ker(φ) =
S⊥. Since L/(S ⊕ S⊥) ∼= φ(L)/S we obtain

|L/(S ⊕ S⊥)| = |φ(L)/S| = |detS|/[S∨ : φ(L)],

as |detS| = [S∨ : S]. From the inclusions above

|detS| · |detS⊥| = (|detL|)[φ(L) : S]2 = |detL| · |detS|2/[S∨ : φ(L)]2.

In the particular case S = Zh and Lh = h⊥L we have [S∨ : φ(L)] = div(h),
where

div(h)Z = (h,L). (35)

The positive number div(h) is called the divisor of h in L. We have now
proved the following lemma.
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Lemma 7.2 Let L be any nondegenerate even integral lattice and let h ∈ L
be a primitive vector with h2 = 2d 6= 0. If Lh is the orthogonal complement
of h in L then

|detLh| =
|(2d) · detL|

div(h)2
.

We come back to the inclusion (34). Following [Nik2] we consider the
projections

pS : H → D(S), pS⊥ : H → D(S⊥).

Using the definitions and the fact that the lattices S and S⊥ are primitive in
L one can show (see [Nik2, Prop. 1.5.1]) that these projections are injective
and moreover that if dS ∈ pS(H) then there is a unique dS⊥ ∈ pS⊥(H) such
that dS + dS⊥ ∈ H. Using these arguments one proves the next lemma (see
[GHS5, Lemma 3.2])

Lemma 7.3 Let S be a primitive sublattice of an even lattice L and denote
by ḡ the image in O(D(L)) of g ∈ O(L).

(i) g ∈ O(L,S) if and only if g(S) = S, ḡ|D(S) = id and ḡ|p
S⊥(H) = id.

(ii) α ∈ O(S⊥) can be extended to O(L,S) if and only if ᾱ|p
S⊥(H) = id.

(iii) If pS⊥(H) = D(S⊥) then O(L,S)|S⊥
∼= Õ(S⊥).

(iv) Assume that the projection O(S⊥) → O(D(S⊥)) is surjective. Then

O(L,S)|S⊥/Õ(S⊥) ∼= {γ̄ ∈ O(D(S⊥)) | γ̄|p
S⊥(H) = id}.

Corollary 7.4 If |H| = |detS⊥| then O(L,S)|S⊥
∼= Õ(S⊥).

For example, the condition of Corollary 7.4 is true if L is an even unimod-
ular lattice and S is any primitive sublattice of L (see Example 7.6 below).
We recall the following result which we call Eichler’s criterion (see [E, Sec-
tion 10], [G2, Section 3] and [GHS4]).

Lemma 7.5 Let L be a lattice containing two orthogonal isotropic planes.
Then the S̃O(L)-orbit of a primitive vector l ∈ L is determined by two
invariants: by its length l2 = (l, l) and its image l∗+L, where l∗ = l/div(l),
in the discriminant group D(L).

We note that l∗ is a primitive element of the dual lattice L∨. Therefore
div(l) is a divisor of the exponent of the discriminant group D(L). In par-
ticular, div(l) divides det(L). Lemma 7.5 can be used to classify all possible
vectors of fixed length in different lattices.
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Example 7.6 (The K3 lattice.) L(K3) = 3U ⊕ 2E8(−1) is the even uni-
modular lattice of signature (3, 19): its discriminant group is trivial and all
the primitive vectors h2d ∈ LK3 of length 2d form a single SO(LK3)-orbit.
Therefore we can take h2d in the first hyperbolic plane U , so

(h2d)
⊥
LK3

∼= L2d = 2U ⊕ 2E8(−1)⊕ 〈−2d〉. (36)

Then according to Corollary 7.4

O+(LK3, h2d) ∼= Õ
+
(h⊥2d) = Õ

+
(2U ⊕ 2E8(−1)⊕ 〈−2d〉). (37)

The case of K3 surfaces is an exception, since the K3 lattice is unimodular.

Example 7.7 K3[2]-lattice, split and non-split polarisations. We consider
the Beauville lattice of a deformation K3[n] manifold, which is isomorphic to
LK3,2n−2 by Proposition 3.2(i). In general there will be several, but finitely
many, orbits of primitive polarisation vectors h2d. Let h2d ∈ LK3,2 be a
primitive vector of length 2d > 0. Then div(h2d) divides |detLK3,2| = 2.

All vectors with div(h2d) = 1 constitute a single S̃O
+
(LK3,2)-orbit, by

Lemma 7.5. Therefore, as in Example 7.6, we obtain

(h2d)
⊥
LK3,2

∼= L2,2d = 2U ⊕ 2E8(−1)⊕ 〈−2〉 ⊕ 〈−2d〉. (38)

We call a polarisation determined by a primitive vector h2d with div(h2d) = 1
a split polarisation.

If h2d ∈ LK3,2 and div(h2d) = 2 then we can write h2d as h2d = 2v + cl2,
where v ∈ 3U ⊕ 2E8(−1) and l2 is a generator of the orthogonal component
〈−2〉 in LK3,2. The coefficient c is odd because h2d is primitive. Note
that 2d = h22d = 4(v, v) − 2c2, so d ≡ −1 mod 4. According to Eichler’s

criterion the S̃O(LK3,2)-orbit of h2d is uniquely determined by the class
h∗d ≡ l2/2 mod LK3,2. Therefore as in the case of div(h2d) = 1 all vectors
with div(h2d) = 2 form only one orbit. We can take a representative in the
form h2d = 2v + cl2 ∈ U ⊕ 〈−2〉. The orthogonal complement of h2d in
U ⊕ 〈−2〉 can be found by direct calculation. This is an even rank 2 lattice
Q(d) of determinant d. It follows that if d ≡ −1 mod 4 then there is only
one orbit of vectors h2d with div(h2d) = 2, and the orthogonal complement
of h2d is uniquely determined:

(h2d)
⊥
LK3,2

∼= LQ(d) = 2U ⊕ 2E8(−1) ⊕

(
−2 1

1 −d+1
2

)
. (39)

We call a polarisation of this kind a non-split polarisation. We note that
|detLQ(d)| = d and the discriminant group of LQ(d) is cyclic (see [GHS5,
Remark 3.15]).
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Remark 7.8 Taking the orthogonal complement of the (−2)-vector in Q(d)
we have a split sublattice of index 2

〈−2〉 ⊕ 〈−2d〉 < Q(d).

Therefore L2,2d < LQ(d) is also a sublattice of index 2 and according to
Lemma 7.1

Õ
+
(L2,2d) < Õ

+
(LQ(d)) (40)

is a subgroup of finite index. It follows from this that the modular variety

FL(Õ
+
(L2,2d)) is a finite covering of FL(Õ

+
(LQ(d))) where d ≡ −1 mod 4.

One can calculate this index using the explicit formula for the Hirzebruch–
Mumford volume (see [GHS2]).

We gave a classification of all possible type of polarisations for the sym-
plectic varieties of K3[n] type in [GHS5, Proposition 3.6]. Results about
the polarisation types of 10-dimensional O’Grady varieties can be found in
[GHS6, Theorem 3.1].

The branch divisor (Equation (30)) of the modular varieties is defined
by ±reflections in the modular groups. Below we give a description of the
branch divisors in the cases of the polarised K3 surfaces and polarised holo-
morphic symplectic varieties of type K3[2].

Let L be a nondegenerate integral lattice and r ∈ L be a primitive vector.
If the reflection is integral, i.e. σr ∈ O(L) (see Equations (29)) and (35)),
then

div(r) | r2 | 2 div(r). (41)

The following general result was proved in [GHS1].

Proposition 7.9 (i) Let L be a nondegenerate even integral lattice. Let
r ∈ L be primitive. Then σr ∈ Õ(L) if and only if r2 = ±2.

If −σr ∈ Õ(L), i.e. σr|AL
= − id, then we also have

(ii) r2 = ±2a and div(r) = a ≡ 1 mod 2, or r2 = ±a and div(r) = a or
a/2; and

(iii) AL ∼= (Z/2Z)m × (Z/aZ), for some m ≥ 0.

If (iii) holds then

(iv) If r2 = ±a and either div(r) = a or div(r) = a/2 ≡ 1 mod 2, then
−σr ∈ Õ(L);

(v) If r2 = ±2a and div(r) = a ≡ 1 mod 2, then −σr ∈ Õ(L).

With polarised K3 surfaces in mind, we consider in more detail the lattice
L2d (see Equation (36)). In this case the ramification divisor has three
irreducible components.
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Corollary 7.10 Let σr be a reflection in O+(L2d) defined by a primitive
vector r ∈ L2d. The reflection σr induces ± id on the discriminant group
L∨
2d/L2d if and only if r2 = −2 or r2 = −2d and div(r) = d or 2d. If r2 = −2

then
r⊥L2d

∼= 2U ⊕ E8(−1)⊕ E7(−1)⊕ 〈−2d〉.

If div(r) = d then either

r⊥L2d

∼= U ⊕ 2E8(−1)⊕ 〈2〉 ⊕ 〈−2〉

or
r⊥L2d

∼= U ⊕ 2E8(−1)⊕ U(2).

See the proof in [GHS1, Corollary 3.4 and Proposition 3.6]. Geometrically
the three cases in the last proposition correspond to the Néron-Severi group
being (generically) U , U(2) or 〈2〉 ⊕ 〈−2〉 respectively. The K3 surfaces
(without polarisation) themselves are, respectively, a double cover of the
Hirzebruch surface F4, a double cover of a quadric, and the desingularisation
of a double cover of P2 branched along a nodal sextic.

We note that in the case of polarised deformation K3[2] manifolds the
branch divisor has one main (i.e. div(r) = 1) component, with r2 = −2, and
6 (respectively, 1) additional components (div(r) > 1) for split (respectively,
non-split) type (see the proof of Proposition 8.13 below).

8 The quasi pull-back of modular forms

The main aim of this section is to show how we can construct cusp forms
of small weight, for example on the moduli spaces of polarised K3 surfaces.
We use the method of quasi pull-back of the Borcherds form Φ12 which was
proposed in [B1, pp. 200-201]. This method was successfully applied to the
theory of moduli spaces in [BKPS], [Ko2], [GHS1], [GHS5] and [GHS6]. In
this section we review this method and prove a new result (Theorem 8.11
below) showing that non-trivial quasi pull-backs are cusp forms.

8.1 Quasi pull-back

First we give a general property of rational quadratic divisors. Let M be a
lattice of signature (2,m) and L be a primitive nondegenerate sublattice of
signature (2, n) where n < m. Then L⊥

M is negative definite and we have as
usual L⊕ L⊥

M < M < M∨ < L∨ ⊕ (L⊥)∨. For v ∈M we write

v = α+ β, α = prL∨(v) ∈ L∨, β ∈ (L⊥)∨. (42)
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Lemma 8.1 Let L and M be as above. Then for any v ∈ M with v2 < 0
we have

DL ∩Dv(M) =





Dα(L), if α2 < 0,

∅, if α2 ≥ 0, α 6= 0,

DL, if α = 0, i.e. v ∈ L⊥.

Proof. We have DL ⊂ DM because L is a sublattice of M . For any Z =
X+ iY ∈ D•

L with X,Y ∈ L⊗R we have (X,Y ) = 0 and (X,X) = (Y, Y ) >
0. Therefore the quadratic space 〈X,Y 〉R is of signature (2, 0). Note that
(Z, v) = 0 is equivalent to (Z,α) = 0. The signature of L is equal to (2, n).
Analysing the signature of 〈X,Y 〉R ⊕ 〈α〉R we get that DL ∩Dv(M) is non-
empty if and only if α = prL∨(v) belongs to the negative definite quadratic
space 〈X,Y 〉⊥M⊗R. This proves the first two cases of the lemma.

The finite group H = M/(L⊕ L⊥) is a subgroup of the orthogonal sum
of the discriminant groups D(L)⊕D(L⊥) where D(L) = L∨/L. The decom-
position (42) defines a projection pr: H → D(L)⊕D(L⊥). For a primitive
sublattice L the class (α + L) ∈ D(L) is uniquely determined by the class
β + L⊥ in D(L⊥) (see [Nik2, Proposition 1.5.1]). Therefore α ∈ L if and
only if β ∈ L⊥. In particular v is orthogonal to L if and only if α = 0. This
proves the last assertion of the lemma. 2

In the next theorem we explain the main idea of the method of quasi pull-
back applied to the strongly reflective modular form Φ12 (see [B1, pp. 200–
201] and [BKPS]).

Theorem 8.2 Let L →֒ II2,26 be a primitive nondegenerate sublattice of
signature (2, n), n ≥ 3 and DL →֒ DII2,26 be the corresponding embedding
of the homogeneous domains. The set of (−2)-roots

R−2(L
⊥) = {r ∈ II2,26 | r

2 = −2, (r, L) = 0}

in the orthogonal complement is finite. We put N(L⊥) = #R−2(L
⊥)/2.

Then the function

Φ|L =
Φ12(Z)∏

r∈R−2(L⊥)/±1(Z, r)

∣∣∣∣∣
DL

∈M12+N(L⊥)(Õ(L), det), (43)

where in the product over r we fix a finite system of representatives in
R−2(L

⊥)/±1. The modular form Φ|L vanishes only on rational quadratic
divisors of type Dv(L) where v ∈ L∨ is the orthogonal projection of a (−2)-
root r ∈ II2,26 on L∨.

We say that the modular form Φ|L is a quasi pull-back of Φ12 if the set of
roots R−2(L

⊥) is non-empty.
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Proof. We introduce coordinates Z = (Z1, Z2) ∈ DII2,26 related to the
embedding L →֒ II2,26 and the splitting (42), namely Z1 ∈ L ⊗ C and

Z2 ∈ (L ⊗ C)⊥. We have Õ
+
(L) < O+(II2,26) (see Lemma 7.1) and we

denote by g̃ ∈ O+(II2,26) the extension of g ∈ Õ
+
(L) by g̃|L⊥ = id.

If the root system R−2(L
⊥) is empty, then Φ|L is the usual pull-back of

Φ12 on DL. Then Φ|L 6≡ 0 and we have

det(g)Φ12(Z1, Z2) = Φ12(g̃(Z1, Z2)) = Φ12(g · Z1, Z2).

Therefore the pull-back of Φ12 on DL is a modular form of weight 12. We
note that even in this simple case one obtains interesting reflective modular
forms (see [GN3, Section 4.2]).

If there are roots in R−2(L
⊥) then the pull-back of Φ12 on DL vanishes

identically, and one has to divide by the equations of the rational quadratic
divisors, as in Equation (43).

According to Lemma 8.1 the order of zero of Φ12 along DL is equal to
N(L⊥) = #R−2(L

⊥)/2. Therefore the non-zero function Φ|L is holomorphic

on D•
L. Moreover it is homogeneous of degree 12 +N(L⊥). Any g ∈ Õ

+
(L)

acts trivially on L⊥ and (Z, r) = (Z1 + Z2, r) = (Z2, r). Therefore

Φ12(gZ1, Z2)∏
r(Z2, r)

∣∣∣∣
DL

=
Φ12(g̃ · (Z1, Z2))∏
r(g̃ · (Z1, Z2), r)

∣∣∣∣
DL

= det(g)
Φ12(Z)∏
r(Z, r)

∣∣∣∣
DL

.

It follows that Φ|L is modular with respect to Õ
+
(L) with character det.

We finish the proof using Koecher’s principle.
The zeros of Φ|L can be determined using Lemma 8.1 and the fact that

Φ12 vanishes along Dr(II2,26) with r
2 = −2. 2

Remark 8.3 Theorem 8.2 is still true for n ≤ 2. we can show this by
computing the Fourier expansions of the quasi pull-back. Moreover we prove
in Theorem 8.11 that the quasi pull-back is always a cusp form.

Remark 8.4 The modular group of Φ|L might be larger than Õ
+
(L) (see,

for example, [GHS6, Lemma 4.4]).

Remark 8.5 For the applications to the theory of moduli spaces we use the
quasi pull-back of Φ12. It is easy to prove an analogue of Theorem 8.2 for
an arbitrary modular form whose divisor consists only of rational quadratic
divisors (in the style of Theorem 8.11 below).

In [GHS1] we showed that some quasi pull-backs for lattices related to
the moduli spaces of polarised K3 surfaces are cusp forms. In this paper
we prove a new, more general result: that the quasi pull-back construction
always gives a cusp form. The main idea of the proof is to consider the quasi
pull-back as a differential operator (see [GHS1, Section 6]).
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8.2 Tube domain realisation

We define a Fourier expansion of a modular form F at a 0-dimensional cusp.
The Fourier expansion depends on the choice of affine coordinates at a cusp.
We consider the general case, following the approach used in [B2, Theorem
5.2 and page 542]: for more details see [GN3, Section 2.3] and [F2].

A 0-dimensional cusp of DL is defined by an isotropic sublattice of rank 1
or, equivalently, by a primitive isotropic vector c ∈ L (up to sign: c and −c
define the same cusp). The choice of c identifies DL with an affine quadric:

DL,c = {Z ∈ D•
L | (Z, c) = 1} ∼= DL.

The lattice
Lc := c⊥/c = c⊥L/Zc (44)

is an integral lattice of signature (1, n − 1). We fix an element b ∈ L∨ such
that (c, b) = 1. A choice of b gives a realisation of the hyperbolic lattice Lc
as a sublattice in L

Lc ∼= Lc,b = L ∩ c⊥ ∩ b⊥. (45)

We have
L⊗Q = Lc,b ⊗Q⊕ (Qb+Qc).

Using the hyperbolic lattice Lc ⊗ R we define a positive cone

C(Lc) = {x ∈ Lc ⊗R | (x, x) > 0}.

We may choose C+(Lc), one of the two connected components of C(Lc)
so that corresponding tube domain, which is the complexification of C+(Lc)

Hc = Lc ⊗ R+ i C+(Lc)

has an isomorphism Hc → DL,c
∼= DL by

z 7→ [z] = z ⊕ (b+
(z, z) + (b, b)

2
c) (z ∈ Hc, [z] ∈ DL,c). (46)

Using the coordinate z ∈ Hc defined by the choice of c and b we can identify
an arbitrary modular form F of weight k with a modular form Fc,b (or simply
Fc) on the tube domain Hc:

F
(
λ(z + b+

(z, z) + (b, b)

2
c)
)
= λ−kFc,b(z).
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8.3 Fourier expansion at 0-dimensional cusps

In order to define the Fourier expansion at the cusp c we consider an unipo-

tent subgroup of the stabiliser Õ
+
(L), the subgroup of the Eichler transvec-

tions. For any a ∈ c⊥L the map

t′(c, a) : v 7−→ v − (a, v)c (v ∈ c⊥L )

belongs to the orthogonal group O(c⊥L ). It has the unique orthogonal exten-
sion on L which is given by the map

t(c, a) : v 7−→ v − (a, v)c + (c, v)a −
1

2
(a, a)(c, v)c. (47)

This element is called an Eichler transvection: see [E, Section 3] and [GHS4].

We note that t(c, a) ∈ S̃O
+
(L) for any a ∈ c⊥L , that t(c, a)(c) = c, and that

for a, a′ ∈ c⊥L

t(c, a)t(c, a′) = t(c, a+ a′) and t(c, a)−1 = t(c,−a).

We can identify the lattice Lc,b with the corresponding group of transvections
Ec(L) = 〈t(c, a) | a ∈ Lc〉. The group Ec(L) is the unipotent radical of the
parabolic subgroup associated to c. A direct calculation shows that t(c, a)
acts as linear translation in the affine coordinates (46):

t(c, a)([z]) = [z + a].

Let F ∈Mk(S̃O
+
(L)). Then Fc(z+a) = Fc(z) for all a ∈ Lc,b and we obtain

the Fourier expansion of F at the cusp c:

Fc(z) =
∑

l∈L∨
c,b

f(l) exp (2πi (l, z)). (48)

The function Fc(z) is holomorphic at the cusp c if the Fourier coefficient
f(l) can be different from 0 only if its index l ∈ L∨

c,b belongs to the closure

of the positive cone C+(Lc). Another formulation of this fact is (l, Y ) > 0
for any Y in the positive cone C+(Lc).

Remark 8.6 In general the Fourier expansion (48) depends on the choice
of b. For another b′ the Fourier coefficients will be different by a factor
exp(2πi(l, b − b′)) which is a root of unity (see details in [GN3, §2.3]). In
particular the Fourier coefficient f0 (the value of F at the cusp c) is well-
defined.

Remark 8.7 The stabiliser of the cusp c in Õ
+
(L) is isomorphic to the

semi-direct product of Õ
+
(Lc) and Ec(L).
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Remark 8.8 Let divL(c) = N . Then detL = N2 detLc. If divL(c) = 1
then c can be completed to a hyperbolic plane in L and L = U ⊕ Lc. This
cusp is called the simplest cusp. If div(c) > 1 then c/div(c) + L is an
isotropic element of the discriminant group D(L) and |D(L)| = |detL| is
divisible by div(c)2. If D(L) contains no non-trivial isotropic elements (in
this case the lattice is maximal) then all 0-dimensional cusps are equivalent
to the simplest cusp.

Remark 8.9 If L contains two hyperbolic planes then one can use the Eich-
ler criterion (see Lemma 7.5) in order to classify the 0-dimensional cusps with

respect to the action of S̃O
+
(L). The orbit of c, in this case, is uniquely

determined by the isotropic class c/div(c) + L in the discriminant group
D(L).

If D(L) does not contain isotropic elements (in particular if det(L) is

square free) then the modular variety Õ
+
(L)\DL has only one 0-dimensional

cusp.

Remark 8.10 If [O(L) : Γ] <∞ and F ∈Mk(Γ, χ) then we can define the
Fourier expansion using a sublattice Lc(Γ) of finite index in Lc corresponding
to the group Ec(L) ∩ kerχ.

8.4 Properties of quasi pull-back

We may consider the quasi pull-back of other modular forms, not only Φ12.
If L is of signature (2, n) and r ∈ L is primitive with (r, r) < 0 then Dr(L) =
Dtr(L) for any t ∈ Q×, and we write r⊥ = r⊥L if there is no ambiguity.

Theorem 8.11 Let L be an integral lattice of signature (2, n). Suppose

that the modular form F ∈ Mk(S̃O
+
(L)) vanishes with order m > 0 on

the rational quadratic divisor Dr(L) where r is a primitive vector in L with
(r, r) < 0. We define the quasi pull-back of F on the domain Dr⊥ of complex
dimension n− 1 by

F |r⊥ =
F (Z)

(Z, r)m

∣∣∣∣
D

r⊥

. (49)

Then the quasi pull-back is a cusp form of weight k +m

F |r⊥ ∈ Sk+m(S̃O
+
(r⊥)).

Proof. There are two parts to the assertion: that F |r⊥ is a modular form,
and that it vanishes at every cusp.

For the first part, we have the inclusions

r⊥ ⊕ Zr ⊂ L ⊂ L∨ ⊂ (r⊥)∨ ⊕ Z
r

(r, r)
,
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and r⊥ has signature (2, n−1). We consider the two embeddings Dr⊥ →֒ DL

and S̃O
+
(r⊥) →֒ S̃O

+
(L). We note that any element g ∈ S̃O

+
(r⊥) extends

to g̃ ∈ S̃O
+
(L) by acting trivially on r (see Lemma 7.1). Therefore any g̃

preserves Dr⊥ and g̃ · r = r. The function F |r⊥ is a holomorphic function on

Dr⊥ and it is homogeneous of degree k +m. For any g ∈ S̃O
+
(r⊥) we have

F (g̃Z)

(g̃Z, r)m

∣∣∣∣
D

r⊥

=
F (Z)

(Z, r)m

∣∣∣∣
D

r⊥

.

Therefore the quasi pull-back F |r⊥ is S̃O
+
(r⊥)-invariant. If instead F

has character χ then Fr⊥ tranforms according to the induced character
χ|

S̃O
+
(r⊥)

. If n > 3 then using Koecher’s principle we conclude that

F |r⊥ ∈Mk+m(S̃O(r⊥)).

If n ≤ 3 we cannot apply Koecher’s principle and instead we must use the
Fourier expansion to check that the quasi pull-back is a modular form as
well as to show the vanishing at the cusps.

We calculate the Fourier expansion of the quasi pull-back at an arbitrary
0-dimensional cusp of r⊥. Let c ∈ r⊥ be a primitive isotropic vector in r⊥

(if there are any: if not, there is nothing more to prove). We fix a vector
b ∈ (r⊥)∨. Then we can define the two homogeneous domains Hc(r

⊥) and
Hc(L) because the vector c defines also a 0-dimensional cusp of L. We write
Z ∈ Hc(L) in the form Z = Z1 + zr where

Z1 ∈ r⊥ ⊗C, z = x+ iy ∈ C, (ImZ1, ImZ1) + (r, r)y2 > 0.

If [Z] is the image of Z in Dc(L) (see (46)) then ([Z], r) = (r, r)z. Therefore
the equation of the divisor Dr(L) in the affine coordinates Z = Z1⊕zr ∈ Hc

is z = 0. The quasi pull-back F |r⊥ is equal, up to a constant, to the first
non-zero coefficient in the Taylor expansion of Fc,b(Z) in z.

Consider the Fourier expansion

Fc,b(Z) =
∑

l∈L∨
c,b

f(l) exp (2πi (l, Z)).

The modular form Fc,b(Z) is holomorphic at the boundary. Therefore l
belongs to the closure of the dual cone, in particular, (l, l) ≥ 0. The vectors
c and b are orthogonal to r and the lattice (r⊥)c,b ⊕ Zr is a sublattice of
finite index in the lattice of translations Lc,b. For any Z1 ∈ Hc(r

⊥) ⊂ r⊥⊗C

we consider z = x+ iy such that Z = Z1⊕zr ∈ Hc(L). (If y is small enough
then (ImZ1, ImZ1) > −(r, r)y2 > 0.) Therefore we can rewrite the Fourier
expansion using this parametrisation

Fc,b(Z1+zr) =
∑

l1∈(r⊥)∨
c,b
, l2∈Zr/(r,r)

f(l1+l2) exp (2πi (l1, Z1) + z(l2, r)) (50)
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where (l, l) = (l1+ l2, l1+ l2) = (l1, l1)+ (l2, l2) ≥ 0. The Fourier coefficients
of (F |r⊥)c,b are proportional to the Fourier coefficients of the m-th Taylor
coefficient

∂mFc,b(Z1 + zr)

(∂z)m

∣∣∣∣
z=0

.

The derivatives of the terms in the Fourier expansion (50) vanish if l2 = 0.
If (l2, l2) < 0 then (l1, l1) > 0, so nonzero Fourier coefficients occur only
when the index l1 has positive square. We have proved this for an arbitrary
0-dimensional cusp of r⊥, so we have shown that F |r⊥ is holomorphic at
the boundary even for n = 1 or n = 2. Moreover the value of F |r⊥ at an
arbitrary 0-dimensional cusp is zero.

The Baily-Borel compactification of S̃O
+
(r⊥)\Dr⊥ contains only bound-

ary components of dimension 0 and 1 (the latter only if r⊥ contains a totally
isotropic sublattice of rank two). The Fourier expansion at a 1-dimensional
cusp E is called Fourier–Jacobi expansion (see [Ba], [P-S], [G2]). The value
of a modular form G on the boundary component E is given by the Siegel op-
erator ΦE(G) (see [BB]). This is the zeroth coefficient of the Fourier–Jacobi
expansion which is a modular form with respect to a subgroup of SL(2,Z).
The boundary of a 1-dimensional cusp E is a union of some 0-dimensional
cusps. We consider the Fourier expansion of ΦE(F |r⊥) at a 0-dimensional
cusp c associated to E as a part of the Fourier expansion of (F |r⊥)c,h (see
[Ko1, Section 5.2] for the Fourier expansion of Fourier–Jacobi coefficients of
modular forms). The indices of the Fourier coefficients of ΦE(F |r⊥) are of
hyperbolic norm 0. Therefore ΦE(F |r⊥) ≡ 0 because all such coefficients
in (F |r⊥)c,h are equal to zero. Therefore the quasi pull-back F |r⊥ is a cusp
form. 2

Using Theorem 8.11 we prove that the quasi pull-back defined in Theo-
rem 8.2 is a cusp form.

Corollary 8.12 Let L →֒ II2,26 be a nondegenerate sublattice of signature
(2, n), n ≥ 1. We assume that the set R−2(L

⊥) of (−2)-roots in L⊥ is
non-empty. Then the quasi pull-back Φ|L ∈ S12+N(L⊥)(Õ(L), det) of the
Borcherds form Φ12 is a cusp form.

Proof. To prove the corollary we divide the procedure of the quasi pull-back
of Theorem 8.2 into finitely many steps.

First, we take a root r1 ∈ R−2(L
⊥) 6= ∅ and define M1 = (r1)

⊥
II2,26

. The

form Φ12 has a zero of order 1 on Dr1(II2,26). According to Theorem 8.11
we have

Φ|M1
=

Φ12(Z)

(r1, Z)

∣∣∣∣
M1

∈ S13(Õ
+
(M1),det).

We note that the cusp form Φ|M1
might have divisors different from the (−2)-

divisors of Φ12. If s ∈ R−2(L
⊥) such that (r1, s) 6= 0 then s1 = prM∨

1
(s) has
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negative norm −2 < (s1, s1) < 0 and Φ|M1
vanishes along Ds1(M1) according

to Lemma 8.1. Therefore the divisors of Φ|M1
are rational quadratic divisors

defined by some vectors in v ∈M∨
1 . But Dv(M1) = Dtv(M1) and we can fix

t in order to have a primitive vector tv ∈M1.
Second, we consider the lattice L⊥ ∩M1. Suppose first that there is no

vector v ∈ L⊥ ∩M1 such that Φ|M1
vanishes on Dv(M1). In this case Φ|L

is equal to the pull-back of Φ|M1
on DL. The pull-back of a cusp form is a

cusp form and the proof is finished.
Otherwise, if r2 ∈ L⊥ ∩ M1 is a vector such that Φ|M1

vanishes on
Dr2(M1), then we define M2 = (r2)

⊥
M1

= 〈r1, r2〉
⊥
II2,26

. As in Theorem 8.11
we have

Φ|M2
=

Φ|M1

(r2, Z)m

∣∣∣∣
M2

∈ S13+m(Õ
+
(M2),det)

where m ≥ 1 is the degree of zero of Φ|M1
on Dr2(M1).

The function Φ|M2
is a modular form vanishing along some rational

quadratic divisors. We can repeat the procedure described above for M2.
After a finite number of steps we get the cusp form Φ|L. 2

Proposition 8.13 Let L be one of the lattices L2d, L2,2d or LQ(d) defined in
(36)–(39). We assume that there exists an embedding L →֒ II2,26 such that
the weight of the quasi pull-back Φ|L is smaller than the dimension of DL.
Then Φ|L vanishes along the ramification divisor of the modular projection

π : DL → Õ
+
(L) \ DL.

Proof. We give here a proof which works for all cases including the moduli
spaces of polarised holomorphic symplectic O’Grady varieties (see [GHS6,
Corollary 4.6]).

The components of the branch divisor of π are Dr(L) where r ∈ L and σr

or −σr is in Õ
+
(L) (see [GHS1, Corollary 2.13] and Equation (30) above).

If σr ∈ Õ
+
(L), then Φ|L vanishes along Dr(L) because Φ|L is modular with

character det. We have to prove that Φ|L vanishes also on Dr(L) with

−σr ∈ Õ
+
(L). To prove this we use the transitivity of the quasi pull-back

construction. Let r ∈ L →֒ II2,26 and Lr = r⊥L . Then

(Φ|L)|Lr = Φ|Lr .

We have to consider three cases.

1) Let r ∈ L = L2d. Then rankLr = 18. According to Corollary 7.10
det |(Lr)

⊥
II2,26

| = 1 or 4. In [CS, Table I] one can find all classes of the
indecomposable lattices of small rank and determinant. Analysing that table
we find three classes of lattices of rank 8 of determinant 1, 2 or 4:

E8 (|R(E8)| = 240), E7⊕A1 (|R(E7⊕A1)| = 128), D8 (|R(D8)| = 112).
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Therefore Φ12 has a zero of order at least 56 along Dr(L). The modular
form Φ|L is of weight k < 19. Therefore R(L⊥

II2,26
) has at most 12 roots.

Therefore Φ|L vanishes on Dr(L2d) with order at least 50.

2) Let r ∈ L = L2,2d. Then rankLr = 19. We described reflective vectors

r with −σr ∈ Õ
+
(L) in Proposition 7.9. There are three possible cases:

r2 = 2d, div(r) = d or 2d and r2 = d = div(r) (d is odd).

According to Lemma 7.2, detLr = 2, 4 or 8. Therefore the rank 7 lattice
(Lr)

⊥
II2,26

has the same determinant. According to [CS, Table I] there are
six possible classes of such lattices:

E7, D7, D6 ⊕A1, A7, [D6 ⊕ 〈8〉]2, [E6 ⊕ 〈24〉]3,

where [M ]n denotes an overlattice of order n of M . Any of these lattices
contains at least 60 roots (|R(D6)| = 60). The modular form Φ|L is of
weight k < 20. Therefore R(L⊥

II2,26
) has at most 14 roots and Φ|L vanishes

on Dr(L2,2d) with order at least 23.

3) Let r ∈ L = LQ(d). In this case d ≡ 3 mod 4, and the discriminant
group D(LQ(d)) is cyclic of order d. Using Proposition 7.9 and Lemma 7.2

we obtain that only one class for (Lr)
⊥
II2,26

is possible. This is the lattice
E7. We finish the proof as above. 2

9 Arithmetic of root systems

In this section we finish the proof of Theorem 6.1. To prove it we use the
low weight cusp form trick (Theorem 6.9) by using the quasi pull-back of
the Borcherds modular form Φ12 to construct cusp forms of small weight
with large divisor.

According to Theorem 8.2, Theorem 8.11 and Proposition 8.13 the main
point for us is the following. We want to know for which 2d > 0 there exists
a vector

l ∈ E8, l
2 = 2d, l is orthogonal to at least 2 and at most 12 roots. (51)

To solve this problem we use the combinatorial geometry of the root sys-
tem E8 together with the theory of quadratic forms. First we give some
properties of the lattice E8 and we show how one can construct the first po-
larisations of general type in Theorem 6.1. After that we outline the answer
to the question in (51).

9.1 Vectors in E8 and E7

By definition, the lattice D8 is an even sublattice of the Euclidean lattice Z8

D8 = {l = (x1, . . . , x8) ∈ Z8 |x1 + · · ·+ x8 ∈ 2Z}.
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The determinant of D8 is equal to 4. We denote by e1, . . . , e8 the Euclidean
basis of Z8 ((ei, ej) = δij). The lattice E8 is the double extension of D8:

E8 = D8 ∪ (
e1 + · · · + e8

2
+D8).

We consider the Coxeter basis of simple roots in E8 (see [Bou])

t

α1
-t

α3
-t

α4

?t

α2

-t

α5
-t

α6
-t

α7
-t

α8

where

α1 =
1

2
(e1 + e8)−

1

2
(e2 + e3 + e4 + e5 + e6 + e7),

α2 = e1 + e2, αk = ek−1 − ek−2 (3 ≤ k ≤ 8)

and E8 = 〈α1, . . . α8〉Z. The lattice E8 contains 240 roots. We recall that
any root is a sum of simple roots with integral coefficients of the same sign.
The fundamental weights ωj of E8 form the dual basis, so (αi, ωj) = δij .
The formulae for the weights are given in [Bou, Tabl. VII]. We shall use the
Cartan matrix of the dual basis

((ωi, ωj)) =




4 5 7 10 8 6 4 2
5 8 10 15 12 9 6 3
7 10 14 20 16 12 8 4
10 15 20 30 24 18 12 6
8 12 16 24 20 15 10 5
6 9 12 18 15 12 8 4
4 6 8 12 10 8 6 3
2 3 4 6 5 4 3 2




. (52)

Let us assume that l2d ∈ E8 and (l2d)
⊥
E8

contains exactly 12 roots. We
consider two cases

R((l2d)
⊥
E8

) = A2 ⊕ 3A1 or R((l2d)
⊥
E8

) = A2 ⊕A2.

There are four possible choices of the subsystem A2⊕3A1 inside the Dynkin
diagram of E8. There are four choices for a copy of A2:

A2 = 〈α1, α3〉, 〈α2, α4〉, 〈α5, α6〉, 〈α7, α8〉.

Then the three pairwise orthogonal copies of A1 are defined automatically.

For example, if A
(1)
2 = 〈α5, α6〉 then 3A

(1)
1 = 〈α2〉 ⊕ 〈α3〉 ⊕ 〈α8〉. The sum

A
(1)
2 ⊕ 3A

(1)
1 is the root system of the orthogonal complement of the vector

l5,6 = ω1+ω4+ω7 ∈ E8. In fact, if r =
∑8

i=1 xiαi is a positive root (xi ≥ 0)
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then (r, l5,6) = x1 + x4 + x7 = 0. Therefore x1 = x4 = x7 = 0 and r belongs

to A
(1)
2 ⊕3A

(1)
1 (see the Dynkin diagram of E8 above). Using the matrix (52)

we find l25,6 = 46. Doing similar calculations with

l1,3 = ω4 + ω6 + ω8, l2,4 = ω3 + ω5 + ω7, l7,8 = ω1 + ω4 + ω6

we obtain polarisations for d = 50, 54 and 57

l21,3 = 2 · 50, l22,4 = 2 · 54, l27,8 = 2 · 57.

To get a good vector for d = 52 we consider the lattice M = A2 ⊕ A2 =
〈α3, α4〉 ⊕ 〈α6, α7〉 in E8. Then M is the root system of the orthogonal
complement of l104 = ω1 + ω2 + ω5 + ω8 and l2104 = 2 · 52.

In this way we construct the first five polarisations of general type from
the list of Theorem 6.1. These elementary arguments, similar to the argu-
ments of Kondo in [Ko2], do not give the whole list but only a few early
cases. A sufficient condition for existence of vectors satisfying (51) is given
in the theorem below.

Theorem 9.1 A vector l satisfying (51) does exist if the inequality

4NE7
(2d) > 28NE6

(2d) + 63ND6
(2d) (53)

is valid, where NL(2d) denotes the number of representations of 2d by the
lattice L.

Proof. We use bouquets of copies of A2 in E8 \E7. The root system R(E8)
is a disjoint union of 126 roots of E7 and the bouquet of 28 copies of A2

centred in A1. This fact explains the coefficients 28 and 63 in the right hand
side of (53). See [GHS1, Section 7] for more details. 2

In [GHS1] we found explicit formulae for the numbers of representations and
we proved that

NE7
(2m) >

24π3

5ζ(3)
, 21m2 > ND6

(2d), 103.69m2 > NE6
(2d).

These inequalities give a finite set of d for which (53) is not valid. Analysing
the corresponding theta series we found the set of all such d, containing 131
numbers. The five tables in [GHS1, Section 7] and the argument above for
d = 52 give the list of polarisations of general type of Theorem 6.1.

The geometric genus of F2d is positive if there exists a cusp form of
canonical weight 19. For each d not in the general type list but satisfying
d ≥ 40 and d 6= 41, 44, 45 or 47, there exists a vector h2d ∈ E8 of length 2d
orthogonal exactly to 14 roots. The corresponding quasi pull-back is a cusp
forms of canonical weight. For d = 42, 43, 51, 53 and 55 such cusp forms
were constructed by Kondo in [Ko2]. For other d see [GHS1].
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A similar arithmetic method applied to E7 (see [GHS5, Section 4]) gives
the proof of Theorem 6.2. There is a significant technical difficulty in the
case of E7. The proof involves estimating the number of ways of representing
certain integers by various root lattices of odd rank. In [GHS5, Section 5])
we gave a new, clear, explicit version of Siegel’s formula for this number in
the odd rank case. It may be expressed either in terms of Zagier L-functions
or in terms of the H. Cohen numbers. For example we obtained a new, very
short formula for the number of representations by 5 squares (see [GHS5,
Section 4] for the details).

9.2 Binary quadratic forms in E8

We saw in Example 4.5 that the results of Debarre and Voisin [DV] imply

that the moduli space M
[2],non-split
2·11 of Beauville degree d = 11 is unirational.

We note that M
[2],split
2·11 , which is a finite covering of M

[2],non-split
2·11 by (40), has

non-negative Kodaira dimension. Theorem 6.2 shows that there can be at
most 11 exceptional split polarisations of non general type. Proposition 9.2
hints that one can expect a theorem for the non-split case, which we hope
to prove in the future, similar to Theorem 6.2.

We recall that the Beauville degree d ≡ −1 mod 4 if the polarisation h2d
is of non-split type. For small d we can calculate the class of the orthogonal
complement of Q(d). According to [CS, Table 0] the rank 6 lattice Q(d)⊥E8

of determinant d contains at least 24 roots for d = 3, 7, 11 and 15. One can
continue this analysis but we propose below a simple algorithm which gives
us the first “good” embeddings of Q(d) in E8.

Proposition 9.2 The moduli spaces M
[2],non-split
2·39 and M

[2],non-split
2·47 are of

general type.

Proof. Let Q(d)(−1) =

(
2 −1
−1 2c

)
, where c = (d + 1)/4 be the binary

quadratic form associated to a non-split polarisation of degree 2d (see (39)).
To make the notation simpler we denote this binary form by Q(d). We have
to embed Q(d) in E8 so as to satisfy

2 ≤ |R(Q(d)⊥E8
)| ≤ 14.

We describe below a method (we call it 1
2(++)-algorithm) which gives many

such embeddings. We take the following realisation of the binary quadratic
form of determinant d in E8:

Q(d) = 〈e2 − e1, v2c〉 = 〈e2 − e1,
1

2
(e1 − e2 + x3e3 + · · ·+ x8e8)〉,

where xi ≥ 0 and 2c = (2 + x23 + · · · + x28)/4. The second generator v2c of
the binary quadratic form is a half-integral element of E8. According to the
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definition of E8 given above

v2c +
1

2
(e1 + · · ·+ e8) = e1 +

x3 + 1

2
e3 + . . .

x3 + 1

2
e8 ∈ D8.

Therefore x3 ≡ · · · ≡ x8 mod 2 and x3 + · · ·+ x8 ≡ 0 mod 4. Now we can
find all roots orthogonal to Q(d).

First, we consider the integral roots of E8. The roots ±(e1 + e2) are
orthogonal to Q(d) therefore R(Q(d)⊥E8

) is not empty. Then the integral
roots ±(ei ± ej) (i, j > 2) are orthogonal to Q(d) if and only if xi = ∓xj.

Second, a half-integral root orthogonal to Q(d) has the form

±
1

2
(e1 + e2 +

8∑

i=3

(−1)εiei)

where the number of − signs in the sum is even. Therefore v2c is orthogonal
to a half-integral root if and only if we can divide the vector of coefficients
(x3, . . . , x8) in two parts containing even number of terms and with the same
sum. If this is possible there are two pairs of roots orthogonal to v2c. For
example, if there is a root of type ±(++;+ + + + −−) then we also have
±(++;−−−++). The rules described above give the number (it is always
positive) of roots orthogonal to Q(d).

To finish the proof of Proposition 9.2 we consider two vectors

v20 =
1

2
(1, 1; 5, 5, 3, 3, 3, 1) and v24 =

1

2
(1, 1; 7, 5, 3, 3, 1, 1).

The quadratic forms Q(39) and Q(47) are orthogonal to exactly 14 roots
in E8. As above, using Theorem 8.2, Theorem 8.11 and Proposition 8.13
we see that the quasi pull-back of Φ12 on the modular variety defined by
the lattice LQ(d) is a cusp form of weight 19 vanishing on the ramification
divisor. We finish the proof using Theorem 6.9. 2
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(4) 7 (1974), 543–568.

62



[Ba] W.L. Baily, Fourier-Jacobi series, in Algebraic Groups and Discon-
tinuous Subgroups, Proc. Symp. Pure Math. Vol. IX, eds. A. Borel,
G. D. Mostow, Amer. Math. Soc., Providence, Rhode Island, 1966,
296–300.

[BB] W.L. Baily Jr., A. Borel, Compactification of arithmetic quotients
of bounded symmetric domains. Ann. of Math. (2) 84 (1966), 442–
528.

[BHPV] W. Barth, K. Hulek. C. Peters, A. Van de Ven, Compact complex
surfaces Second Enlarged Edition, Springer Verlag 2004.

[Bau] J. Bauermann, Lokale Tensorfelder auf arithmetischen Quotienten
symmetrischer beschränkter Gebiete. J. reine angew. Math. 428
(1992), 111–138.

[Be] A. Beauville, Variétés Kähleriennes dont la première classe de
Chern est nulle. J. Differential Geometry 18 (1983), 755–782.

[BJ] A. Borel, L. Ji, Compactifications of symmetric and locally sym-
metric spaces. Mathematics: Theory & Applications. Birkhäuser,
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[Ko1] S. Kondō, On the Kodaira dimension of the moduli space of K3
surfaces. Compositio Math. 89 (1993), 251–299.
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