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Abstract

Given a Lagrangian sphere in a symplectic 4-manifold (M,ω) with b+ = 1, we

find embedded symplectic surfaces intersecting it minimally. When the Ko-

daira dimension of (M,ω) is −∞, this result turns out very useful in both

the uniqueness and existence problems of Lagrangian spheres. On the unique-

ness side, for a symplectic rational manifold, we show that the Torelli part of

Symp(M,ω) acts transitively on homologous Lagrangian spheres; if the ratio-

nal manifold has Euler number less than 8, we show Ham(M,ω) already acts

transitively. On the existence side, we give a characterization of classes rep-

resented by Lagrangian spheres, which enables us to describe the non-Torelli

part of the mapping class group.

1 Introduction

For a symplectic 4-manifold (M,ω), symplectic surfaces and Lagrangian sur-

faces are of complementary dimensions. Thus we can ask what can be said

about their intersection pattern. Welschinger investigated this problem for a

Lagrangian torus L in [47], where he proves that the class [L] pairs trivially

with any effective class, and a symplectic sphere with positive Chern number

can be isotoped symplectically away from L.

In the case when L is a Lagrangian sphere and (M,ω) is a symplectic Del

Pezzo surface with Euler number at most 7, Evans shows in [12] that it can be

displaced from certain symplectic spheres with positive Chern number up to

symplectic isotopy, and applies it to prove the uniqueness of Lagrangian isotopy

therein.

In section 2 we generalize Evan’s displacement result in two ways, the first

being
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Theorem 1.1. Let L be a Lagrangian sphere in a symplectic 4-manifold (M,ω),

and A ∈ H2(M,Z) with A2 ≥ −1. Suppose A is represented by a symplectic

sphere C. Then C can be isotoped symplectically to another representative of

A which intersects L minimally.

In this paper all surfaces are smooth, embedded, connected, and oriented.

We say that two surfaces intersect minimally if they intersect transversely at

|k| points where k is the homological intersection number.

The second generalization is for symplectic surfaces of arbitrary genus in

b+ = 1 manifolds. To state it let Eω be the set of ω−exceptional classes:

{E ∈ H2(M,Z) : E is represented by an ω-symplectic (−1)-sphere}.

Theorem 1.2. Suppose (M,ω) is a symplectic 4-manifold with b+ = 1 and L

is a Lagrangian sphere. Assume A ∈ H2(M,Z) satisfies ω(A) > 0, A2 > 0 and

A · E ≥ 0 for all E ∈ Eω. Then there exists a symplectic surface in the class

nA intersecting L minimally for large n ∈ Z.

One implication of Theorem 1.1 is the uniqueness of Lagrangian spheres in a

symplectic rational manifold. In this paper, a rational manifold is CP 2#kCP
2

or S2 × S2, and a pair (M,ω) where M is a rational manifold endowed with

a symplectic form ω is called a symplectic rational manifold. A symplectic

rational manifold which is monotone, i.e. [ω] = Kω, is called a symplectic Del

Pezzo surface.

Theorem 1.3. For any symplectic rational manifold (M,ω) with χ(M) ≤ 7,

Lagrangian spheres in each homology class are unique up to Lagrangian isotopy.

This was due to Hind ([19]) in the case of S2 × S2, and to Evans ([12])

for symplectic Del Pezzo surfaces with Euler number up to 7. Notice this is

equivalent to that the Hamiltonian group Ham(M,ω) acts transitively on the

space of homologous Lagrangian spheres. The proof of Theorem 1.3 will be

presented in Section 5.2. We also apply Theorem 1.1 to present an alternative

proof of Hind’s fundamental uniqueness theorems.

One application of Theorem 1.2 is that we will be able to effectively per-

form Lagrangian-relative inflation procedure (Section 4). This turns out use-

ful dealing with various classical questions in the Lagrangian-relative context.

For example, it is known that Theorem 1.3 is not always true, demonstrated

by Seidel’s twisted Lagrangian spheres in symplectic Del Pezzo surfaces with

χ(M) ≥ 8 ([43]). However, combining an idea proposed by Hind and techniques

in [35], we are able to prove the following version of Lagrangian uniqueness:

Theorem 1.4. For any two homologous Lagrangian spheres L1 and L2 in

a symplectic rational surface (M,ω), there is a φ ∈ Symph(M,ω) such that

φ(L1) = L2.
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In other words, Symph(M,ω), the subgroup of Symp(M,ω) acting triv-

ially on homology, acts transitively on the space of Lagrangian spheres in a

fixed homology class. Evans [13] calculated explicitly the homotopy type of

Symph(M,ω) when (M,ω) is a symplectic Del Pezzo surface with χ(M) ≤ 8.

(also known to M.Pinnsonault). In particular, when χ(M) ≤ 7, it is connected

thus agreeing with Ham(M,ω). In our upcoming work [32] we will extend the

connectedness to non-monotone cases. In view of these results and Seidel’s

example, it seems natural to ask the following question,

Question 1.5. Suppose (M,ω) is a symplectic rational manifold with Euler

number bigger than 7. Is it true that the Hamiltonian subgroup is always a

proper subgroup of Symph(M,ω), i.e. the Torelli part of the symplectic mapping

class group is non-trivial?

Another key ingredient to the proof of Theorem 1.4 is the classification of

K-Lagrangian spherical classes in Section 3. A class ξ is called K-Lagrangian

spherical if ξ is represented by a smooth sphere with ξ2 = −2,K(ξ) = 0.

Let κ(M,ω) be the Kodaira dimension of (M,ω) (see for example [26]). κ

takes values in the set {−∞, 0, 1, 2} and κ(M,ω) = −∞ is equivalent to that

(M,ω) is symplectic rational or ruled. In section 4 we also give an explicit

description of K-Lagrangian spherical classes for ruled manifolds. The classifi-

cation of K-Lagrangian spherical classes, together with the Lagrangian-relative

inflation, enables us to further show that the obvious necessary condition for

the existence of a Lagrangian sphere in (M,ω) is also sufficient.

Theorem 1.6. Let (M,ω) be a symplectic 4-manifold with κ = −∞. ξ ∈
H2(M,Z) is represented by a Lagrangian sphere if and only if ξ is K-Lagrangian

spherical and ω(ξ) = 0.

A nice consequence of Theorem 1.6 is the characterization of the non-Torelli

part of the symplectic mapping class group. Recall that each framed Lagrangian

sphere L gives rise to a symplectomorphism, well defined up to isotopy (see [43]),

which is denoted τL and called the Lagrangian Dehn twist along L.

Theorem 1.7. Let (M,ω) be a symplectic 4-manifold with κ = −∞. Then the

homological action of f ∈ Symp(M,ω) can always be generated by Lagrangian

Dehn twists. In other words, there are Lagrangian spheres Li such that f∗ =

(τL1
)∗ ◦ (τL2

)∗ ◦ · · · ◦ (τLr
)∗.

On the homological level, this theorem should also be viewed as a symplec-

tic version of the classical theorem of M. Noether, which asserts a birational

automorphism of CP 2, which is known as a plane Cremona map, can be de-

composed into a series of ordinary quadratic transformations (see [1] for a nice

account). The latter is a counterpart of Seidel’s Dehn twist in symplectic ratio-

nal manifolds. It would be interesting to know whether the symplectic version
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of Noether decomposition indeed holds, that is, whether, up to symplectic iso-

topy, elements in Symp(M) can be decomposed into Lagrangian Dehn twists

when M is symplectic rational, at least when the form is monotone (this is

easily verified by Evans’ and our results above when χ(M) ≤ 7).

Acknowledgement: The authors would like to thank Richard Hind for his inter-

ests in our work and innumerable inspiring comments, as well as pointing out

an error in an earlier draft. We would also like to thank Robert Gompf, Dusa

McDuff, Weiyi Zhang and Chung-I Ho for helpful conversations. We also thank

Jonathan Evans for his interests in our work. After the paper was completed,

we received a manuscript by Shevchishin [40], where he also proved Theorems

1.6 and 1.7.

2 Minimal intersection

Proof of Theorem 1.2: In a 4−manifold with b+ = 1, due to Taubes’ SW⇒GT

theorem and the Seiberg-Witten wall crossing formula, there are plenty of con-

nected embedded symplectic surfaces ([30], see also [5], [35], [28]) :

Proposition 2.1. Let (M,ω) be a symplectic 4-manifold with b+ = 1 and

canonical class Kω. Let A ∈ H2(M ;Z) be a class with A2 > 0 and ω(A) > 0.

Assume that A − PD(Kω) is ω-positive and has non-negative square. Further

assume that A ·E ≥ 0 for all E ∈ Eω, then A has non-vanishing Gromov-Taubes

invariant and A is represented by a connected embedded symplectic surface.

Note that the proof in [27] indeed finds a connected embedded J-holomorphic

representative for generic J tamed by ω.

Next recall if Kω denotes the symplectic canonical class of ω, then one

defines ω−symplectic genus of a class A in H2(M,Z) as:

ηω(A) =
A · A+Kω(A) + 2

2

This is exactly the genus of a connected embedded symplectic surface in class

A (if there is one) given by the adjunction formula. It is straightforward that

when n is large, under the assumption of Theorem 1.2 the multiple nA has non-

trivial GT invariant and is represented by an embedded connected symplectic

surface. By abuse of notation, we will still denote this multiple by A.

By fixing the standard round metric on S2, one has an induced metric on

T ∗S2 along with a standard symplectic structure. By T ∗
r S

2 we mean the open

set of cotangent vectors with norm < r in T ∗S2. From Weinstein neighborhood
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theorem, a Lagrangian S2 has a symplectic neighborhood which is symplecto-

morphic to T ∗
r S

2 for some small r > 0. As usual, let Jω be the class of ω-tamed

almost complex structures. Define:

J ={J ∈ Jω : J is standard in a Weinstein neighborhood

U of S2, U is symplectomorphic to T ∗
r S

2}
(2.1)

Recall from [12] that we say J is standard in T ∗
r S

2 if it is the restrction of the

pulled back from the map η : T ∗S2 → (C3, Jstd) defined by:

(u, v) 7→ ujcosh(|v|) +
√
−1vjsinh(|v|)/|v|)

Here T ∗S2 is identified as {(u, v ∈ R3 × R3 : |u| = 1, u · v = 0)}. All such

almost-complex structures are adjusted near the boundary of U in the sense

of symplectic field theory. Note that transversality of any closed curve can be

attained within class J since they have to pass through M\U .

From the dimension formula, −Kω(A) ≥ 1 − ηω(A). We start with the

case that −Kω(A) = 1 − ηω(A). Since A has non-vanishing Gromov-Taubes

invariant with a connected embedded representative, we can perform the pro-

cedure “stretch the neck” with respect to J along ∂U and get a sequence of

Jti-curves Cti , for some sequence of real numbers ti → ∞. One is referred to

[9] for a comprehensive description of neck-stretching in SFT. To minimize our

subscripts and for future reference, we simply denote this sequence by {Ct}∞t=0.

If Ct does not intersect L for some t < ∞, the theorem follows when

〈[L], [C]〉 = 0 in H2(M,Z). Now we assume that all Ct intersects L. This

assumption will eventually deduce a contradiction when 〈[L], [C]〉 = 0 and is

automatically satisfied for 〈[L], [C]〉 6= 0 in H2(M,Z). By the compactness the-

orem proven in [9], we have a leveled curve C∞ as the Gromov-Hofer limit of

{Ct}∞t=0 with 3 levels: the curve in M\U , which we call CW or W -part; the

curve in the symplectization of ∂U = RP 3, which we call CS or S-part; the

curve in U , which we call CU or U -part.

Lemma 2.2. Under the above assumption, there is a generic set Jreg such that

if J ∈ Jreg, the Jt-curves Ct converges to a leveled curve C∞ with non-empty

connected irreducible genus-gω(A) W -part, and all asymptotic Reeb orbits are

simple.

Proof. Since we assume that Ct intersects L, the U -part of C∞ is non-empty.

By maximum principle, we are forced to have also non-empty S- and W -part.

From the calculation in [19] (see also [12]), we have a global trivialization on

T ∗S2 where simple Reeb orbits have Conley-Zehnder index 2, and cΦ1 = 0 for

all punctured curves in T ∗S2. For the definition of Conley-Zehnder index and

relative first Chern class, one is referred to [10][41]. See also [8].
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If there are more than one components in W -part, there must be some

components Bi with

cΦ1 (Bi) ≤ −gi (2.2)

where gi is the genus of component Bi. Such inequality holds because of

our assumption −Kω(A) = 1 − ηω(A),
∑

j

gj ≤ g(C∞) = g(C0) = ηω(A) and

∑

j

cΦ1 (Bj) = −Kω(A), where j runs over all CW components.

On the other hand, The dimension formula of such components Bi in W

reads:

virdimM ([Bi]) = −(2− 2gi − s−) + 2cΦ1 ([Bi])−
s−
i∑

k=1

(µik −
1

2
dimSik) (2.3)

Here s−i is the total punctures of Bi, dimSik = 2 is the dimension of the

Morse-Bott family of Reeb orbits at the punctures, µik the Conley-Zehnder

index of corresponding Reeb orbits of the puncture, which equates the Morse

index 2. For such a component to have non-negative virtual dimension, we

must then have cΦ1 (Bi) ≥ 1 − gi. This contradiction to (2.2) shows that there

can be only one component when J is generic. By applying (2.3) again, one sees

that such a component must have genus g and all asymptotes are simple.

Now we look at the corresponding S-part. Since each positive puncture

is simple, from the λ-energy consideration, all components have to be trivial

cylinders to stay in genus g (cf. [12] Lemma 7.5, [19], [9]).

For U -part, recall first from [12] that it is biholomorphic to the affine quadric

Q = {(z1, z2, z3) ∈ C3 : z21 + z22 + z23 = 0}

For any point p ∈ Q, there are exactly two complex lines in Q passing

through p, which we call αp and βp. Such planes form two families which we

call α-planes and β-planes, with α-family intersecting L = Re(Q) positively

and β-family negatively. Now from Lemma 6.5 in [12] and Lemma 2.2, the

U -part consists of α- and β-planes. Moreover we have:

Lemma 2.3. Either all planes in U are in α-family or all are in β-family.

Proof. As is explained in [12] Lemma 7.7, an α-plane and a β-plane do not

intersect iff they have the same asymptotic Reeb orbit. This must be the case

to avoid self-intersection of the holomorphic building C∞ which contradicts

adjunction formula for Ct at some t <∞. Therefore, if U -part has at least one

α-plane and one β-plane, all planes must asymptote to the same Reeb orbit.

By [12] Lemma 7.8, when s+ > 1, which corresponds to s− > 1 for W -part, the
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transversality of puncture evaluation shows that for generic J , CW does not

have all punctures asymptotic to the same Reeb orbit. This finishes the proof

of the lemma.

Now Theorem 1.2 follows from Lemma 2.3. For example, when 〈[L], [C]〉 =
k > 0, C∞ intersects L transversally at k points via α-planes, hence positively.

Therefore for some t < ∞, the Ct satisfies all requirements of our symplectic

curve. The cases for 〈[L], [C]〉 = k ≤ 0 similarly follows. This concludes the

proof of Theorem 1.2.

Now we consider the case−Kω(A) > 1−ηω(A). We adaptWelschinger’s idea

in [47] here. Note that gω(A) > 0 when n in the beginning of our proof is large.

We consider the class of complex structures F ⊂ J̄ which is standard also in a

neighborhood Up such that Up∩L = ∅ around a point p /∈ L. Then from a small

size of Kähler blow-up around p (see [37]), we obtain an artificial exceptional

class ep. Now −Kω(A− ep) = −Kω(A)− 1 and ηω(A− ep) = ηω(A). From the

blow-up formula, Corollary 4.4 in [31], A′ also has nontrivial Gromov-Taubes

invariant. To check the connectedness, we only need to verify the homological

condition (A− ep) ·E > 0 for any E ∈ Eω′ . Note that since A has a connected

J-holomorphic representative C with genus > 0 for a generic J ∈ F . For

the homological intersection in our case, we could assume the Kähler blow-up

is performed at p ∈ C. Then such a complex blow-up at p one still obtains

a connected representative C ′ with the same genus as C. By positivity of

intersections, it is clear that [C ′] ·E = (A− ep) ·E ≥ 0 for any exceptional class

E. The condition on homology and hence the connectedness follows.

By iterating the above process we eventually get a class Ã with −Kω(Ã) =

1 − ηω(Ã) with non-trivial GT-invariant and connected representative. Note

that the genericity of class Ã is achieved in class F . Now the stretching the

neck process goes along the lines as in the case −Kω(A) = 1 − ηω(A), we

could proceed as before to find an embedded J-holomorphic curve in class Ã

intersecting L minimally for J ∈ F . One then blow down the curves at the

artificial exceptional curves.

Before giving the proof of Theorem 1.1, we recall the following familiar

result. We call a set of symplectic curves with prescribed homology classes in

each irreducible components a symplectic configuration.

Proposition 2.4. Let (M,ω) be a symplectic 4-manifold, A ∈ H2(M,Z) with

A2 ≥ −1, then the embedded symplectic spheres in class A are all symplectic

isotopic to each other. This is also true for a configuration consisting of such

spheres with positive transversal intersections between the irreducible compo-

nents.
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The proof is a standard argument using Gromov-Witten theory on pseudo-

holomorphic spheres and we omit it. For more details see [38].

Proof of Theorem 1.1: Notice that, once we establish that the GT invariant of

A is non-trivial with a connected representative, the rest of the proof follows

word-by-word as in Theorem 1.2. The existence of such a representative is

again classical: when A2 = −1, A is simply an exceptional class for which our

assertion is obvious; when A2 ≥ 0, from the celebrated theorem of McDuff [33],

M is rational or ruled. Pick an almost complex structure J ∈ J such that C is

J-holomorphic. From the automatic transversality theorem, Dπ|C is surjective

in the sense of Gromov’s theory. Positivity of intersections and the adjunction

formula in turn shows that C is the only J-sphere in its class. Therefore,

the existence of C implies the nontriviality of GT invariant as well as gives a

connected representative. The isotopy assertion is an immediate consequence

of Proposition 2.4.

Remark 2.5. One easily sees that the above proof works for finitely many La-

grangian spheres that do not intersect each other. It is not clear to the authors

whether the theorem holds when they do intersect. There is some hints that this

phenomenon might be related to the wall crossing from the stretching family

of almost-complex structures adjusted to one Lagrangian to another.

However, in exactly the same way, one may push off a symplectic configu-

ration. Precisely:

Corollary 2.6. Let L be a Lagrangian sphere in a symplectic 4-manifold (M,ω),

and D = {A1, · · · , An} be a set of spherical classes Ai ∈ H2(M,Z). Suppose

Ai’s have non-vanishing GT-invariants and pair trivially with [L]. Then there

is a symplectic configuration with class D. Moreover, they can be realized as

a J-holomorphic configuration for a J tamed by the symplectic form and are

isotopic to each other.

The proof is immediate: notice that in the proof of Theorem 1.2 or 1.1, one

could stretch the neck once and for all classes with non-vanishing GT-invariants.

The rest of the argument is straightforward. Note also that such argument

also works for configurations with prescribed intersection patterns as long as

corresponding irreducible components have non-vanishing GT-invariants with

point constraints. For example, suppose class A has non-vanishing GT-invariant

with one-point constraint, and B, C with non-vanishing GT-invariants, B ·C =

1. Then in the complement of a given Lagrangian sphere, one could find a

corresponding configuration with the three components intersecting at a single

point. Moreover, if all three classes are spherical, such configurations are again

connected similar to Proposition 2.4.
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Remark 2.7. In principle one should be able to deform a family of symplectic

spheres to be disjoint from a given Lagrangian sphere in a weak sense: one needs

a family of JT -spheres to start with, where T is a parameter of almost-complex

structures. However, it is more subtle than it appears. As is pointed out to us

by R. Hind, if one takes a representative of the generator of π1(Sympl(S
2, ω0)),

the graph of this generator as a path of symplectic curves in S2×S2 cannot be

isotoped away from the antidiagonal. The point is that there seems to be some

topological obstruction from homotopy theory here, which will be explored in

subsequent papers.

Remark 2.8. The existence of C can be replaced by some conditions that are

easier to verify when A2 ≥ 0. By restricting our concerns to the rational

and ruled cases, a theorem [27] says we could achieve the non-triviality of GT

invariants as long as A2 ≥ η(A) − 1, where η(A) is the symplectic genus (for

the definition see section 3 below). An argument in [27] further shows if the

class A is reduced (see section 3 for the rational case and [27] the general case),

one only needs the minimal homological conditions asking A2 ≥ gω(A)−1 since

gω(A) = η(A). However, when gω(A) > 0 in this case, we no longer have the

assertion of symplectic isotopy but only the existence of such a surface.

3 K-Lag spherical classes of rational mani-

folds

It is in general difficult to find out whether a spherical class has a Lagrangian

sphere representative. We are able to completely solve this problem for ratio-

nal and ruled manifolds in Section 4.2. In this section we first derive some

preliminary results.

We fix some notations: in this section M is CP 2#nCP
2
. Let D(M) be the

image of diffeomorphism group of M in Aut(H2(M,Z)). We say two classes in

H2(M ;Z) are equivalent if they are related by D(M).

Let E and L be the sets of integral homology classes represented by smoothly

embedded spheres of square −1 and −2 respectively.

Let K be the set of symplectic canonical classes of M . It is shown in [30]

that D(M) acts transitively on K. For K ∈ K let DK(M) be the isotropy

subgroup.

The set of K-exceptional spherical classes and K−Lag spherical classes are

defined to be:

EK = {E ∈ E|K(E) = −1}

LK = {ξ ∈ L|K(ξ) = 0}

9



Notice that DK acts on EK and LK . The K-symplectic cone is defined as

CK = {[ω]|Kω = K}. It is shown in [30] that

CK = {τ ∈ H2(M ;R)|τ · E > 0 for any E ∈ EK for some symplectic form ω}.

3.1 A review of D(M) and symplectic genus

We recall some familiar facts about D(M) and the notions of symplectic genus

of a class e ∈ H2(M,Z) in this section.

For γ ∈ H2(M,Z) with γ2 = γ · γ = ±1 or ±2, there is an automorphism

R(γ) of the lattice called the reflection along γ,

R(γ)β = β − 2(γ · β)
γ · γ γ.

If γ is represented by a smoothly embedded sphere, Proposition 2.4 in Chapter

III in [15] then says that R(γ) ∈ D(M) when γ · γ = ±1 or ±2. It is shown in

[27] that D(M) is generated by a set of spherical reflections R(γ).

To define the symplectic genus of e ∈ H2(M,Z) introduce

Ke = {K ∈ K|there is a class τ ∈ CK such that τ · e > 0}
For K ∈ Ke define the K−symplectic genus ηK(e) to be 1

2(e ·K + e2) + 1, and

the symplectic genus of class e by

η(e) = max
K∈Ke

ηK(e).

It is proved in [27], Lemma 3.2 that η(e) has the following basic properties:

(1) η(e) is no bigger than the minimal genus of e, and they are both equal to

ηω(e) if e is represented by an ω−symplectic surface for some symplectic

form ω;

(2) Equivalent classes have the same η;

Note that in [27] these properties are stated for classes with positive square,

but the proof actually covered all cases.

Suppose An orthogonal basis {H,E1, · · · En} of H2(M ;Z) is called standard

if H2 = 1 and Ei ∈ E . From now on we fix a standard basis.

For any sequence {δi}, i = 0, ..., n with δi = 0 or 1, let

K{δi} = −(3H − (−1)δ1E1 − (−1)δ2E2 − · · · − (−1)δnEn).

Then K{δi} ∈ K. When δi = 0 for any i, we simply denote it by K0, i.e.

K0 = −3H + E1 + · · ·+ En.

It is clear that Ei ∈ EK0
. Moreover, for any symplectic form ω with Kω =

K0, the GT invariant of H and any E ∈ EK0
is non-trivial. By the positivity

of intersection, we have
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Lemma 3.1. Suppose ξ = aH −∑
biEi is in EK0

, then a ≥ 0 and bi ≥ 0. If

a = 0, then ξ = Ei for some i.

There is an analogue for LK0
.

Lemma 3.2. If ξ = aH −∑
biEi ∈ H2(M,Z) with a > 0 then K{δi} ∈ Kξ.

Proof. Notice that for any K{δi}, one could easily find τ ∈ CK{δi}
by requiring

τ · H ≫ 0, but keeping the corresponding signs of Ei in τ opposite to that of

K{δi}. Such a construction follows from the easy observation that classes in

EK{δi}
are obtained by changing the corresponding signs of those in EK and

Theorem 4 of [30].

By possibly even enlarging τ ·H further, since a > 0, one could also assure

that τ · ξ > 0. Therefore, K{δi} ∈ Kξ.

Lemma 3.3. Suppose ξ = aH −∑
biEi ∈ H2(M,Z) is in LK0

, If a > 0 then

η(ξ) = ηK0
(ξ) and bi ≥ 0.

Proof. For any ξ ∈ LK0
, ηK0

(ξ) = 0 and the minimal genus is 0 as well.

By Lemma 3.2, if ξ = aH −∑
biEi ∈ H2(M,Z) with a > 0, then ηK{δi}

(ξ) is

defined. Recall from the minimal genus assumption and the fact that symplectic

genus is no bigger than the minimal genus, 0 = ηK0
(ξ) ≥ ηK{δi}

(ξ) for all choices

of {δi}. But this holds only if bi ≥ 0, hence the conclusion follows.

When n ≥ 3, a class ξ = aH −∑n
i=1 biEi with a ≥ 0 and b1 ≥ b2 ≥ · · · ≥

bn ≥ 0 is called reduced ([16], [22]) if

a ≥ b1 + b2 + b3.

We have the following assertion regarding (−1) and (−2)-classes:

Proposition 3.4 ([27], Lemma 3.4, Lemma 3.6(2)). For e with e · e = −1 or

−2, η(e) = 0 if and only if e is not equivalent to a reduced class.

Moreover, for e with e · e = −1, η(e) = 0 if and only if e ∈ E, Any class in

E is equivalent to either Ei or H −Ei − Ej for some 1 ≤ i, j, k ≤ n. If further

n 6= 2, it is equivalent to Ei.

Similarly, for e with e · e = −2, η(e) = 0 if and only if e ∈ L. Any class in

L is equivalent to either Ei −Ej or H −Ei −Ej −Ek for some 1 ≤ i, j, k ≤ n.

If further n 6= 3, it is equivalent to Ei − Ej .

3.2 K−Lag spherical classes and DK(M)

We say two classes are K−equivalent if they are related by DK(M). The

action of D(M) on E and L is completely understood in Proposition 3.4. But

for our purpose, we need to further understand the K−equivalence. Due to the

transitive action of D(M) on K (c.f. [30]), we will restrict to the case K = K0

without loss of generality. For EK0
, one has the following:
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Proposition 3.5 ([39], Proposition 1.2.12). Any class in EK0
is K0−equivalent

to either Ei or H − Ei − Ej for some 1 ≤ i, j, k ≤ n. If further n 6= 2, it is

K0−equivalent to Ei.

Corollary 3.6. Let M be a rational manifold with b−(M) = n ≥ 2. If {E′
i}ki=1,

k ≤ n− 2 is an orthogonal subset of EK0
), then there is φ ∈ DK0

(M) such that

φ(E′
i) = Ei.

Proof. It is certainly true for n = 2. We apply induction on n. From Propo-

sition 3.5, there is φ̃ ∈ DK(M) such that φ̃(E′
1) = E1. Now we are reduced to

the case n− 1.

Remark 3.7. Note that this cannot be done when k = n − 1. In the case that

φ̃(E′
i) = Ei, i ≤ n − 2 and φ̃(E′

n−1) = H − En−1 − En, one has to apply

diffeomorphisms involving Ei’s for i ≤ n − 2 to send H − En−1 − En to En−1

or En.

Another consequence of Proposition 3.5 is:

Proposition 3.8. DK0
(M) is generated by ordinary Cremona transforms when

n 6= 3. In the case n = 3, one also includes the reflections R(Ei − Ej).

Proof. From Proposition 3.5, for φ ∈ DK0
(M), there is f ∈ Aut(H2(M,Z))

generated by ordinary Cremona transforms such that f(φ∗(E1)) = Ei for some

1 ≤ i ≤ n. One then again send Ei back to E1. Notice that this can be done

by ordinary Cremona transforms when n 6= 3, but E1 −Ei is needed for n = 3.

Denote still the composed map by f . Note also that f(φ∗(Ei)) · E1 = −δ1i.
One can then again conclude the proof by a simple induction.

We may also prove the analogue for the LK0
. Following Evans [12], a class

is called binary if it is of the form Ei − Ej , and ternary if it is of the form

H − Ei − Ej − Ek, 1 ≤ i, j, k ≤ n. Clearly, binary and ternary classes are in

LK0
. Denote R(H −Ei −Ej −Ek) by Γijk and call it an ordinary Cremona

transform. More explicitly,

Γijk(aH −
∑

biEi) = (2a− bi − bj − bk)H −
∑

clEl, (3.1)

where cl = bl if l 6= i, j, k, and cl = bl + (a− bi − bj − bk) if l = i, j, k.

Proposition 3.9. For ξ ∈ LK0
, either ξ is K0−equivalent to a binary or

ternary class for some 1 ≤ i, j, k ≤ n. If further n 6= 3, it is K0−equivalent to

a binary class.

Proof. Let ξ = aH−∑
biEi. When a = 0 it is easy to conclude that ξ is binary.

Let r be the number of nonzero bi. An easy calculation verifies the case when

12



r ≤ 3. Thus we assume r > 3 with a > 0 by possibly reversing the signs of ξ

(simply do a reflection with respect to ξ). By Lemma 3.3, we may assume that

b1 ≥ b2 ≥ · · · ≥ bn ≥ 0 from

Now we consider the reflection Γ123. From equation (3.1),

Γ123(ξ) = (2a− b1 − b2 − b3)H −
∑

ciEi,

where ci = bi for i > 3.

If 2a− b1 − b2 − b3 < 0, we could consider the class −Γ123(ξ). It is easy to

see that this class is in LK0
since Γ123 is represented by a smooth version of

Dehn twist. In this case, the leading coefficient of −Γ123(ξ) is bigger than 0.

However, since r > 3, one must have −cr = −br < 0, a contradiction to Lemma

3.3.

Moreover, from Lemma 3.4, ξ is not reduced but the first equation of reduced

class is satisfied, hence one must have b1 + b2 + b3 > a. Combining these facts,

we have

0 ≤ 2a− b1 − b2 − b3 < a.

Also notice that Γ123(ξ) verifies all conditions of Lemma 3.3, thus ci > 0

still holds. One could then repeat the above process and use induction on the

coefficient H · ξ until r ≤ 3 or a = 0.

Remark 3.10. The algorithm reducing a K-Lag spherical classes is also valid

for exceptional classes. In this case, one gets an explicit K0-equivalence from

an exceptional class to Ei when n ≥ 3 or possibly H − E1 − E2 when n = 2.

This is also used in [39].

3.3 (K,α)−Lag spherical classes and DK,α(M)

For α ∈ CK , we define a (K,α)−Lag spherical class to be a K−Lag spherical

class which pairs trivially with α. Reflections R(ξ), for ξ a (K,α)−Lag spherical

class, are called (K0, α)−twists. We also define the subgroup DK,α(M) to be

the subgroup of DK(M) preserving α. One has the following easy observation

:

Lemma 3.11. If φ ∈ DK then

• φ induces a bijection from LK,α to LK,φ−1(α).

• f → φ−1 ◦ f ◦ φ defines an isomorphism from DK,α to DK,φ−1(α) taking

R(ξ) to R(φ(ξ)).

• α has a positive lower bound on EK which is attained by some K-exceptional

class.

13



The third assertion is a consequence of Gromov compactness and the well-

known fact that, for any E ∈ EK , GT (E) 6= 0 with respect to any symplectic

form ω representing α. We are now ready to prove the following:

Proposition 3.12. D(K0,α) is generated by (K0, α)−twists.

Proof. We will use induction on n. For n ≤ 3 this is easy to verify directly by

listing all exceptional classes.

If n ≥ 3 choose {E′
i}n−2

i=1 ⊂ EK0
such that E′

1 has minimal α-area, and E′
i

has minimal α-area among exceptional classes orthogonal to Ej for all j < i.

By Lemma 3.6, there is ψ ∈ DK0
(M) such that ψ(E′

i) = Ei. By Lemma 3.11

we can assume that E′
i = Ei.

Let f ∈ D(K0,α). If one could find a series of (K0, α)−twists such that

their composition φ satisfies φ ◦ f(E1) = E1, one can then include φ−1 into our

decomposition of f . Since E1 is orthogonal to φ ◦ f(Ei) for i 6= 1, one can then

use induction on these classes. Therefore we will look for such a φ in the rest

of the proof.

Notice first that

α(H − Ei − Ej − Ek) ≥ 0, i > j > k. (3.2)

This is clear from the construction since (H − Ei − Ej) · El = 0, for all l < k

and k ≤ n− 2.

Assume f(E1) = aH −∑
briEri . Notice that f(E1) ∈ EK0

and α(f(E1)) =

α(E1). If a = 0 then f(E1) = Ek for some k and E1−Ek ∈ LK0,α. In particular,

R(E1 − Ek) ∈ DK0,α and we can choose φ = R(E1 − Ek).

If a 6= 0, by Lemma 3.1, a > 0 and bi ≥ 0. Suppose br1 ≥ br2 ≥ · · · ≥ brn ≥
0. Now apply Γr1r2r3 ,

Γr1r2r3(f(E1)) = f(E1) + (a− br1 − br2 − br3)(H − Er1 − Er2 − Er3)

From Lemma 3.4, a− br1 − br2 − br3 < 0. By (3.2), α(H −Er1 −Er2 −Er3) ≥ 0,

thus

α(E1) = α(f(E1)) ≥ α(Γr1r2r3(f(E1))).

By the choice of E1, we must have α(H − Er1 − Er2 − Er3) = 0. This means

that H − Er1 − Er2 − Er3 ∈ LK0,α and Γr1r2r3 ∈ DK0,α(M).

Now from Remark 3.10, by repeating the above operations we eventually

have an equivalence between E1 and Ek for some k. Denote their composition

to be φ̃.

If k = 1 we let φ = φ̃. If k 6= 1, then α(Ek) = α(E1) and we let φ =

R(E1 − Ek) ◦ φ̃.
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4 Lagrangian spherical classes when b+ = 1

Theorem 1.2 allows us effectively apply a Lagrangian-relative version of infla-

tion procedure in this section. Together with the classification of K-Lag spheres

in Proposition 3.9, this in turn gives a classification of classes which admit ac-

tual Lagrangian spheres, that is, the Lagrangian spherical classes in symplectic

rational manifolds. The discussions of ruled manifolds and cases with κ ≥ 0

are in order. We also give the proof of Theorem 1.7 in Section 4.3.

4.1 Lagrangian relative inflations

The inflation procedure was first introduced by Lalonde [23] and proved useful

in many fundamental problems in symplectic geometry (see [24] for example).

The version in [35], Lemma 1.1, together with Theorem 1.2, gives

Lemma 4.1 (Inflation Lemma). Let L be a Lagrangian sphere in a sym-

plectic 4-manifold with b+ = 1. Let A be a class in H2(M,Z) with positive

self-intersection number and non-zero Gromov-Taubes invariant GT (A). As-

sume also that A · L = 0. Then given any family ωt, 0 ≤ t ≤ 1, of symplectic

forms on M with ω0 = ω, there is a family ρt of closed forms on M in class

PD(A) so that the family

ωt + κ(t)ρt, 0 ≤ t ≤ 1

is symplectic when κ(t) ≥ 0, and L remains Lagrangian.

The proof is straightforward: note that from the proof Lemma 1.1 in [35], ρt

is supported near a symplectic surface in class A. Therefore, if such a symplectic

surface is disjoint from a given Lagrangian submanifold, the Lagrangian remains

intact along the inflation procedure. Now Theorem 1.2 provides the symplectic

surface as needed.

As the first application, we consider the space of symplectic ball packings

in the complement of a Lagrangian. P. Biran and O. Cornea also study such

packings in their work on Lagrangian Quantum theory [7] (in which they call

it mixed packing), where the size of maximal ball embedding is found in some

cases.

We denote for λ̄ = (λ1, . . . , λk)

EL
λ̄,k

(M,ω) = {ψ|ψ :
k∐

i=1

(B4(λi), ωstd) →M, Im(ψ)
⋂
L = ∅}

In the absolute case, D. McDuff in [34] first proved that the space of embed-

dings of one or two balls in CP 2 is connected. P. Biran [4] then improved the

result to 3-7 balls in CP 2. Later McDuff showed in a much greater generality,
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essentially the case of b+ = 1 in [35]. We observe that the following immediate

consequence, simply by substituting Lemma 1.1 in [35] by Lemma 4.1 in ap-

propriate places, and noticing that the classes we inflate always pairs trivially

with L:

Corollary 4.2. If b+(M) = 1 and L ⊂M is a Lagrangian sphere, EL
λ̄,k

(M,ω)

is path connected.

In principle, Lemma 4.1 shows, when b+ = 1, packing problems in the com-

plement of a Lagrangian sphere are largely parallel to the absolute packing

problems. For another example, Biran showed in [6] that in any closed sym-

plectic 4-manifold the symplectic packing problem is stable by inflation on a

Donaldson hypersurface. In manifolds with b+(M) = 1 and ω ∈ H2(M,Q), the

class nω has non-zero Gromov-Taubes invariant, which means the Donaldson

hypersurface is (stably) stable. Hence Biran’s result also generalizes to the

complement of a Lagrangian sphere.

4.2 Existence of Lagrangian spheres

In this subsection we present a proof of Theorem 1.6 and discuss some gener-

alizations to manifolds of b+ = 1. From the transitive action of D(M) on K
as in Section 3, we may reduce the canonical classes to K0 without any loss in

generality for manifolds with κ = −∞. The definition of K0 for irrational ruled

manifolds will appear in subsection 4.2.2.

4.2.1 Rational manifolds

Proof of Theorem 1.6, rational manifold case: The case of S2×S2 is well-known

and we focus on blow-ups of CP 2 below. The condition is clearly necessary.

The sufficiency is also clear in the case n = 2, for example from the toric pic-

ture. For future reference, we also demonstrate our method by proving this

case using inflation. Let PD([ω]) = 3H − aE1 − aE2 where a > 0. One

uses a canonical symplectic deformation to shrink the exceptional classes into

PD([ω′]) = 3H − ǫE1 − ǫE2 so that ǫ > 0 is tiny. By Mcduff’s connectedness

theorem from [35] one could arrange spheres in classes E1 and E2 in a Darboux

chart and find a Lagrangian sphere therein. One then inflate along a symplectic

surface with class n(3H − a′E1 − a′E2) with a
′ > a, a′ ∈ Q and n a large inte-

ger. From Lemma 4.1 such inflation can be chosen to preserve L. A standard

rescaling process as in [35] then concludes the proof.

To prove the sufficiency in general, one notices that we could assume ξ to

be binary when n > 3. This is because, from Proposition 3.8, there is a self-

diffeomorphism φ of M , which induces a K-twist on homology and sends ξ to
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a binary class, and we could just consider φ∗(ξ) in (M, (φ−1)∗ω). Without loss

of generality we could further assume ξ = E1 − E2.

We first deal with the case when PD([ω]) = 3H −∑
biEi ∈ H2(M,Q) with

b1 = b2 > 0. One then follows a similar scheme as that of Biran’s work [5]. By

extension continuity of packing, one has a symplectic form ω̃ with ω̃(Ei) = bi+δi

for some δi > 0. One first blows down Ei’s for i ≥ 3 and obtain a Lagrangian

sphere L of class E1−E2 in the blown-down manifold. Now one again performs

n−2 small blow-ups of rational sizes ǫi > 0 away from L and gets back toM with

a different symplectic form ω′ such that [ω′] = 3H − b1E1 − b2E2 −
∑

i≥3 ǫiEi.

Since [ω̃]2 > 0 and ǫ’s are small, [ω′] · [ω̃] > 0. Also notice that ω̃ itself is a

symplectic form sharing the same canonical class with ω′, it pairs with all K-

exceptional spheres positively. One can then inflate along the class PD([nω̃])

using Lemma 4.1 for large n ∈ N. A rescaling of the inflated form will lie

in a class PD([ω′′]) = 3H − b1E1 − b2E2 − ∑
b′iEi with b′i = bi + δ′i, where

0 < δ′i < δi. Moreover, since ω̃(ξ) = 0, Theorem 1.2 asserts the inflation

can be chosen supported away from the Lagrangian L thus preserves it. By

shrinking the blow-ups of Ei’s for i ≥ 3 to the size bi, the proof is then complete

from Mcduff’s theorem in [35] asserting that homologous symplectic forms are

symplectomorphic in rational manifolds.

For the general case when PD([ω]) = 3H −∑
biEi ∈ H2(M,R), one again

applies the continuity of packing. By enlarging the size of Ei’s slightly to a

rational number we deal with ω′ with PD([ω′]) = 3H − ∑
b′iEi ∈ H2(M,Q)

while keeping b′1 = b′2 = ω′(E1) = ω′(E2), one use the existence result in the

rational case on ω′ and obtain a Lagrangian sphere L. By applying relative

inflation again, we have the following lemma:

Lemma 4.3. Let (M,ω) be a symplectic four manifold with b+(M) = 1, and

E1, E2 are two exceptional classes with symplectic area ω(E1) = ω(E2) = a.

Assume also that PD([ω]) − aE1 − aE2 ∈ H2(M,Q). If there is a Lagrangian

sphere in class E1−E2, then for a symplectic form ω′ with [ω′] = [ω]+tPD(E1+

E2) onM , t > 0, there is also a Lagrangian sphere in (M,ω′) with class E1−E2.

Proof. Note that such a class can be obtained by restricting to a smaller sym-

plectic ball corresponding to E1 and E2, and from Corollary 4.2 they are all

isotopic provided the class is given. The proof is straightforward with the above

understanding, while one inflates along a symplectic surface disjoint from L

with class q(PD[ω] − aE1 − aE2) where q ≫ 0 and rescale the inflated form

correspondingly.

Note that the above lemma indeed asserts when one “shrinks” two equal

exceptional spheres E1 and E2, the existence of Lagrangian is preserved and

it clearly applies to our case. By shrinking E1 and E2 from b′1 to the size
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b1 we obtain ω′′ such that ω′′(E1) = ω′′(E2) = b1 = b2 and ω′′(Ei) = b′i for

i > 2. Again from Theorem 1.2, symplectic representatives of Ej for j > 2

can be chosen disjoint from L. Since these exceptional spheres correspond to

embedded balls, one simply restrict them to smaller balls of size bi and concludes

the theorem.

Now the only case left is when n = 3 and ξ = H − E1 − E2 − E3. In this

case we blow up artificially a small point to get an extra exceptional class E4

and a new symplectic manifold M ′. A smooth Dehn twist along a surface in

class H−E1−E2−E4 reduces the problem to our proved case when n = 4 and

the class is binary, thus one gets Lagrangian sphere L′ in class E4 − E3. By

performing again the same Dehn twist, one gets back to M ′ with a Lagrangian

sphere L in class ξ. Theorem 1.2 then applies to L and the exceptional class

E4. Blowing down an exceptional sphere in E4 thus conclude the proof.

4.2.2 Irrational ruled manifolds

We start our discussion with the case of ruled manifolds. Parallel to the rational

manifold case, we use our notion ofK-Lag spheres, but the classification is much

easier. It is clear that a minimal symplectic irrational ruled manifold does not

admit Lagrangian spheres. For a non-minimal ruled manifold, from [33][27], it

can always be viewed as a blow-up of a product ruled manifold. We thus can

choose a standard basis in irrational ruled manifold M as {Σ, F,E1, · · · , En},
where Σ is the class of the base, which is represented by a surface with genus> 0,

F the fiber, and Ei’s the exceptional classes. The standard canonical class is

then K0 = −2Σ + (2g(Σ) − 2)F +
∑
Ei

Suppose ξ = aΣ+ bF +
∑
ciEi is represented by a Lagrangian sphere in M .

Notice first that if a 6= 0, ξ does not have a smooth spherical representative.

This follows from the fact that a sphere does not have a positive degree cover

over a higher genus curve. With this understood, ξ2 = −2 implies ξ = kF ±
Ei ± Ej or ξ = Ei − Ej , 1 ≤ i 6= j ≤ n. From K0 · ξ = 0, we further conclude

from a simple calculation that ξ = F − Ei − Ej or Ei − Ej . Note that these

two cases can be transformed into each other by a H2-basis change. Hence we

only need to prove the existence of Lagrangian spheres for classes F −Ei −Ej :

Proof of Theorem 1.6, irrational ruled manifold case: Suppose the base Σ is as-

sembled from a 4g-sided polygon as in [33], where g is the genus of Σ, and the

vertices are identified as a point x0 ∈ Σ. One can then cut along the glued sides

to obtain a topological S2×D2 fromM . Recall from [33] Lemma 4.13, 4.14 that

with a symplectic deformation supported near an arbitrary small neighborhood

of x0, the S
2×D2 is equipped with the standard product symplectic form. One

can then compactifies it into a S2 × S2 with product symplectic form. More-
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over, by considering the fibration as a family of pseudo-holomorphic curves as

in [33]. By deleting a codimension-2 subset of M containing spheres in excep-

tional classes, one still obtains a smooth fibration over Σ\Λ, where Λ ⊂ Σ is a

finit set. Thus, one could always arrange such cut-and-paste operation above

to be supported away from exceptional spheres in each Ei.

Now after the above operation, we turned an irrational ruled manifold into

a rational ruled manifold with Euler number at least 6, with the class F −
Ei − Ej turned into a binary class. Our existence result follows then from the

rational manifold case. The only subtlety is to avoid a given small neighborhood

of a product factor S2 (which corresponds to where the deformation takes

place). From the proof in the rational case with 2 blow-ups, we indeed use a

deformation supported near the exceptional spheres involved in the binary class,

then construct a local Lagrangian sphere then use the inflation. Therefore, as

long as the local Lagrangian sphere does not touch the given neighborhood,

which is easily achieved, then our proof goes through. This concludes our

proof.

4.2.3 Manifolds with b+ = 1 and κ ≥ 0

The above proof is easily adapted to the following theorem in manifolds of

b+ = 1:

Theorem 4.4. Suppose (M,ω) is a minimal symplectic manifold with b+ =

1, [ω] ∈ H2(M,Q) and κ(M) ≥ 0, (M̄, ω̄) a symplectic blow-up of M , and

the canonical injective map is denoted as: ι : H2(M,Z) → H2(M̄,Z). Then

ξ ∈ H2(M̄,Z) is a Lagrangian spherical class if and only if the following holds:

Either

(1) ξ ∈ Im(ι) and ι−1(ξ) is Lagrangian spherical, or

(2) ξ is binary and ω(ξ) = 0.

Proof. The proof of existence of Lagrangian spheres when either (1) or (2) holds

is almost identical to that of Theorem 1.6 for the rational manifold case. One

shrinks the blow-ups of M̄ as before, and inflate along a surface of class nω(M̄)

by adjusting the blow-up sizes if necessary. Such a surface can be chosen disjoint

from a Lagrangian sphere in the destinated class (inherited in M in case (1)

and locally constructed in case (2)) in M̄ .

To show the reverse direction, suppose ξ = ξ′ − ∑
aiEi is represented by

a Lagrangian sphere, where ξ′ ∈ Im(ι), Ei’s the exceptional classes, ai 6= 0.

The Dehn twist along ξ thus send E1 to aξ′ − ∑
i>1 aiEi − (a21 − 1)E1. Such

a class is an exceptional sphere in M̄ . However, from the uniqueness of the

minimal model for symplectic manifolds which are neither rational nor ruled,
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aξ′ −∑
i>1 aiEi − (a21 − 1)E1 = Ej for some j. This shows ξ′ must be 0 and ξ

is indeed binary.

4.3 Proof of Theorem 1.7

The present subsection is devoted to the proof of Theorem 1.7. As mentioned

in the proof of Theorem 1.6, fixing the canonical class causes no loss of general-

ity. Therefore, throughout the proof, (M,ω) will denote a symplectic rational

manifold with a standard basis chosen in Section 3 with canonical class K0.

Also denote b−(M) = n.

Proof. It is clear that Theorem 1.6 implies all (K0, ω)-twists for symplectic

rational manifolds are realized by actural symplectic Dehn twists. With this in

mind, the rational manifold case is simply a combination of Proposition 3.12

and Theorem 1.6.

The irrational ruled case is similar. Again we do induction on the Euler

number of M . Let E be the exceptional class with minimal symplectic area,

the induction is immediate if φ∗(E) ·E = 0, in which case one simply do a Dehn

twist along the Lagrangian sphere E − φ∗(E). Otherwise it is not hard to see

φ∗(E) = F − E. In this case 2ω(E) = ω(F ). The minimality of ω(E) forces

all other exceptional spheres to have the same area as E (since classes A and

F −A are both exceptional classes or neither). When there are more than one

exceptional spheres in the standard basis, it is clear that one could send F −E

back to E, for example by a twist along E′ − E followed by another one along

F −E′ −E where E′ is another exceptional standard basis element orthogonal

to E. When there is only one exceptional class in the standard basis, it is

not hard to verify that no such φ∗ could preserve the intersection form thus

φ∗(E) = F − E would not hold. This concludes our proof.

In particular in the rational manifold case when the blow-ups are of equal size,

we clearly have the following corollary:

Corollary 4.5. If (M,ω) is monotone, the representation of symplectic map-

ping class group on H2(M,Z) is generated by reflections along H−Ei−Ej−Ek

and Ei−Ej; if the blow-ups are of equal size but M is not monotone, the action

is generated by Ei − Ej and is identical to the symmetric group Sn permuting

the exceptional spheres.

Remark 4.6. Theorem 4.4 also has its counterpart as Theorem 1.7 which asserts

the homological action of a symplectomorphism in M̄ is a composition of a

homological action ofM and Dehn twists along binary spheres when κ(M) ≥ 0.
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This follows directly from the uniqueness of minimal models. Combining this

with Mcduff’s uniqueness theorem of blow-ups, it is not hard to see that the

subgroup of homological actions of Symp(M̄) is indeed the product of actions of

Symp(M) and Dehn twists coming from binary spheres in this case. Notice in

contrast that, for all symplectic manifolds with b+ = 1, the part of homological

action fixing the homology of its minimal model is generated by Lagrangian

Dehn twists. It would be very interesting to know whether for all symplectic

manifolds with b+ = 1 that homological actions of a symplectomorphism is

always induced by Dehn twists.

5 Uniqueness of Lagrangian spheres in ra-

tional manifolds

5.1 Uniqueness up to symplectomorphism

The present subsection is devoted to the proof of Theorem 1.4. We fix some

notations first. Let (Mi, ωi), i = 1, 2, be symplectic manifolds and N j
i ⊂Mi for

j ≤ k submanifolds (open or closed) therein. A symplectomorphism of a k-tuple

φ : (M1, N
j
1 ) → (M2, N

j
2 ) is a symplecotomorphism φ : (M1, ω1) → (M2, ω2)

with φ(N j
1 ) = N j

2 .

We start with the case of S2 × S2.

5.1.1 S2 × S2 via symplectic cut

For S2 × S2 we have the stronger uniqueness up to isotopy due to Hind. We

here offer an argument for the uniqueness up to symplectomorphism using an

idea from Hind [20] turning the Lagrangian uniqueness problem to a symplectic

uniqueness problem via symplectic cut. Some preparations are in order.

Denote A, B ∈ H2(S
2×S2,Z) the classes of two product factors on S2×S2.

Consider ωλ to be the symplectic form with class dual to A+ (1 + λ)B, where

l− 1 < λ ≤ l, l an integer. Due to Lalonde-McDuff’s theorem, ωλ is unique up

to symplectomorphisms. We have the following claim:

Proposition 5.1. The space of symplectic (−2k)-spheres in a symplectic S2×
S2 is connected.

This is an immediate consequence of Gromov compactness theorem and the

following theorem due to M. Abreu and D. McDuff:

Theorem 5.2 ([2], Proposition 2.1, Corollary 2.8). The space of ωλ-tamed

almost complex structure Jλ admits a stratification {Uk}0≤k≤l, such that the

following holds:
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(1) For any J ∈ Uk, the class A−kB is represented by a unique J-holomorphic

sphere;

(2) Each Uk is connected.

Proof of Proposition 5.1: For the space in consideration to be non-empty, λ >

k−1. For two such symplectic spheres Ci, there are almost-complex structures

Ji ∈ Jλ such that Ci is Ji-holomorphic for i = 0, 1. Such Ji are in the kth

stratum, and from Theorem 5.2 (1), there is a path Jt in Uk connecting J0 and

J1. Let Ct be the family of Jt-holomorphic spheres with self-intersection −2k.

This path of symplectic spheres is continuous due to Gromov’s compactness and

the uniqueness of J−holomorphic curves in the class A− kB for each J ∈ Uk.

Theorem 5.3 (Hind,[19]). Lagrangian S2’s in S2 × S2 with monotone sym-

plectic form are unique up to a symplectomorphism.

Proof. Given two Lagrangian spheres L1, L2 ⊂ S2 × S2, by Weinstein’s neigh-

borhood theorem one can fix two symplectic embeddings φ1, φ2: T ∗
r S

2 →
S2 × S2 for some small r > 0. Considering the geodesic flow on S2 with round

metric (see for example [3]) enables us to symplectic cut [25] along the bound-

ary of φi, i = 1, 2, resulting in two symplectic manifold pairs ((S2×S2, ωi),Σi).

Here Σi are symplectic (−2)-spheres.

It follows from [24] and Proposition 5.1 there is a symplectomorphism of

the pair:

ι : (S2 × S2,Σ1) → (S2 × S2,Σ2)

On the other hand, we could perform symplectic sum (see [17]) on (Mi,Σi) with

a copy of (S2 × S2,diagonal). Gompf pointed out to us that symplectic sum

can be achieved without perturbation as an inverse of symplectic cut as follows,

which seems to be well-known. Let (M,Σ) and (N,Σ′) be two symplectic pairs,

where Σ and Σ′ are symplectomorphic whose normal bundles have opposite

Euler classes. Let P be the (real) projectivization of one of the normal bundles,

then P×R has a canonical symplectic form with Hamiltonian S1-action rotation

each fiber. The symplectic cut on P ×R at 0 gives two R2-bundles on Σ and Σ′

with the same Euler number as they are embedded in M and N , respectively.

Therefore, the complement of P × {0} can be locally identified with the two

normal bundles of Σ and Σ′ removing the zero section. With this method, ι is

easily seen to be glued with the identity isomorphism of S2 × S2, which leads

to a symplectomorphism of pairs Ψ : (S2 × S2, L1) → (S2 × S2, L2).
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5.1.2 Proof of Theorem 1.4

As in previous sections, let M = CP 2#lCP 2 be a symplectic rational surface,

H and {Ei}li=1 be a basis of H2(M,Z), where H2 = 1, and Ei’s are orthogonal

exceptional classes.

One easily reduces the problem to the binary case as in the proof of Theorem

1.6. Let L1, L2 be two homologous Lagrangian spheres in symplectic rational

manifold (M,ω) with class ξ ∈ H2(M,Z). From Proposition 3.9, one obtains an

equivalence from ξ to a binary or ternary class by ordinary Cremona transforms.

Such an equivalence is realized as a sequence of smooth Dehn twists whose

composition is denoted ψ. Pulling back the symplectic form by ψ, it suffices to

show the following:

Lemma 5.4. The binary Lagrangian spheres are unique up to symplectomor-

phism.

Proof. Without loss of generality, let [Li] = E1 − E2. For each pair (M,Li),

one could blow down a set of (−1)-spheres of classes {El}l≥3 and H −E1 −E2

away from Li by Theorem 1.1. This yields two (k + 1)-tuples of (M̃i, Li, B
l
i),

i = 1, 2, 3 ≤ l ≤ k + 1. Here M̃i are symplectic S2 × S2, Li the Lagrangian

spheres, and Bl
i are symplectic embedded balls corresponding to blow-downs of

spheres disjoint from Li in class El when l ≤ k, and to H −E1 −E2 for Bk+1
i .

By [24] there is a symplectomorphism Ψ : M̃1 → M̃2.

From Theorem 5.3, there is a symplectomorphism sending Ψ(L1) to L2.

Composing these two symplectomorphisms one obtains a symplectomorphism

between the pairs (M̃i, Li), which we still denote as Ψ. The connectedness

of relative symplectic ball embedding from Corollary 4.2 asserts that Ψ(Bl
1)

can be displaced further by an L2-preserving Hamiltonian isotopy to Bl
2. This

gives a symplectomorphism between the (k + 1)-tuples (M̃i, Li, B
l
i), which in

turn descends to a symplectomorphism of pairs between (M,Li).

For the ternary case, for example, H − E1 − E2 − E3, one can argue word-

by-word as above on the balls Bl
i, 4 ≤ l ≤ k, and instead of Hind’s uniqueness,

we apply Theorem 1.3.

5.2 Uniqueness up to isotopy

The present subsection is devoted to the proof of Theorem 1.3. Our main tool

is Hind’s theorem 5.6.

5.2.1 Hind’s results on S2 × S2 and T ∗S2 and the symplectic

mapping class group

Further exploring the symplectic cut approach in 5.1.1, we discuss the inter-

actions between the symplectic mapping class group and Lagrangian isotopy
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problems.

From the description of the homotopy type of Symp(S2 × S2, ω0 ⊕ ω0) by

Gromov [18], Theorem 5.3 shows L1 and L2 are Hamiltonian isotopic, which is

the original form that Hind proved in [19]:

Theorem 5.5 (Hind). Lagrangian S2’s in S2 × S2 with monotone symplectic

form are Hamiltonian isotopic to each other.

Via Seidel’s description of the symplectomorphism group of T ∗S2, we also

obtain an alternative proof of Hind’s Lagrangian sphere uniqueness in T ∗S2

below:

Theorem 5.6 (Hind, [20]). Any two Lagrangian spheres in (T ∗S2, ωstd) are

Lagrangian isotopic.

Proof: We take the natural identification T ∗
1 S

2 = (S2 × S2, ω0)\∆, where ∆

is the diagonal of S2 × S2. It suffices to show the Lagrangian connectedness

therein. Given Lagrangians L1, L2 ∈ (S2 × S2, ω0)\∆, we claim that there is

φ ∈ Sympc(T
∗
1 S

2, ωstd) such that φ(L1) = L2, where Sympc denotes compactly

supported symplectomorphism group. Without loss of generality we assume

L2 = ∆̄, which is the antidiagonal, corresponding in turn to the zero section of

T ∗S2. By Hind’s Lagrangian uniqueness Theorem 5.5, there is Ψ ∈ Ham(S2 ×
S2, ω0), such that Ψ(L1) = L2. Ψ does not fix ∆, but Ψ(∆) ∩ ∆̄(= L2) = ∅
still holds. On the complement of ∆̄ which is canonically identified with a disk

bundle over the diagonal, we have a symplectic isotopy Φ̃t : S2 → S2 × S2,

Φ̃0(S
2) = Ψ(∆), Φ̃1(S

2) = ∆ promised by a theorem of R. Hind and A. Ivrii

[21] so that Φ̃t(S
2) are disjoint from ∆̄. One then extend Φ̃t to a symplectic

isotopy of a neighborhood U of Ψ(∆) disjoint from ∆̄, which we still denote as

Φ̃t.

Now we may consider φ̃t, a symplectic isotopy on a neighborhood U ′ of

Ψ(∆)∪∆̄, which is Φ̃t on U and identity near ∆̄. By Banyaga’s isotopy extension

theorem (see for example [37], Theorem 3.19), φ̃t extends to a global symplectic

isotopy φt of S
2 × S2. Consider φ1 ◦Φ ∈ Ham(S2 ×S2). Note that it does not

descend to a Hamiltonian isotopy of T ∗
1 S

2 connecting L1 to the zero section, but

it indeed descend to a compactly supported symplectomorphism of (T ∗
1 S

2, ωstd)

mapping L1 to the zero section. From Seidel’s description of Sympc(T
∗
1 S

2, ωstd)

[42], φ = τn ◦ η1, where τ is Seidel’s Dehn twist along the zero section, and ηt,

t ∈ [0, 1] with η0 = id is a compactly supported symplectic isotopy. Now it is

clear that τn ◦ ηt(L2) is a path connecting L1 to the zero section since τ fixes

the zero section, and this concludes our proof.
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5.2.2 Proof of Theorem 1.3

We will denote Vk the k-point blow-up of S2×S2, or equivalently, (k+1)-point

blow-up of CP 2. We will switch between two points of view without explicitly

mentioned.

For k = 0, it is the theorem of Hind [19] stating the uniqueness of symplectic

isotopy class of Lagrangian S2 in monotone S2 × S2. It is also proven in [12]

for the case when the Vk is monotone. In the general case, we apply Theorem

1.1 and approach as [12]. For some of the details one is referred to Section 9 of

[12] and 4.2 of [14]. Throughout the proof, depending on the actual k we are

looking at, J0 denotes the complex structure obtained from a generic k-point

blow-up of the standard CP 1 × CP 1, for k ≤ 3.

Proof of Theorem 1.3: Without loss of generality, we may assume ω is tamed

by J0. This follows from Proposition 4.8 in [29] that J0-tamed cone is the same

as the symplectic cone in H2(Vk,Z), as well as Mcduff’s connectedness theorem

[35].

Following the idea in [12], we will prove Theorem 1.3 by isotoping a con-

figuration of symplectic spheres off a give Lagrangian sphere, and use Hind’s

theorem (see Theorem 5.6) in the complement of the configuration. Each con-

figuration is described by the set D of the homology classes of the components.

For the binary case, for example, E1−E2, we ask the intersections between

components equals the homological intersection,

• For V1, D = {H − E1 − E2,H}
• For V2, D = {H − E1 − E2,H − E3, E3}
• For V3, D = {H − E1 − E2,H − E3 −E4, E3, E4}

For the ternary case, for example, H − E1 − E2 − E3,

• For V2, D = {H − E1,H − E2,H − E3}
• For V3, D = {H − E1 − E4,H − E2,H − E3}

In addition, we ask the three component to intersect at a single point in

the ternary case. We call such configurations of symplectic surface a D-

configurations.

From Lemma 2.6 and the discussion following it, in the complement of a

given Lagrangian sphere L, we have aD-configuration consisting of J-holomorphic

spheres with some almost complex structure J tamed by ω. With a small per-

turbation we may assume the irreducible symplectic curves in the configuration

intersect ω-orthogonally.

Since J0 and J1 are both tamed by ω, they can be joined by a path of ω-

tamed almost complex structures {Jt}. Following the argument in [12], proof
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of Theorem 2.7, this gives a smooth isotopy of Jt-curves of the configuration

we chose. For example in the binary case when k = 2, the isotopy is given by a

family of curves {(H −E1 −E2)(Jt), (H −E3)(Jt), E3(Jt)}. From the fact that

our configuration has trivial π1, we then obtain an ambient Hamiltonian diffeo-

morphism Ψ such that Ψ−1 takes L disjoint from a standard configuration by a

standard Moser’s argument. For example again in the binary case when k = 2,

the standard configuration refers to a configuration of J0-holomorphic curves

in class D {(H − E1 − E2)(J0), (H − E3)(J0), E3(J0)}. Therefore, one could

assume the two homologous Lagrangians L1 and L2 lies in the complement of

the above standard configuration. Now our proof continues by two cases:

Case 1, when PD([ωk]) is a rational combination:

We need the following characterization for the complement of configurations

in class D:

Lemma 5.7. Let ωk, k ≤ 4, be a Kähler form obtained from the Kähler blow-

ups of k-balls of CP 2, and J0 the standard complex structure. Suppose [ωk]

is dual to a rational linear combination of H and Ei, i = 1, . . . k, and C is

a J0-holomorphic D−configuration. Then the complement of C is a Stein do-

main and the symplectic completion is symplectomorphic to T ∗S2 with standard

symplectic structure.

Proof. We prove the lemma again in the example of 3 point blow-ups and

binary Lagrangian. Let PD([ω3]) = aH − E1 − E2 − bE3, a, b ∈ Q+. Note

that the coefficients of E1 and E2 have to coincide to ensure the existence of

a Lagrangian sphere in class E1 − E2. Now it is straightforward to verify that

for a large integer α, PD([αω3]) is represented as an integral combination of

{H − E1 − E2,H − E3, E3}, say, with coefficients u, v, w ∈ Z+.

Therefore, one may choose irreducible divisors Fξ with ξ ∈ D. Associated

to the divisor F = uFH−E1−E2
+ vFH−E3

+ wFE3
, we have a holomorphic line

bundle L , on which we can further take an hermitian metric and a compatible

connection such that the curvature form is just αω3. In this case for any

non-zero holomorphic section s of L with zeros coinciding F , the function

φ = −log|s|2 defines a plurisubharmonic function with ∂∂̄φ = αω3 on the

complement of the configuration thus gives a Stein structure. The last assertion

about symplectic completion follows from Lemma 2.1.6 in [14] or Lemma 5 in

[44].

From Lemma 5.7, the complement of such configuration is symplectomor-

phic to a Weinstein neighborhood of T ∗S2 whose symplectic completion is ex-

actly T ∗S2, and thus the corresponding Liouville flow remains inside such an
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open set. For any two Lagrangians L1, L2 in the complement of a standard

configuration, we obtain an isotopy in T ∗S2 by Hind’s theorem 5.6. Further-

more, one could contract the whole isotopy into our complement of the standard

configuration using a Liouville flow as in 4.2 of [14]. The endpoints of the con-

tracted isotopy is also connected to L1 and L2 by the Liouville flow, therefore,

one gets the desired Lagrangian isotopy. In the end, notice the scaling α of the

symplectic form does not change Lagrangian property of a submanifold.

Case 2, when PD([ωk]) is an irrational combination:

We first consider the binary case and assume [Li] = E1 − E2, i = 1, 2. By

rescaling the symplectic form, we could assume the ω-area of E1 and E2 is

rational. In this case H − E1 − E2, E3 and E4 are regarded as a result of ball

packing in CP 1×CP 1, and the representatives are chosen disjoint from L1 and

L2 by Theorem 1.1.

From the continuity of packing, one embed slightly larger balls of these

classes with rational radii which stays disjoint from L1 and L2. One then

obtains a Lagrangian isotopy from Case 1 (note the isotopy constructed above

entirely lies in the complement of the symplectic configuration) and concludes

the theorem by shrinking the balls.

For the ternary case when k = 3, M is a 4-point blow-up of CP 2. One could

reduce the problem to the binary case by a smooth Dehn twist as in the proof

of Theorem 1.6.

For the ternary case when k = 2, [Li] = H − E1 − E2 − E3, we artificially

blow up a small ball disjoint from Li’s to obtain an exceptional class E4. One

then reduce the problem with more caution. The smooth Dehn twist φ along

a sphere in class H − E1 − E2 − E4 reduces the problem to [L′
i] = E4 − E3 in

(M, (φ−1)∗(ω)). From the choice of D, one then obtains a Lagrangian isotopy

between L′
i lying in the complement of an exceptional sphere of class H −E1−

E2. Now apply φ−1 to M , one obtains a Lagrangian isotopy between L1 and

L2 disjoint from an exceptional sphere in class E4. Blowing down this sphere

thus concludes our proof.

5.3 Some remarks on uniqueness results in symplec-

tic manifolds

We end the paper with some discussions of our uniqueness results.

• Theorem 1.4 implies the disconnectedness of homologically trivial sym-

plectormophism groups in the cases when there are non-isotopic Lagrangian

spheres.
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• Evans remarked in [14] that, one can show binary homologous Lagrangian

spheres, for example in class E1 −E2, are smoothly isotopic in monotone

symplectic rational surfaces. Indeed, one isotopes a given Lagrangian

sphere away from exceptional spheres in classes Ei, i ≥ 3 from The-

orem 1.1. Then one could blow down these spheres and apply Evans’

Lagrangian uniqueness in M1 when the form is monotone. Once the sym-

plectic structure is forgotten, avoiding the exceptional spheres becomes

avoiding a point (instead of avoiding a ball in the symplectic case) which

is easily achieved. Now this consideration can be immediately general-

ized to all Lagrangian spherical classes and arbitrary symplectic forms by

Proposition 3.9. Therefore a straightforward corollary reads:

Corollary 5.8. Homologous Lagrangian spheres in symplectic rational

manifolds are smoothly isotopic.

• (The case of Lagrangian RP 2) The same argument as in 5.1.1, with

the (−2)-curves replaced by (−4)-curves, proves Lagrangian RP 2 in CP 2

are symplectomorphic, from Gromov’s connectedness of Symp(CP 2, ωstd).

Hence we also have:

Theorem 5.9 (Hind). Lagrangian RP 2’s in CP 2 are Hamiltonian iso-

topic to each other.

This is indeed the case R. Hind proposed an alternative approach by

symplectic cut. Notice that the classification of symplectic mapping class

group on small blow-ups of CP 2 with monotone symplectic forms are

known due to the work of Evans [13] and Martin Pinsonnault indepen-

dently. Once the Abrue-McDuff type theorem is checked, along this line

one can show that Lagrangian RP 2 in CP 2#kCP 2, k ≤ 4 with monotone

blown-up symplectic forms are Hamiltonian isotopic.

References

[1] Alberich-Carraminana, M., Geometry of the plane Cremona maps. Lecture

Notes in Mathematics, 1769. Springer-Verlag, Berlin,2002. xvi+257 pp.

ISBN: 3-540-42816-X

[2] Abreu, M.; McDuff, D., Topology of symplectomorphism groups of rational

ruled surfaces. J. Amer. Math. Soc. 13 (2000), no. 4, 971–1009

[3] Audin, Michle Lagrangian skeletons, periodic geodesic flows and symplectic

cuttings. Manuscripta Math. 124 (2007), no. 4, 533–550.

[4] Biran, P., Connectedness of spaces of symplectic embeddings. Internat.

Math. Res. Notices 1996, no. 10, 487–491.

28



[5] Biran, P., Symplectic packings in dimension 4, Geom. Func. Anal. 7 (1997),

no. 3, 420-437.

[6] Biran, P., A stability property of symplectic packing. Invent. Math. 136

(1999), no. 1, 123C155

[7] Biran, P.; Cornea, O., Quantum Structures for Lagrangian Submanifolds,

http://arxiv.org/abs/0708.4221

[8] Bourgeois, F., A Morse-Bott approach to contact homology, Ph.D. thesis,

NYU

[9] Bourgeois, F.; Eliashberg, Y.; Hofer, H.; Wysocki, K.; Zehnder, E. Com-

pactness results in symplectic field theory. Geom. Topol. 7 (2003), 799–888

[10] Conley, C.; Zehnder, E., Morse type index theory for flows and periodic

solutions for Hamiltonian equations, Comm. Pure Appl. Math.37 (1984),

207-253.

[11] Eliashberg, Y.; Givental, A.; Hofer, H., Introduction to symplectic field

theory GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special

Volume, Part II, 560–673,

[12] Evans, J. D., Lagrangian spheres in Del Pezzo surfaces,

http://arxiv.org/abs/0902.0540, to appear in Journal of Topology

[13] Evans, J. D. Symplectic mapping class groups of some Stein and rational

surfaces, http://arxiv.org/abs/0909.5622

[14] Evans, J. D., Symplectic topology of some Stein and rational surfaces, Ph.

D. thesis, University of Cambridge

[15] Friedman, R.; Morgan, J. W., On the diffeomorphism types of certain

algebraic surfaces. I. J. Differential Geom. 27 (1988), no. 2, 297369.

[16] Gao ,H. Z., Representing homology classes of 4—manifolds, Topology and

its Application, 52(2) (1993), pp. 109120.

[17] Gompf, R. E. A new construction of symplectic manifolds. (English sum-

mary) Ann. of Math. (2) 142 (1995), no. 3, 527–595.

[18] Gromov, M., Pseudo holomorphic curves in symplectic manifolds, Invent.

Math. 82 (1985), no. 2, 307–347.

[19] Hind, R. Lagrangian spheres in S2 × S2. Geom. Funct. Anal. 14 (2004),

no. 2, 303–318.

[20] Hind, R. Lagrangian isotopies in Stein manifolds.

http://arxiv.org/abs/math/0311093

[21] Hind, R.; Ivrii, A., Ruled 4-manifolds and isotopies of symplectic surfaces.

Math. Z. 265 (2010), no. 3, 639–652.

[22] Kikuchi, K., Positive 2-spheres in 4-manifolds of signature (1, n)(1,n),

Pacific J. Math., 160 (1993), pp. 245258.

29

http://arxiv.org/abs/0708.4221
http://arxiv.org/abs/0902.0540
http://arxiv.org/abs/0909.5622
http://arxiv.org/abs/math/0311093


[23] Lalonde, F., Isotopy of symplectic balls, Gromov’s radius and the structure

of ruled symplectic 4-manifolds. Math. Ann. 300 (1994), no. 2, 273–296

[24] Lalonde, F.; McDuff, D., J-curves and the classification of rational and

ruled symplectic 4-manifolds. Contact and symplectic geometry (Cam-

bridge, 1994), 3–42, Publ. Newton Inst., 8, Cambridge Univ. Press, Cam-

bridge, 1996.

[25] Lerman, E., Symplectic cuts. Math. Res. Lett. 2 (1995), no. 3, 247–258.

[26] Li, T.-J., The Kodaira dimension of symplectic 4-manifolds. Floer homol-

ogy, gauge theory, and low-dimensional topology, 249–261, Clay Math.

Proc., 5, Amer. Math. Soc., Providence, RI, 2006.

[27] Li, B.-H.; Li, T.-J., Symplectic genus, minimal genus and diffeomorphisms.

Asian J. Math. 6 (2002), no. 1, 123–144.

[28] Li, T.-J.; Existence of symplectic surfaces. Geometry and topology of

manifolds, 203–217, Fields Inst. Commun., 47, Amer. Math. Soc., Provi-

dence, RI, 2005.

[29] Li, T.-J. The space of symplectic structures on closed 4-manifolds. Third

International Congress of Chinese Mathematicians. Part 1, 2, 259–277,

AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Amer. Math. Soc., Providence,

RI, 2008.

[30] Li, T.-J.; Liu, A.-K., Uniqueness of symplectic canonical class, surface

cone and symplectic cone of 4-manifolds with B+ = 1. J. Differential

Geom. 58 (2001), no. 2, 331–370.

[31] Li, T.-J., Liu, A.-K. The equivalence between SW and Gr in the case where

b+ = 1. Internat. Math. Res. Notices 1999, no. 7, 335–345

[32] Li, T.-J., Wu, W., in preparation.

[33] McDuff, D., The structure of rational and ruled symplectic 4-manifolds. J.

Amer. Math. Soc. 3 (1990), no. 3, 679–712.

[34] McDuff, D.; Remarks on the uniqueness of symplectic blowing up in Sym-

plectic Geometry; ed. by D. Salamon; London Math. Soc. Lecture Note

Ser. 192; Cambridge Univ. Press; Cambridge; 1993; 157-67.

[35] McDuff, D. From symplectic deformation to isotopy. Topics in symplectic

4-manifolds (Irvine, CA, 1996), 85–99, First Int. Press Lect. Ser., I, Int.

Press, Cambridge, MA, 1998

[36] McDuff, D.; Polterovich, L. Symplectic packings and algebraic geometry.

With an appendix by Yael Karshon. Invent. Math. 115 (1994), no. 3, 405–

434

[37] McDuff, D.; Salamon, D., Introduction to symplectic topology, Second edi-

tion. Oxford Mathematical Monographs. The Clarendon Press, Oxford

University Press, New York, 1998

30



[38] McDuff, D.; Salamon, D., J-holomorphic curves and symplectic topology,

American Mathematical Society Colloquium Publications, 52. American

Mathematical Society, Providence, RI, 2004.

[39] McDuff, D., Schlenk, F., The embedding capacity of 4-dimensional sym-

plectic ellipsoids, http://arxiv.org/abs/0912.0532

[40] Shevchishin, V. V. , Secondary Stiefel-Whitney class and diffeomorphisms

of rational and ruled symplectic 4-manifolds, preprint.

[41] Salamon, D., Zehnder, E., Morse theory for periodic solutions of of Hamil-

tonian systems and the Maslov index, Comm. Pure and Appl. Math. 45

(1992), 1303-1360.

[42] Seidel, P. Symplectic automorphisms of T ∗S2

http://arxiv.org/abs/math/9803084

[43] Seidel, P. Lectures on four-dimensional Dehn twists. Symplectic 4-

manifolds and algebraic surfaces, 231–267, Lecture Notes in Math., 1938,

Springer, Berlin, 2008

[44] Seidel, Paul; Smith, Ivan The symplectic topology of Ramanujam’s sur-

face. Comment. Math. Helv. 80 (2005), no. 4, 859–881.

[45] Taubes, C.H.; Counting pseudo-holomorphic submanifolds in dimension

4 ; J. Differential Geom. 44 (1996); 818-93.

[46] Taubes, C.H. GR = SW: counting curves and connections. J. Differential

Geom. 52 (1999), no. 3, 453–609.

[47] Welschinger, J.-y. Effective classes and Lagrangian tori in symplectic four-

manifolds. J. Symplectic Geom. 5 (2007), no. 1, 9–18.

1. School of Mathematical Sciences, University of Minnesota,

Minneapolis, MN55455, U.S.A.

2. School of Mathematical Sciences, University of Minnesota,

Minneapolis, MN55455, U.S.A.

31

http://arxiv.org/abs/0912.0532
http://arxiv.org/abs/math/9803084

	1 Introduction
	2 Minimal intersection
	3 K-Lag spherical classes of rational manifolds
	3.1 A review of D(M) and symplectic genus
	3.2 K-Lag spherical classes and DK(M)
	3.3 (K, )-Lag spherical classes and DK, (M)

	4 Lagrangian spherical classes when b+=1
	4.1 Lagrangian relative inflations
	4.2 Existence of Lagrangian spheres
	4.2.1 Rational manifolds
	4.2.2 Irrational ruled manifolds
	4.2.3 Manifolds with b+=1 and 0

	4.3 Proof of Theorem 1.7

	5 Uniqueness of Lagrangian spheres in rational manifolds
	5.1 Uniqueness up to symplectomorphism
	5.1.1 S2S2 via symplectic cut
	5.1.2 Proof of Theorem 1.4

	5.2 Uniqueness up to isotopy
	5.2.1 Hind's results on S2S2 and T*S2 and the symplectic mapping class group
	5.2.2 Proof of Theorem 1.3

	5.3 Some remarks on uniqueness results in symplectic manifolds

	Reference

