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1 Introduction.

In this paper, we show a uniform gradient estimate for functions u defined
on a domain € in Euclidian space RN which satisfy a system of N second
order partial differential inequalities of the following form

0 X ou N Ou
oo, (o A )@+ Lbig (@) <O weQ 1<i<N. (1)

j=1 j=1 L

The type of this system we concern is discussed in our main results Theorems
1.1, 1.2, 1.3, and 1.4 by some conditions for the coefficient matrix (A4;;)1<; j<n
of second order terms and for the coefficient matrix (b;;)1<; j<n of first order
terms.

Our method relies essentially on the structure of the system (1), and we
shall prove an interior uniform gradient estimate for u € C?(2) under the
assumption that u is uniformly bounded. It is worth remarking here that
the technical difficulty increases with the dimension N, and we only give the
result for the cases of N = 2,3. (Theorems 1.1, 1.2.) On the other hand,
if we assume that u has a compact support in €2, or that u is periodic, the
boundedness of u is not necessary and the same result holds with a simpler
assumption on (A;;)1<;;<n for any dimensions. (Theorems 1.3, 1.4.) We
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may now state our main theorems.

Theorem 1.1.

Let © be a domain in Rz, let A :(Aij)lgi,jg% where Aij: Aij(l'l,.f(fg)e
W (Q) are real valued functions defined in (z1,72) € 2 which satisfy the
following conditions.

sup  |Aj(a1,22)| < Ch, sup |VA;j(x,22)| < Cy, 1<14,5<2,

(z1,22)€Q (z1,22)EQ
(2)
|dei§A|_1 = |A;1 Ao — 14121421|_1 < (O, (3)
A, A #0, (4)

where Cy, Cy > 0 are constants. Let b= by;(x1,12)€ WH(Q), (1 <i,j <
2) be real valued functions defined in (xq,x2)€ S which satisfy the following
conditions.

sup |bij(I1ax2)| S C3a sup |wa([l§'1,l’2)| S 037 1 S Z?] S 2a (5)
(z1,22)€EQ (z1,22)€EQ

where C3 > 0 is a constant. Suppose that a real valued function u(xy,xs)€
C?(2) satisfies the following inequalities

du ) | .
—Z{ (A )+bij8—;}(x1,x2)gc4 in (x1,22) €Q, i=1,2. (6)
Li J
sup |u| < C, (7)
(z1,22)€EQ

where Cy, Cs > 0 are constants. Then, for any (y1,y2)€ Q, any 6 > 0 such
that
K' = [y1 — 26, y1 + 20] X [y2 — 20,5 + 20] C Q,

for K = [y1 — 8,51 + 0] X [y2 — 6,y2 + 0], there exists a constant C > 0
depending on &, matrices (A;;), (bij), and constants Cy, Cs such that

sup |Vu| <C, (8)
(z1,22)EK
— 1
C=0(5).



Theorem 1.2.

Let Q be a domain in R®, let A= (Ai;)1<ij<3, where A;; are constants
which satisfy the following conditions.

sup  [Ayj(w1, 20, 23)| < C1 1 <4, 5 <3, 9)

(w1,72,23)EQ

|det A|™t < Cy, (10)

(A1 Ao — A1 A9 ) (A1 Asg — A13A31)(AgpAsg — AgzAs) # 0, (11)
A1 Agn Az # 0, (12)

(A11 Az + A2 A1) (A11Age — 3A Arz) > 0, (13)

(A11Ass + A1 A13) (A1 Asz — 3A31A3) > 0, (14)

(AgpAszz + Az Aszg) (A Asz — 3Az3A33) > 0, (15)

where Cy, Cy > 0 are constants, let b;; (1 < i,5 < 3) be constants which
satisfy
sup |b2]| < Cg 1< Z,j < 3, (16)

(z1,22,23)EN

where C3 > 0 is a constant. Suppose that a real valued function u(xy, T, x3)E
C?(Q) satisfies the following inequalities

3.0 ou ou
- Z{a—(Au%) + bij%}(ﬂfl,fz,fg) < Cy, (17)
J J

j=1 9t

m (Il,LE‘Q,SL’g) EQ, 1<V <3,
sup  |u| < Cs, (18)

(w1,72,23)EQ

where Cy, Cs are constants. Then, for any (y1,ys,y3)€ Q and for any § > 0
such that

Aijbji 1+ ‘Az’jAji
A Ajj — AijAji + 2| Ay Ayl AiiAjj

5] 1<ifj<3,

1
<_
)< g

(19)



6| AiiAjj - AijAji - Q‘AijAji‘ ‘(1 " |

- 1< <
K' = [yy — 26, y1 + 28] X [y2 — 26,92 + 26] X [ys — 25, y3 + 28] C €,

for K = (Y1 — 8, y1 + 0] X [y2 — 6, y2 + 0] X [ys — &, y3 + 9], there exists a constant
C > 0 depending on §, matrices (A;j), (b;;), and constants Cy, Cs such that

sup  |[Vu| < C, (20)
(z1,22)EK

T=0(%).

Theorem 1.3.

Let Q be a domain in RN, let A= (Aj)1<ij<n, where Ajj= A€ L>(Q)

(1 < i,5 < N) real valued functions defined in x € € which satisfy the
following conditionzs.

e

|det A|™' < Oy, (22)
where Cy, Cy are constants. Suppose that a real valued function u(z) € C*(Q)
such that suppu CC ) satisfies the following inequalities

o ou
- (> Aij=—)(z) <C5 in xzel
Ox; ; T 0, °

1<i<N, (23)

where Cy > 0 is a constant. Then, there exists a constant C > 0 depending
on the matriz (A;;) and the constant Cs > 0 such that

sup |Vu(z)| < C. (24)
z€QN

Theorem 1.4.



Let Q be an N dimensional torus TN= RN/ZN= [0, 1]V, let A= (4;;),
where A;;= Ai;(z)e L*(Q) (1 < 4,5 < N) real valued periodic functions
defined in x € Q) which satisfy the following conditions.

€N

|detA|™t < Cy, (26)

where Cy, Cy > 0 are constants. Suppose that a real valued function u(z) €
C?(Q) is periodic in Q and satisfies the following inequalities
0 X ou _ ,
— 8xZ(ZAZJ3—%)(x) <C; imn ze€Q, 1<i<N\, (27)

j=1

where Cy > 0 is a constant. Then, there exists a constant C > 0 depending
on the matriz (A;;) and the constant Cs > 0 such that

sup |Vu(z)| < C. (28)

€

If we do not assume either the condition suppuCC €2 in Theorem 1.3,
or the periodicity in Theorem 1.4, we need more restrictive conditions for
the matrix A as in Theorems 1.1, 1.2. The following counter examples show
the contrast between the case of Theorems 1.1, 1.2 and the case of Theorems
1.3, 1.4.

Example 1.5.

Let N = 2, and let A :(Aij>1§i,j§2 be the matrix with An: A22: 0,
Ag1= Aja = 1. (detA # 0.) Consider any functions u(zy,x2)€ C*(Q) which
satisfy the following inequality in (z1,x2) € €.

B 0*u
81’181’2

< (.

Then, if suppuCCS, from Theorem 1.3 |Vu| < C, where the constant C' > 0
depends only on the matrix A and C,. However, if we take the function
w(zy,9) = (x;) with arbitrary ¢p € C*(R) such that suppu N 0Q# 0,
although u satisfies the above partial differential inequality, |Vu| is not



bounded in general.

Example 1.6.

Let N = 3, and let A :(Aij)lgi,jgii be the matrix with A11 = A12 = A21
= Aoz =0, A1z = Ao

= A3) =A3p = Agz3 = 1.

(detA # 0) Consider any functions u(zy, 2, z3)€ C?(Q) which satisfy the
following inequality in (x1, z2, x3) € .

0%u
01'101'3
0u
——— < (.
0x3 — 0
0 ,0u ou ou
— < ().
01'3(01'1 + 01'2 + 01'3) =0
Then, if suppuCCS, from Theorem 1.3 |Vu| < C, where the constant C' > 0
depends only on the matrix A and C,. However, if we take the fzunction
w(x1, v9, 3) = Y(1,22) with arbitrary ¢ € C*(R?) such that —%% < 0,
2
suppu N 00 0, although u satisfies the above partial differential inequali-
ties, |Vu| is not bounded in general.

< Cy.

Finally, we shall give an example of second-order degenerate elliptic
partial differential equation whose regularity of the solution can be shown by
our results.

Example 1.7.
Let N = 2,3, Q be a bounded domain in RN, [ > 0, and suppose that w;
is a solution of the following problem

02ul

luy(x) + sup {———=
1(z) 1S£N{ R

()} =V(r)=0 z€Q, (29)

with either Neumann B.C.; or State constraint B.C., where V(x) is a Lip-
schitz continuous function defined in €). Then, for any interior domain
QoCCQ, luy(x) is Lipschitz continuous in x € €y uniformly with respect
to [ > 0. If we assume that a solution w; of (29) satisfies Periodic B.C., then
w(z) is Lipschitz continuous in z €  uniformly with respect to .



The proof of Example 1.7 will be given later in this paper. The partial
differential equation (29) corresponds to an optimal control problem for a
stochastic system which equips N controls of one dimensional diffusions at
each state. (Remark that ZiN:1(—aa—;z) = —A.) In view of the degeneracy of
(29), we cannot apply the usual regullarity theory for uniformly elliptic oper-
ators (Gilbarg-Trudinger [5], Caffarelli-Cabre [2]) to study the regularity of

the solution ;.

The plan of this paper is as follows. Theorem 1.1 is proved in §2; The-
orem 1.2 is proved in §3; and the proofs of Theorems 1.3, 1.4 and Example
1.7 are given in §4. Throughout in the present paper, we conserve the letter
C > 0 to denote the constants which depend on constants C; and matrices
(Ai;), (bij) in the Theorems 1.1-1.4.

2 Proof of Theorem 1.1.

Lemma 2.1.

Let ¢ be an arbitrarily fized real valued twice differentiable function defined
on the interval [—29, 28] such that 0 < ¢ < 1, supppCC(—20,29), ¢ is even
and

6=1 on [=0,8], ¢ >0 on [-240]. (30)

Then, the function u in Theorem 1.1 satisfies the following inequalities : for

any (Z1,29) € K,
u .
(An ) (@r.2) (31)

ou ., . I ., /
< (resp. =)~ (Ango)(a2) + g5 [ (Ango)(al w)da

! e Ou / ’ g0
_2_5 /_5 /5;1 (b12a—l,2)(x1/, l’2)d$/1 d;);'l
5

2 / / 8u / /
~(respt) [ (@) (Ao (ot )
o

5
—(resp.+) /_225 (2} (bro axz)(:c’l, xo)dxy + (resp.—) C;



for any (z1,22) € K,

0 . I 0 N g
< (resp.>) - (Azla—gi)(ﬂfla@) + 35 /_5(A218—97;L1)(I1’x2)d932

1 o o ou "
—2—5 ‘/_5 /5:2 (bglaxl $1,I2)d$2dl’2
~(resp+) [ /(@) (An -

0z,
26
—(resp.+) /_25 o(x )(bglgul)(xl,:v'z)dxg + (resp.—) C;

) (1, 75)d

Lemma 2.2.

For the terms in (31) the following estimates hold

) :(:’1 8u . o
|/—5 /501 (b128—x2)(1'1>1172)d181d;p1| <C,

[, ¢ ) Aot el < C,
(33)
[ ) g ) )it <
|/ A12 $1,I2>d$’1| < C.
For the terms in (32), the followmg estimates hold
5 rw ou
|/_5 /@ (b210x1 (21, 2y)dzydry| < C,
ou
\/ () (An ) (. )| <
(34)

| / bm ><x1,x2>dx2| <c



J ou .
|/—6(A218—1'1)(x1’x/2>dx2| < C.

We temporarily admit Lemmas 2.1, 2.2, and give the proof of Theorem
1.1. Let us remark that (31)-(33), (32)-(34) lead the following estimates for
any (Z1,x9), (1, 29)€ K.

ou ou . ou

— (Alga—;l)(l'l,l’g) — C < (Alla—::l)(l’l, 1'2) S —(Alga—;l)(!lfl,l'g) + C (35)
0 R 0 . 0 .

= (Ao )rn,d2) =€ < (Ang =), £2) < ~(Ang (w1, 2) + O (36)

A21A12 o .
( A22 8—1’1)(x17 x2) + (T@Sp.—)C7

and by inserting this into (35) we get for any (21, x92)€ K,

< (resp. =)

A1 Ay — Ag1 Ajp Ou

<C
( Any 8x1)(x1’x2)| =0,
where C' > 0 is a constant. From the assumption (3), (4), we have the bound
for %’ and the same discussion leads the bound for g—:(:“z. Therefore, (8) is
proved.

Now, we shall give the proof of the Lemmas 2.1, 2.2.

Proof of Lemma 2.1.
We only give the proof of (31); (32) will be obtained by the same way. First,
from (6) for any (x1,z2), (21, 22)€ K, since

ou ou 1 u ., , ,
_(Allﬁ—:)sl + A12a—x2)($17362) + /:?:1 (5128—932)(351@2)5[551
ou ou ., .
= _(Alla—xl + A128—x2)($17332)



1 a a’u, au au !/ /
/@1 {_8—%(A118—x3+14128—x2)(x/1’x2) (b128 2)(x1,x2)}dx1

by using (7), (2), (5), the following holds with ¢ stated in Lemma 2.1.

= (Ang—“ +A12§ o) (a1.22) +/:(b12§—91)(x;,x2)dx;
(Angul A1zg2)(i1,xz)\
< sgn(z; —@1)/:| aa (Aug, +A12§;)(:c’1,xz>
(bllg, blggx )&, z2)|de, + C
o . ou u

= Sgl’l(l‘l — 2%1)/ |C(] + — (An

/
% oz oy + g - 2)(:51,:52)

8 8 / /
—(bi1z= + bio=—) (27, 22) — Co|da| + C
ox 0o

< sgn(zp — 1) X

du 0 Ju du
/ C(] + AH& 7 A128—;2>(x/1’ LL’Q) (bn& f + b128 )(LL’/l, S(Zg)dl’/l -+ C

£2
m 0 0 o,
= sgu(ey — 1) [0 (Co+ g (Augy + Ango) (e o)
ou ou
_(bll 851,’1 blga )(ZL’I, l’g)}d.ﬁ(fl +C
26 0 O o, o ou ., ,
</ 25¢<z1>{8 <Anax1 g )t ma) = (b gy b ) ) g +C
a / / 2 / a / /
<= [ S (A g+ ) )= [ 0 ) 0], )i +C

26 u
= _/—26 ¢/($1>(A128—;2>($/17$2)d$/1 _/—26 ¢( )(5128 2)($ﬁ,x2)dx/l + C.

Hence, for any (x1,x2), (1, 22)€ K we get the following inequalities.

ou ou

(An& ™ A128 2)($1,$2) (37)

10



ou ou . w o Qu ,
< (resp. >) (A“a_xl + A128—x2)($17552) + /921 b128—x2($17$2)dx/1
~(resp+) [ 0/(@) (Ao (ot )
% / au / /
—(resp.+) /_26 ¢($1)(bl2a—x2)($1>372)d371 + (resp.—) C.

Next, we integrate both hand sides of the above inequalities with respect to
x1 on [—4, 0], then devide the obtained result by 2§ and we have the following.

1 /9 du , ,
55 (Al aa)dat (33)

0 ou .
< (resp. >) (14118—;1 + A128—xu2)($1,$2)

! e Ou 4 "l
+% /_5 /@1 (6128—@)(371,532)&131(1531

26 ) .
~(respt) [ /@) (Aiag )l )}

2 / au / /
—(resp.+) /—25 ¢(x1)(b12a—x2)(:c1,x2)d:c1 + (resp.—) C.

From (38), (31) holds clearly.

Proof of Lemma 2.2.
In the two dimensional case, the argument is easy. In fact, to show the
first inequalities in (33), we multiply both hand sides of the inequalities (32)
by (A5 bia)(w1,%2) and then integrate the result first with respect to ; on
[#1, 7], then with respect to ) on [—6, ¢, which leads the conclusion because
of (2), (4), (5), (7). The other estimates can be obtained similarly, which we
do not repeat here.

3 Proof of Theorem 1.2.

Lemma 3.1.

11



Let ¢ be an arbotrarily fixed real valued twice differentiable function defined
on the interval [—29, 28] such that 0 < ¢ < 1, supppCC(—20,29), ¢ is even

and
¢=1 on [=0,8], ¢ >0 on [-240]. (39)
Then, the function u in Theorem 1.2 satisfies the following inequalities: for

any (21, x9,x3)€ K,
ou

A
( oz, 0:)31

)(&1, T2, T3) (40)

0 0
< (resp. >) (/112au2 A13au3

1 /9 ou ou
= A, g I

+25/( 1282+ 8 92,

a /! 1 /

// 612—+6136 ) (@], 22, x3)dr dxy

8 a / /
—(resp.+) /_25615( )(A128 o +A138 3)(931a932>933)d931

)(:i'b X2, 1’3)

)(xlb T2, $3)d$3

26 P ou .,
—(resp.+) /_25 o(x )(blga—u2 + b3 8:63)(361, Ty, x3)da| + (resp.—) C,

fOT any (x17i‘27x3> S K;

o )
(Ama—;‘z)(:cl, Bo, ) (41)
ou ou .
< (resp. >) (A218 Azsa (21, g, 73)
L1 €3

Lo ou ou , /
+% /—J(Am&—xl T A23a—363)(5€1, Ty, w3)dy

1 9 wlz au au , . ,
_% \/;5 /;)32 (6218—% +b238—3)($1>$2>1’3)d2§2d$2
20 au a /

~(resp+) [, (2% o)Az g+ A 3)(x1,x2,x3)dx;

26 ou o /
—(resp.+) /_26 o(x )(bgla o + b2301;)(.’171,$2,x3)d$/2 + (resp.—) C.

12



for any (1, x2, 23)€ K,

(A33a—%)($17$27$3) (42)
< (resp.>) —(As g o + Asp g 2)(:61,;52,;33)
25/ Aglg - +A32§u2)(:)51,x2,x§)dzg
/ /503 b31—+b3gg—§2)(:¢1,x2,x§)dzgdmg
~(respot) [ H) (Aurge + Ay ) 1, )
—(resp.+) /_2;¢( )(bglaa—ul+b32§i)(asl,x2,zg)d$g+(resp.—) C.

Lemma 3.2.

Let us denote (), xe, x3)= (x}), (21, 2%, x3)= (2}), (21,22, 25)= (2}),
and (2, xe,x3)= (), (z1,25, x3)= (24), (x1,z2,2%)= (24). Then, for the
terms in (40), (41), (42), the following estimate hold

4 Z‘; 8u " 1 / - y )
[ S ahdiddal <€ 1< <3, i # (43)
‘/ 5’_ PV < C, 1<i,j<3, i#]j (44)
2 8 R ’
|/5 5_ Nzl <O, 1<ij<3, i#] (45)
2
|/5%(:):;)da:;|§07 1<ij<3, i#] (46)
- J

The proofs of Lemmas 3.1, 3.2 will be given below. Here, we admit
them and give the proof of Theorem 1.2.

13



By inserting the estimates (43)-(46) in Lemma 3.2 into (40)-(42), we
have the following.

ou

(Ang—)(@1, 22, 3) < (resp. 2) (47)
1
ou ou ., . .
(Alga o Alga 3)(:)31,z2,:£3) + (resp.—) C Y(Z1,19,23) € K,
0
(Ang =) (a1, da,5) < (resp. ) (48)
ou ou . .
(A218 Agga Y21, Za, 23) + (resp.—) C  V(x1,29,73) € K,
1 x3
0
(A ) (w1, 22, 23) < (resp. ) (49)
x3
ou ou . . .
(A318 A328 )1, 22, 83) + (resp.—) € V(&1,2,83) € K.
T2

From (47), for any (z1,x2, 23), (21, &2, x3)€ K,

Agl 8u
A
Ay 1181’1

A31A12 ou + A31A13 ou
Ay Oz Ay Oxs
ou ) A ou .

—(A216—I1)(371,Iz,1'3) = —(A—iAlla—xl)(l'l,Iz,xza)

A Ap Ou Ay ou

ey Wit
Ay Oz Az Oz
Introducing the above inequalities into (48), (49) we have the following.

—(A317)(931>932a93"3) = —( (21, T2, T3)

< (resp. >)( ) (@1, T2, 3) + (resp.—)  C,

< (resp. =)( )(21, L2, 23) + (resp.—)  C.

A11A22 - A21A12 ou

( All ax2)(xl7$27$3) (50)
Ay A1 — AL A
< (resp.>) (22 13A11 123 aa;)(atl,iz,zg) + (resp.—) C,
A Agz — Az Az Ou N
1
( All axg)(xl7$27$3) (5 )

14



A1 Ay — Ay Az Ou )
2 R ) (@, @, d3) + (resp.—) O

< (resp.>) (

An 0xo
From (50),
Az Ay — A Asy Ou R

( Ay 8x2)(x1’x2’x3)
(Ag1 A2 — A1 A39) (A1 Agy — Ag1 Aa) Ou (o1, 52)
(A11A22 - A21A12)A11 83:2 1,42,43

< (resp. >)
(As1 A1z — A1 Asy) (Ag1 Ars — A Ags) Ou .
(A1 Ay — Ag1 Ajo)Any 89:3)(xl’ T, T3) + (resp.—) C,

and by introducing the above inequalities into (51), we have the following.
{(AAgz— Az Ars) (A1 Agp— Aoy Ava) — (Az1 A1o— A1 Az ) (A1 A1z — A1 Aps) } X

0u
" Oy
Therefore, from the assumptions (10), (12), we get the bound for 7“3 A

— (21, 29, 23) < (resp. >) + (resp.—) C.

similar argument leads to the bounds for 8‘2‘1, 887“ and we have proved (20).

Proof of Lemma 3.1.
We only prove (40); (41), (42) will be obtained in a similar way. First of all,
from (17) for any (x1,xe,x3), (&1, 2, x3)€ K, since

—(Aug 1+A12§2+A13§u3)(x1,x2,x3 +/ (bias - Ou +b13§3)(x1,x2,x3)d:c1
(Ang—“1 + Amg ot Alggi)(@l,@,xg)
+/{ 88 (Aug, +A12§ - +A13§;)(x'1,x2,x3)
+(b1288—3:2 + blgaa—;)(z'l, To, x3)dT],
by using (18), (9), (16), the following holds with ¢ stated in Lemma 3.1.
- (A11%+A12§ 2+A13§;’)(x1,x2,x3 +/ (bia - Ou blgg o) e 2a)d

15



0 ou 0
(Ana—ul +Al28 s +A13au3)(

R 1 0 ou u 0 !
< sgn(r; — x1>/@ | — pe (AH& o Jrz‘hz8 s +A138—;)(fc17$2,$3)

Xy, T2, $3)|

+(bll

1
ou du ou ., /
) +bl2a + bizm—) (27, 22, w3)|dr) + C

O3
. 0 ou ou 0
< sgn(xy — xl)/ |Co + = o -

(An& -+ A128 o + A13ax3)(5€/17$27$3)
ou ou ou

0’ 02 01'3

0 ou ou ou

<sgn(a:1—x1/ C’o+8 (A118’+A1282+A138:c3

ou du ou
a,+blga +blga 3)(
= sgn(zy — 1) X
1 0 ou ou ou
X ‘/;)31 (b(l’/l){C(] + 8:5’ (Alla 7 +A128 e +A138 3)(

ou ou ou
—(511a - +bl2a o +bl3a 3)(

2 0 ou Ju 0 ,
</ ‘b(x/l){a (An& ; +A128 o +A138;)(£L’1,x2,x3)

ou ou ou

(bll )(xlb T2, $3) - Co|dl'/1 +C

) (21, 2, w3)

— (b1 Ty, 1o, w3)day + C

/
Ty, T2, S(Zg)

Ty, wo, w3) Yoy + C

—20

_(blla - —I—b12a o —I—b13a 3)(I’1,x2,:£3)dx'1—|—0
ou u ., ,
< /26 A11 +A128 o +A138$3)(£L’1,x2,x3)d$/1
26 a ou
_/ o () (612a o —|—b13a 3)(:cl,x2,:c3)}dx1 +C
ou ., ., ,
= —/ A12— +A138 ) (@, o, x3)dxy
T3
a / /
—/ blg— +b130 3)(1’1,1’2,1'3)}611’1 +C

16



Hence, for any (x1, o, x3), (Z1, %2, x3)€ K, we get the following inequalities.

ou ou ou
(1411a o +z412a o +A13a 3)(551,1'2,553) (52)

0 du 0
< (resp. >) (A118_u1 + A128 s + Alsaug

T ou ou _, ,
+/i,1 (512% + by ) (2], 9, 23)dt,
26

)(:i‘17 o, I3)

O3

0 ou
—(resp.+) /_25 ¢ (z )(A128—u2 + A138 3)($/17$27 3)d

26 ou ou ., , ,
—(resp.+) /—25 o(z) )(b120—2 + by aCE?’)(:)sl,atg, x3)dx] + (resp.—) C

Next, we integrate the both hands sides of the above inequalities with re-
spect to x; on [—4, d], then devide the result by 26 and we have the following.

1 4 0 ) / ,
26 /_5(A128—xu2 + A138—;)($1> To, x3)dx] (53)

9 ou 0
< (resp. >) (Ana—“1 + A +A138“3)(

Ou " "1
26/ /wl 612 6136 )(x7, xa, x3) oy da)

ou ou
—(resp.+) /—25¢( )(A120 A130 (@, T2, x3) day

T2
2 ou o, /

—(resp.+) / o(x)) (big=— + bis=—) (2}, 22, x3) Y| + (resp.—) C
—26 81’3

:i‘lv Za, I3)

09
The above inequality leads (40).

Proof of Lemma 3.2.
We show the estimates (43)-(46) in the following steps 1-4.

Step 1. (Estimate (43).) We consider the particular case when i = 1,
7 = 2; the other cases are obtained in a similar way in view of the symmetry
of the conditions on (A;;) and (b;;).

zy 0
| / / U@ B, )l da| < C, Vi, Vas € [<6,0].  (54)

1 8x2
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First, we integrate both hands sides of the inequalities (41) with respect to
x1 on [#y, )], and then with respect to ) on [—d,d]. Remark that since u
is bounded, the integrals of g—; (21, T2, x3) with respect to x; are estimated
by constants. Moreover, remark that by using (42) and the boundedness of
u, the integrals of 38—;;(%1, To,x3) with respect to x5 and x; are estimated by
constants. Thus, we get the following inequality from (41) and (42).

5 ) ou

I/ " /

/ " Agy— (], To, x3)dxdr]
1 0 2

(resp. >) // - 23 :El,itg,:)sg)da:'l’dx'1+(resp.—) C.
x1

We denote 9
B(z3) = // Agy 72— (7, g, x3)dxydx,

O
where Zy€ [—6,0] is arbitrarily fixed. Then, since
ou . Az du .
_A238 3($/1,736’2736’3) = _A—33A338 3($,1/,$2,$3),

by inserting (42) into the above inequalities and by using the boundedness
of u, we deduce

A23A32 1 A23A32
AsBl(z3) < (resp. > B(x /Bx’dx’ 55
22 B(73) < (resp. >) Ass (z3) — 25A33 —5(3)3 (55)
1 Aa3bso "
47 A33 / /xa ) gl
~resp ) G2 A [ 0wl Blab s
20 / / / /
—(resp.+) | |b32 / 0 (@) Blay)de + (resp.—)  C.

We multiply (55) by ¢’ (:Eg) and integrate the result with respect to x3 on
[—26,20]. Then, from the assumption on ¢ in (39), we have

AggAgs — Az A 20
22433 23432 / ¢’(m§)B(m§)dm§
A33 26

26
< (resp.>) — (resp+)2 \ | s /| () Bah)da

18



Az 2 / / /
—(resp.+)2|A—%\b32 /_26 o(xy)B(xy)drs + (resp.—)  C.

Here, we shall denote

AgpAzz — AxzA A A
By = ( 22 33A33 23432 2| 23\A32) 1 23|632
AgpAzz Az A A A
By = ( 22 :j 2352 | +9) 23\A32) 1 23\b32
33

From the condition (15), we have the following two cases.

Case 1. The following inequalities hold.

Agp Azz — Az Azo Ags
2 A 0
A e
Agp Azz — Az Az A3
-2 A
Asg s
Case 2. The following inequalities hold.
Agp Az — A23A32 Ags
A
P
Agp Azz — Az Az A3
-2 A
Asg s
So, in Case 1 ((58))
2 / 25 /
[, ¢ @Byl < <28, [ o(ah) Blat)des,



26 , 26 ,
[, @Byl <28 [ o) Blay)d,

—26

By inserting these inequalities into (55), we get the following

Ao Az Agz Ao 1 AgsAsy
L2833893 852 plrg) < (resp. > / B(z)d! 60
Agg ( 3) ( D- ) 26 Agg _ ( 3) 3 ( )
1A23b32/ / 17
2 5 AL, . xy)drydas
Ao Ass — Ags A
—(resp.+) 22 33A33 2878 /_2 o(xy) B(xy)dwy + (resp.—) C,

where ¢ = 1 in Case 1 and A3y > 0, or in Case 2 and Az < 0; 7 = 2 in Case
1 and A3y <0, or in Case 2 and Azy > 0.

Next, we investigate both hand sides of (60) with respect to x3 on [, 4],
and devide both hands sides of the result by As,.

g A23b32
B(x,)dx!, < (resp. >) / / "\da!lda! 61
[, Bl < (resp.2) 2= [ brty (61)

AggAsz — AszAsp 20 E;
Ass | A
where the indices ¢ = 1,2 are similar to (60). By inserting the above inequali-

ties into (60), then dev1d1ng both hands sides of the result by o —%{3?23/‘32,
we get the following.

—(resp.+) . () B(ay)day + (resp.—) C,

1 A23b32 / / "
B < . > 2
(3) < (resp 26 Ay Ags - wy)dagdry (62)

Aoe A 25
—(resp.4+) (sgna)E;(1 + | 23 32|)/ o(x)B(xy)dxy + (resp.—)  C,
Ao Ass —26

where the indices ¢ = 1,2 are similar to (60).
We integrate the both hand sides of (62) with respect to z3 on [Z3, 2], then
with respect to x% on [—9, d], which leads the following.

. Agsbzy
2)dasdry < (resp. >) — & / / 4)dxydr:
//963 T ( p_) 314221433 &3 B
Aoa A 26
—(resp+)  (—20&3)(sena) Bi(1+————|) / () B(a)day+(resp.—)  C,
AgpAss 26

20



where the indices ¢ = 1,2 are similar to (60). From (15),

1 1
— < max , )
Ago Az — {A22A33 — Ay Asy + 2|/123A$2| AggAsg — AgzAzg — 2|/123A32| }

and since |Z3] < 0, we have from (19)

Thus, for each cases of i = 1,2, there exist constants O1(d)= O(0), O(d)=
O(6) respectively, such that

iA23b32/ / ”dx
20 Ay Ass &3 3
< (resp.>) — (resp+) Oi(6) /_ ) B(ah)del + (resp.—)  C.

where the indices ¢ = 1, 2 are similar to (60). By inserting the above estimate
into (62), we get

B(xz3) < (resp. >) (63)
—(resp.4+) {0;(0)+(sgna)E; 1+|Aziﬁ§z|}/ B(x})dxy+(resp.—) C,

where the indices ¢ = 1,2 are similar to (60). We multiply (63) by ¢(z3) > 0
and integrate both hand sides of the result with respect to z3 on [—26, 24].
Then, by remarking that

26

20 < [ olah) Blah)da, < 40
-2

also by remarking that from (19),

Ag3Asy )l < 1
AgAss 2
2

and by noticing that O;(6)= O(9) for i =1,

46 B (1 + | i=1,2,

, we obtain
26
| / B(xzy)day| < C.

By inserting the last estimate into (63), we obtain the estimate.
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Step 2. (Estimate (44).)
We consider the particular case when ¢ = 1, j = 2, by separating it into the
following two inequalities; the other cases are obtained in a similar way in
view of the symmetry of the conditions on (A;;)1<; <3 and (b;;)1<i j<3-

ou , , . , .
|/ I1,932,!L"3)6I2 (931>I2,933)d551| <C, Viy, z3¢€ [—5> 5]> (64)

8u ;o , R
‘/ S(Zl,LL’Q,LL’;; axz ($1,$2,$3)dl’1| < C, VSL’Q, T3 € [—5, (5], (65)

It is enough to show (64), because (65) can be proved in the same way. Now,
we set
du

0
C(I?)) :/—26 ¢,(ziai’2ax3)a 2(1’1,I2,Z’3)d1'1,

where Zo€ [0, d] is arbitrarily fixed. By using the estimate (43) in (41), in
the same way as in Step 1, we obtain

A23A32 1 A23A32 / /
< . >
AnC(a) < (resp. =) 2 0(w) = 5= /_ Clay)day  (66)
A 20 / / /
—(resp.+) | 23\A32/ @' (25)C (x5)dxy
25
20 / / /
—(resp.+) \ \632/26 o(x)C(xh)daly + (resp.—) C.

We multiply both hand 51des of (66) by ¢'(x3), then integrate the result with
respect to xz on [—24,2d]. From the assumption on ¢ in (39), we get

AgoAss — AgzA 2 7] / /
22 33A33 234132 /26¢(9:3)C(x3)d1'3
26
< (resp.>) — (resp.+) \ |A32/25 ¢'(3)C(25)dxsy

A 2 / / /
—(resp+) 2| 23\b32 /  Hlah)Cah)day + (resp.—)  C.

From the condition (15), we have the following two cases.
Case 1.
The following inequalities hold.

A22A33 - A23A32 ‘
A33 A33




A Ags — AgzAso A
-2 Ay > 0.
A T 2
Case 2.
The following inequalities hold.
A22A33A_ A23A32 ‘j23 |A32 < O’
33 33
A Ags — Az Asy A
-2 Asy < 0.
A I
Thus, denoting by
AogAss — Az A A A
El — ( 22 33A 234132 - 2| 23‘,/432) 1‘ 23|b32’ (67)
33
AggAgs — Az A A A
E2 — ( 22 33A33 23 32 ‘ 23 |A32) 1| 23 |b32’ (68)

the same argument as in Step 1 to deduce (61) leads to the following inequal-
ities.
AggAsz — AggAsg
Ass

Clas) < (resp. 2) - 32852 [ c(atyasy, (69

—(resp.+)

Apy Ay — AgyAsy (2
208 — OB / ) C(al)drly + (resp.—) C.

Aszs
where i = 1 in Case 1 and A3y > 0, or in Case 2 and Az < 0; i = 2 in Case
1 and A3y <0, or in Case 3 and Az > 0.

Next, by integrating both hand sides of (69) with respect to z3 on [—d, d],
then by deviding the result by Asy, we get the following.

5
/ C(ay)dxy < (resp. >)

=

—(resp.+) 20E;

A22A33 _ A23A32 2 / / /
d —
it L, PO + (respm) O,

where the indices ¢ = 1,2 are similar to (69). By inserting this inequality
into (69) and devide both hand sides of the result by o —%, we
get the following.

C(x3) < (resp. >) (70)
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Aoe A 2 /
—(resp.+) (sgna)E;(1+ |A22Azz‘)/—25 (x5)C(xy)day + (resp.—) C.

By remarking that from (19),

Az A 1
T2 < i=1,2,

40F;(1 +
0B+ | F25E D] < 5

and by using the same argument as in Step 1, we have
26
| / 2)dzy| < C.

By inserting the last estimate into (70), we obtain the estimate (64); (65)
can be obtained by the same way.

Step 3. (Estimate (45).)
We consider the particular case when ¢ = 1, 7 = 2; the other cases are
obtained in a similar way in view of the symmetry of the coefficients (A;;)

and (b;;).
d
[, ottt < (71)
We set 05 3
!~ Uu / A /
D(l’g) = /;25 ¢($1a X2, x3)a—lé(x17$2a x3)d$1a

where Zy€ [0, ] is arbitrarily fixed. By inserting the estimates (43), (44)
into (41), and by using the same argument as in Steps 1,2, we get the following

Ay A 5
Ay D(x3) < (resp. >) 233320(:53)—%‘42?32 /_ D(ah)daly  (72)

2
—(resp.+) | \632/26 (xy)D(xy)day + (resp.—)  C.

By integrating both hand sides of (72) with respect to z3 on [—4, 4], then by
deviding the result by Ass, we have the following.

[ Dty < (resp. ) (73)

25
—(resp.+) 24| \632/ o(x5)D(2y)daly + (resp.—)  C.
A33 —24

24



By inserting (73) into (72), we obtain
Agp Azz — Agz Azo

D(z3) < (resp. >)

Asg
A Ay A 26 , , ,
—(resp.+) |A—§z|b32(1 + |A22Az§|)/—25 o(z5)D(af)daly + (resp.—) C,

where C' > 0 is a constant. We multiply both hand sides of the above
inequalities by ¢(x3), then integrate the result with respect to x3 on [—26, 26].
Since from the assumption (15),
1
<
| Agg Agz — AgzAsa|

1 1
AggAzz — Aoz Asy + 2| Aoz Asa|” Aza Az — AgzAsy — 2| Agz Az )

remarking that from (19),

max{

AgpAzz — Az Asp 1 Ans A3 Aszy 1
49 bsa|(1 + < =,
A9 T I | (14 S <
we get
| / 2)dzl| < C.

By inserting the above estimates into (72), (73), from (11), we obtain (71).

Step 4. (Estimate (46).)
We consider the particular case when ¢ = 1, 7 = 2; the other cases are
obtained in a similar way, in view of the symmetry of the coefficients (4;;),

(bij)-

[ o) <c. (74)
We set 5 8
U
E(x3) = /5 s (2, &g, 23)da],

where Zo is arbitrarily fixed. Then, by inserting the estimates (43)-(45) into

(41), and by taking the same arguments as in Steps 1-3, we get

Agz Az 1 Ag3 Az
Aszs 26 As

ApE(x3) < (resp. >) B(x3)— /_ (Elas)dwyt(resp.—)  C,
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where C' > 0 is a constant. By integrating the both hand sides of the above
inequalities, we have the estimate

6
|| By < ¢,

and by inserting this into the above inequality, we obtain (74).
From Steps 1-4, we have proved Lemma 3.2.

4 Proofs of Theorems 1.3, 1.4 and Example
1.7.

We begin with the following Lemma.

Lemma 4.1.

For the function u in Theorem 1.3, the following estimates hold.

N ou ,
up (Y Ay o)) <C 1< N, (75)

z€Q j=1

From Lemma 4.1, (21), (22), we obtain the gradient estimate (24) in
Theorem 1.3.

Now, we prove Lemma 4.1.
Proof of Lemma 4.1.
We only show the estimate for ¢ = 1 in (75); and the others are obtained by
the same way. Let us denote (1, ...,xx)= (x1), (), ...,zn)= (2}), (Z1, ..., xNn)=
(Z1) for the convenience. For any (x1), (1) € €2, since

al ou
_Z(Alja )(xl)
j=1 J
N o ., . a9 XN o
== Yl + [ =g g,



the following holds from (23).

N ou N ou ., .
| - ;Aua—%)(fﬁ) + ;Aua—%)(fﬁ)\

R 1 19) N ou ’ ’
< sgn(zy — 1) /@1 | — r ;(Aua )(x)|d}
. 0 X u , , ,
= sgn(m &) [ [Co+ 57 o S Ag o)) — Glde,
0 N ou / /
<sgn(z; — Iy / Co+ — o ;(Alja—zj)(%)dzl +C,

0 ou
/ Cot 7 22 (s ) a1, +C.

where (y, za,...,xn)€ 08, (z,29,...,xn)E O, (y
of 0 and the straight line connecting (x;) w
assumption that suppuCcC €2, we get

z) are the intersections

<
ith (#;). Hence, from the

-y Aji— Ai—(27)] < C.
= X A o) + 3 Ay ()] <
And, by letting Z; be on the boundary, we have proved our purpose.
For Theorem 1.4, the same lemma as above holds.

Lemma 4.2.

For the function u in Theorem 1.4, the following estimate holds.

Sup|(Aijg—u(:L’)| <C 1<i<N. (76)

e X

It is not difficult to prove Lemma 4.2, by modifying the proof of Lemma
4.1. Moreover, it is clear that Lemma 4.2 leads Theorem 1.4, and we do not
repeat the argument.
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Proof of Example 1.7.
The existence and the unqueness of the solution u; of (29) is established by
the viscosity solutions theory. (We refer the viscosity solutions theory to
Crandall-Lions [3], Crandall-Ishii-Lions [4].) Thus, by the comparison result,
we have
82ul

0x?

7

<Const. z€€Q, 1<i<N,

luy(z) < Const.

Therefore, we can apply Theorems 1.1, 1.2, and 1.4 to obtain the result.

Remarks 4.3.

The regularity result in Example 1.7 can be generalized to a class of some
controlled stochastic systems which were treated by Krylov [6], Lions [7].
For the special case of (29), the result in fact holds for any dimensions, if we
follow our proof for Theorems 1.1, 1.2, and 1.4.
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