
ar
X

iv
:1

01
2.

41
35

v1
  [

m
at

h.
D

G
] 

 1
9 

D
ec

 2
01

0

Homotheties and topology of tangent sphere bundles

R. Albuquerque∗

rpa@uevora.pt

December 21, 2010

Abstract

We prove a Theorem on homotheties between two given tangent sphere bundles

SrM of a Riemannian manifold M,g, assuming different variable radius functions r

and weighted Sasaki metrics induced just by the conformal class of g. We show the

associated almost complex and symplectic structures on the manifold TM , generalizing

the well known structure of Sasaki. Finally the characteristic classes of Chern and

Stiefel-Whitney are computed for the manifolds TM and SrM .
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1.1 Introduction

This article consists of a study of the main properties which identify the tangent sphere

bundles SrM = {u ∈ TM : ‖u‖ = r} of a Riemannian manifold (M, g) with variable radius

r and induced weighted Sasaki metric gf1,f2 = f1π
∗g ⊕ f2π

∗g, where f1, f2 are R
+-valued

functions on M and π : TM → M is the bundle map. Recall the well known Sasaki metric

on TM is just gS = g1,1 induced by the Levi-Civita connection.
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Our main results are as follows. We consider a conformal change λg by some function

λ on M , take the Levi-Civita connections of g and λg and then their lifts to TM . We

obtain much different weighted metrics (assuming λ non-constant). One wishes to compare

the SrM , with radius functions r, s and within the same conformal class, through the map

u
h7→ s√

rλ
u. For M connected and dimension ≥ 3 we prove:

(SrM, gf1,f2) is isometric to (SsM, (λg)f
′

1
,f ′

2) via h (1)

if and only if
f ′
1

f1
λ = s2

r2
f ′
2

f2
= 1, the function λ is constant and one of the following conditions

holds: (i) s/r is constant or (ii) rs is constant.

Case (ii) is quite interesting since in particular says that, for any positive function r on

M ,

(SrM, gS) is isometric to (S 1

r

M, g1,r
4

). (2)

Proceeding with the weighted metric G = gf1,f2 on TM , we define a compatible almost

Hermitian structure (G, IG, ωG), which is a generalization of the canonical or Sasaki almost

Hermitian structure on TM . In our case we also allow ∇ to have torsion. Then the in-

tegrability equations of IG and ωG reserve distinguished roles for the functions f1/f2 and

f1f2 respectively, both implying the torsion to be of certain vectorial type1. Finally, the two

functions only have to be both constant, the curvature of ∇ flat and the torsion zero if and

only if we require the defined structure on TM to be Kähler.

We determine the characteristic classes of TM , which is a manifold by right. The Chern

classes of (TM, IG) are proved to agree with the Pontryagin classes of M ; therefore they do

not depend on the metric connection ∇. The Stiefel-Whitney characteristic classes of SrM

are also found. In particular we conclude that any tangent sphere bundle of an oriented

manifold is spin.

Parts of this article were written during a sabbatical leave at Philipps Universität Mar-

burg. The author wishes to thank the hospitality of the Mathematics Department and

specially expresses his gratitude to Ilka Agricola, from Philipps Universität.

1.2 Differential geometry of the tangent bundle

1.2.1 The tangent bundle

Let M be an m-dimensional smooth manifold without boundary. Let π : TM → M be the

tangent bundle so that π(u) = x, ∀u ∈ TxM, x ∈ M . Then V = ker dπ is known as the

vertical bundle tangent to TM . There is a canonical identification V = π∗TM and a short

exact sequence over the manifold TM :

0 −→ V −→ TTM
dπ−→ π∗TM −→ 0. (3)

1Having in principle no relation, notice the similarity of these equations with the two cases (i) and (ii)

above.
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A vector field on a manifold is a section X of its tangent bundle. The tangent bundle TM

is endowed with a natural vertical vector field, denoted ξ, which is succinctly defined by

ξu = u.

Let ∇ be a connection on M . Then there is a complement for V

H = {X ∈ TTM : π∗∇Xξ = 0}. (4)

Indeed H is m-dimensional and π∗∇·ξ is the vertical projection onto V . For any vector

field X over TM we may always find the unique decomposition (∇∗ denotes the pull-back

connection)

X = Xh +Xv = Xh +∇∗
Xξ. (5)

Now, dπ induces a vector bundle isomorphism between H and π∗TM , by (3), and we have

V = π∗TM . Hence we may define an endomorphism

θ : TTM −→ TTM (6)

sending Xh to the respective θXh ∈ V and sending V to 0. We also define an endomorphism,

denoted θt, which gives θtXv ∈ H and which annihilates H . In particular θtθXh = Xh and

θ2 = 0. Sometimes we call θXh the mirror image of Xh in V . The map θ appears also in

[4]. We endow TTM with the direct sum connection ∇∗ ⊕∇∗, which we sometimes denote

by ∇∗. We have in particular that ∇∗θ = ∇∗θt = 0.

Notice the canonical section ξ can be mirrored by θt to give a horizontal canonical vector

field θtξ. In the torsion free case, the latter is known as the spray of the connection, cf. [7, 10],

or the geodesic field, cf. [8]. It has the further property that dπu(θ
tξ) = u, ∀u ∈ TM . Away

from the zero section, we have a line bundle Rξ ⊂ V and therefore a line sub-bundle too of

H .

1.2.2 Natural metrics

Suppose the previous manifold M is furnished with a Riemannian metric g and a linear

connection. We also use 〈 , 〉 in place of the symmetric tensor g; this same remark on

notation is valid for the pull-back metric on π∗TM . We recall from [7, 11] the now called

Sasaki metric in TTM = H⊕V : it is given by gS = π∗g⊕π∗g (originally, with the Levi-Civita

connection). With gS, the map θ| : H → V is an isometric morphism and θt corresponds

with the adjoint of θ. We stress that 〈 , 〉 on TTM always refers to the Sasaki metric.

Let ϕ1, ϕ2 be any given functions on M and let

G = gf1,f2 = f1π
∗g ⊕ f2π

∗g (7)

with

f1 = e2ϕ1 , f2 = e2ϕ2 . (8)

Obviously, we convention all these functions to be composed with π on the right hand side

when used on the manifold TM .
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Remark. With the canonical vector field ξ we may produce other symmetric bilinear forms

over TM : first the 1-forms η = ξ♭ and µ = ξ♭ ◦ θ = (θtξ)♭ and then the three symmetric

products of these. Actually one may see that µ does not depend on a chosen connection

which is metric; cf. last remark in section 1.4.1. The classification of all g-induced natural

metrics on TM may be found e.g. in [1, 2].

1.2.3 Metric connections

Let us assume from now on the connection on M is metric, which implies ∇∗gS = 0. It is

well known that ∇f1 = ∇+ C1, with

C1(X, Y ) = X(ϕ1)Y + Y (ϕ1)X − 〈X, Y 〉gradϕ1, (9)

is a metric connection for f1g on M , with the same torsion as ∇ since C is symmetric.

For any function ϕ, recall the usual identities X(ϕ) = dϕ(X) = 〈gradϕ,X〉, adopted
throughout. On TM we shall use the functions ∂ϕ(u) = dϕπ(u)(u), ∀u. In other words,

∂ϕ = 〈θπ∗gradϕ, ξ〉 (10)

where θ is the mirror map (6). And we agree on lifting gradient vector fields only to H .

We have that ∇∗,f1 = ∇∗ + π∗C1 makes f1π
∗g parallel on H . On the vertical side, ∇∗,f2 ,

defined by

∇∗,f2
X Y = ∇∗

XY + θπ∗C2(X, θ
tY ) (11)

∀X, Y vector fields on TM , makes f2π
∗g parallel. Henceforth, the connection ∇∗,f1 ⊕∇∗,f2

is metric for G = gf1,f2.

Proposition 1.1. (i) The torsion of ∇∗ ⊕∇∗ is π∗T∇ +Rξ.

(ii) The connection ∇∗,f2,′
X Y = ∇∗

XY +X(ϕ2)Y is metric on (V, f2π
∗g).

The proof of this result is immediate. The vertical part in (i) is defined by Rξ(X, Y ) =

π∗R∇(X, Y )ξ. We remark it is ∇∗,f1 and the connection in (ii) which enter in the Levi-Civita

connection ∇G of G. Formulas for the curvature are well known, cf. [2, 7].

1.3 Conformal change of the metric

1.3.1 Homotheties of TM

Suppose we have a conformal change of the metric g on the base M . With λ = e2ϕ and

ϕ ∈ C∞
M we pass to the metric

g′ = λg = λ〈 , 〉. (12)

Let us distinguish by T ′M the tangent manifold of M with the metric g′, when necessary.

Until the rest of the section we restrict to the Levi-Civita connection

∇ = ∇g. (13)
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Notice TTM = H ⊕ V = H ′ ⊕ V and we conform to our previous remarks on notation.

Let also t :M → R\{0} be a smooth function. Then we may consider the isomorphism

h : TM −→ T ′M, h(u) = u′ = e−ϕtu = ĥu . (14)

We treat all given scalar functions like ϕ or t, depending on the context, as functions com-

posed with π. This implies, for example,

X(ϕ) = dϕ(X) = Xh(ϕ). (15)

Recall the 1-form µ on TM given by µ(X) = 〈θX, ξ〉.

Proposition 1.2. Let X be any vector field on TM and consider the differential map h∗ :

TTM → h∗TT ′M . It satisfies the identities h∗(X
v) = ĥXv and, more generally,

h∗X = Xh′ + ĥ
(X(t)

t
ξ +Xv + ∂ϕ.θX − µ(X)θgradϕ

)

(16)

where θ refers to the decomposition H ⊕ V .

Proof. We known that ∇′ = ∇ + C where CXY = dϕ(X)Y + dϕ(Y )X − 〈X, Y 〉gradϕ
(depending on the manifold, X, Y denote vector fields). Since π ◦ h = π, then (h∗X)h

′

=

(dπ)−1(dπ(X)) and this is the same as Xh′, the H ′-part of X . Writing ξ′ for the very same

canonical vector field ξ on T ′M , so that h∗ξ′ = ξ ◦ h = ĥξ, and computing,

π∗∇′
h∗(X)ξ

′ = h∗π∗(∇+ C)Xh
∗ξ′

= π∗∇X(ĥξ) + θπ∗C(X, θt(ĥξ))

= dĥ(X)ξ + ĥ∇∗
Xξ + ĥθπ∗C(X, θtξ)

= −X(ϕ)ĥξ + e−ϕX(t)ξ + ĥXv + ĥX(ϕ)ξ +

+ĥ(θtξ)(ϕ).θX − ĥ〈θX, ξ〉θgradϕ

= ĥ
(X(t)

t
ξ +Xv + ∂ϕ.θX − µ(X)θgradϕ

)

we find the vertical part. �

Remark. Notice any tangent vector X = Xh + Xv = Xh′ + Xv′ has two decompositions.

We have, cf. figure 1,

Xv′ = ∇′∗
Xξ = ∇Xξ + θπ∗C(X, θtξ)

= Xv + ∂ϕ.θX +X(ϕ)ξ − µ(X)θgradϕ,

Xh′ = X −Xv′ = Xh − ∂ϕ.θX −X(ϕ)ξ + µ(X)θgradϕ,

(17)

Now we suppose TM is endowed with the metric G = gf1,f2 introduced in previous

sections and we let T ′M have the metric G′ = (λg)f
′

1
,f ′

2 (the four weight functions are just

smooth, positive and defined on M).
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Figure 1: The connection induced projections

Theorem 1.1. The map h is a homothety (ie. h∗G′ = ψG for some function ψ) if and only

if t and λ are constants and satisfy
f ′
1

f1
λ = t2

f ′
2

f2
. In this case, the latter is the value of ψ.

Proof. We write h∗X = Xh′+ ĥE(X) defining E from (16). Then solving the equation above

with vertical vector fields X1, X2 we immediately find

h∗G′(X1, X2) = ψG(X1, X2) ⇔ λĥ2f ′
2 = ψf2 ⇔ t2f ′

2 = ψf2.

In particular, ψ is only defined on M . Notice we may write

Eau(X
h) = aEu(X

h), ∀a ∈ R,

because ξ is also hidden linearly in ∂ϕ and µ. Picking two horizontal lifts and having in mind

that t and ψ are only defined on M , it is then easy to deduce that a necessary condition for

h to be a homothety is that E(Xh) = 0 for all H-horizontal X . Now

t〈E(θtξ), ξ〉 = t〈∂t
t
ξ + ∂ϕ.ξ − ‖ξ‖2θgradϕ, ξ〉 = (∂t + t∂ϕ − t∂ϕ)‖ξ‖2

and thence ∂t = dt(θtξ) = 0. Choosing any X horizontal and orthogonal to θtξ (recall

m > 1), we find 0 = 〈E(X), θX〉 = ∂ϕ‖X‖2 = 0 ⇔ ∂ϕ = 0, as we wished. In particular,

∇ = ∇′. Finally, solving the equation above for horizontal vector fields X1, X2 we get

f ′
1λ = ψf1. For generic vectors the result follows. �
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Completing the Theorem for the case of two conformal changes we have: the map h from

(λ1g)
f1,f2 to (λ2g)

f ′
1
,f ′

2 is a homothety if and only if

t,
λ2
λ1

are constants and
f ′
1λ2
f1λ1

= t2
f ′
2

f2
. (18)

1.3.2 Homotheties of SrM

Let r, s ∈ C∞
M (R+) and recall the tangent sphere bundle of radius r

SrM = {u ∈ TM : ‖u‖2g = r2} (19)

submanifold of TM , for which we have

SrM = S ′
1M (20)

using the metric λg to define S ′
sM with λ = r−2 = e2ϕ. Consider the smooth function

N = r−2‖ξ‖2. Then SrM = N−1(1) = {u ∈ TM : G(ξu, ξu) = 1} where G = gf1,r
−2

with

f1 any positive function. Using Proposition 1.1 to differentiate N = G(ξ, ξ), it is easy to

deduce

TSrM =
{

X ∈ TTM : 〈X, ξ〉 = rX(r)
}

. (21)

We have to assume ϕ2 = ϕ = − ln r. But of course one just applies ∇∗ to ‖ξ‖2 − r2 = 0 to

easily find the same information. Notice X ∈ TSrM ⇔ 〈Xv, ξ〉 = rXh(r).

We shall consider a more general setting: with r and ϕ independent.

Let λg be any conformal change of the given metric, λ = e2ϕ. Let s be another positive

function on M and consider the map h from Proposition 1.2. It restricts to

h : SrM −→ S ′
sM, h(u) = e−ϕtu = ĥu (22)

when we take t = s
r
.

When is h a homothety for the induced metrics? For a start, only the metrics G,G′

constructed as in section 1.3.1 are relevant, i.e. those induced from ∇ = ∇g the Levi-Civita

connection.

Remark. Recall the metric on the right hand side arises from H ′⊕V . Since h∗ : TuSrM →
TĥuS

′
sM , it is true that we have

rX(r) = 〈X, ξ〉 ⇔ s (h∗X)(s) = 〈h∗X, ĥξ〉′.

Indeed, we may write h∗X = Xh′ + ĥE(X) where E(X) is given in (16):

EX =
X(t)

t
ξ +Xv + ∂ϕ.θX − µ(X)θgradϕ. (23)
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Also, on vertical vector fields the metrics agree up to the scale, so we find

〈h∗X, ĥξ〉′ = ĥ2〈EX, ξ〉′

= e2ϕe−2ϕt〈X(t)ξ + tXv + t∂ϕ.θX − tµ(X)θgradϕ, ξ〉

= t
(X(s)r − sX(r)

r2
‖ξ‖2 + s

r
〈Xv, ξ〉+ t∂ϕ.µ(X)− tµ(X)∂ϕ

)

= t
(

rX(s)− sX(r) +
s

r
rX(r)

)

= sX(s) = s (h∗X)(s)

since on SrM we have ‖ξ‖2 = r2.

In the next Theorem we prove that each tangent sphere bundle SrM with metric G induced

from that of TM is quite unique, independently of any of the metric transformations above

and up to the straightforward coincidences expressed in the corollaries. The reader may

notice the impossibility of adapting the arguments used for Theorem 1.1.

We let λ = e2ϕ and r, s, f1, f2, f
′
1, f

′
2 be any positive functions on M .

Until the end of this section we assume M is connected and dimM ≥ 3.

Theorem 1.2. Let SrM have the induced metric G = gf1,f2 and let S ′
sM have the induced

metric G′ = (λg)f
′

1
,f ′

2. Then the following are equivalent:

1. h : SrM → S ′
sM is a homothety, ie. h∗G′ = ψG for some function ψ.

2. λ is constant, ψ verifies simultaneously ψ =
f ′
1

f1
λ = t2

f ′
2

f2
and one of the following hold:

(i) t = s/r is constant

(ii) rs is constant.

For the case of the identity (ĥ = 1), we have that it is a homothety if and only if λ = t2 is a

constant and
f ′
1

f1
=

f ′
2

f2
.

Proof. First we notice

G′(h∗X, h∗Y ) = f ′
1〈Xh′, Y h′〉′ + ĥ2f ′

2〈EX,EY 〉′

= f ′
1λ〈Xh, Y h〉+ ĥ2λf ′

2〈EX,EY 〉.

Now consider the equation h∗G′(X, Y ) = ψG(X, Y ). Choose one vector X = ξ⊥ vertical and

orthogonal to ξ, and a vector Y = (grad r)⊥ horizontal and orthogonal to grad r. Then both

X, Y ∈ TSrM . Indeed, 〈X, ξ〉 = 0 = rX(r) and 〈Y, ξ〉 = 0 = r〈Y, grad r〉 = rY (r). Then

for two vertical vector fields, like X , we immediately get the necessary condition ĥ2λf ′
2 =

ψf2 ⇔ ψ = s2

r2
f ′
2

f2
. For X, Y we have EX = Xv and EY = Y (t)

t
ξ + ∂ϕ.θY − µ(Y )θgradϕ,

hence

G′(h∗X, h∗Y ) = f ′
2λĥ

2
(

∂ϕ〈X, θY 〉 − µ(Y )〈X, θgradϕ〉
)

= 0

since G(X, Y ) = 0. Now we choose a point u ∈ SrM orthogonal to grad r. Then we may

take X = θgrad r and Y = u ∈ H . We have 〈θY,X〉 = 0 and µ(Y ) = 〈u, u〉 = r2, so our

equation yields 〈X, θgradϕ〉 = 0. Equivalently, we must have grad r ⊥ gradϕ.
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Now suppose grad r = 0 on all points of M , ie. r is constant. Then H ⊂ TSrM . Take

any non-vanishing Z0 ∈ H . Then we may further let Z0 ∈ H ∩ {grad s, gradϕ}⊥ (this is

not clearly so in dimension 2 since we want Z0 6= 0, hence the hypothesis on the dimension;

although here we may assume that gradϕ together with grad s constitute a basis of H and

then try to solve the system of two linear equations and 4 unknowns, in the components of

u and Z0 in that basis, given by Z0(t)ξ + t∂ϕ.θZ0 − tµ(Z0)θgradϕ = 0, for that is all we

need). In fact, in dimension ≥ 3 we may find a point u and a vector Z0 ∈ Hu such that

Z0(s) = Z0(ϕ) = 0 and such that ∂ϕ = 0, µ(Z0) = 0. Then on the chosen point u (on

the particular u found for the case of dimension 2 if possible), we get E(Z0) = 0 and so

h∗Z0 = Zh′

0 . Thence our main equation yields the necessary condition f ′
1λ = ψf1. Going

back a bit, we then consider any point u and any Z0 ∈ H perpendicular to u, ie. such that

ξu ⊥ θZ0. Then we deduce

G′(h∗Z0, h∗Z0) = f ′
1λ‖Z0‖2 + f ′

2λĥ
2
((Z0(s))

2

s2
r2 + (∂ϕ)2‖Z0‖2

)

= ψf1‖Z0‖2

This immediately implies Z0(s) = 0, ∂ϕ = 0. Since Z0 and u may be put in general position,

we conclude s and ϕ are constant on M , a connected manifold by assumption, and the

theorem follows.

So now we admit grad r 6= 0 at some point x ∈ M . Recall grad r ⊥ gradϕ and let

ǫ = ‖grad r‖ and δ = ‖gradϕ‖.
Thence u1 = r

ǫ
grad r ∈ SrM . Notice ∂ϕu1 = dϕ(u1) = 0. Consider the vector X0 =

grad r and X = X0 + ǫθX0. It is tangent to our sphere bundle in u1 since

〈X, ξ〉 = ǫ
r

ǫ
ǫ2 = r〈X0, X0〉 = rX(r).

And we have that

h∗X = Xh′ + ĥEX = Xh′ + ĥ
(X(t)

t
ξu1 + ǫθX − µ(X)θgradϕ

)

= Xh′ + ĥ
(X(t)

t

r

ǫ
+ ǫ

)

θX0 − ĥrǫ θgradϕ.

Consider also the tangent vector at u1, Z = θgradϕ. Then h∗Z = ĥZ. And thus ψG(X,Z) =

ψf2ǫ〈θX0, Z〉 = 0; on the other hand

h∗G′(X,Z) = f ′
2λĥ

2〈
(X(t)

t

r

ǫ
+ ǫ

)

θX0 − rǫ θgradϕ, θgradϕ〉

= −f ′
2λĥ

2ǫrδ2.

This implies δ = 0, ie. ϕ and hence λ = e2ϕ are constants.

Therefore the map h verifies h∗X = Xh+ ĥ(X(t)
t
ξ+Xv), for any vector field X ∈ TSrM .

Now we consider any horizontal vector X ∈ ker dr ∩ ker ds, in particular also tangent to

SrM and orthogonal to grad t (notice we need n ≥ 2 again for we are not able to decide

the mysterious case of dimM = 2, which may indeed have some further behaviour). Then
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X(t) = 0 and, just as we had the result ĥ2λf ′
2 = ψf2 for vertical vectors, we have the similar

for horizontal: λf ′
1 = ψf1.

Next, we use two generic tangent vectors X, Y ∈ TSrM . It is easy to see the conformality

equation h∗G′ = ψG is finally equivalent to

〈X(t)

t
ξ +Xv,

Y (t)

t
ξ + Y v〉 = 〈Xv, Y v〉,

X(t)Y (t)

t2
r2 +

X(t)rY (r)

t
+
Y (t)rX(r)

t
= 0

or

X(t)Y (t)r +X(t)Y (r)t+X(r)Y (t)t = 0.

Notice this last equation only involves the horizontal part of the vectors, so we assume X, Y

as such. Now if we take X orthogonal to grad t, ie. satisfying X(t) = 0, and take Y = grad t,

then we find that X(r) = 0 or that X is also orthogonal to grad r. Henceforth, grad t and

grad r are proportional, ie. lie on the same line. In other terms,

dt = adr

for some function a on M . Clearly the equation above may be written as

rdt⊗ dt + tdt⊗ dr + tdt⊗ dr = 0.

Hence we have (ra2+2ta)dr⊗dr = 0. Recalling r is not constant, we either have t constant

or ra+ 2t = 0. We have both

dt = −2t

r
dr = −2s

r2
dr and dt =

rds− sdr

r2
.

Hence −2sdr = rds− sdr ⇔ rds+ sdr = 0, from which we find sr = cnt.

Finally all conditions are fulfilled for h to be the expected homothety of ratio ψ. The

identity map case is trivial. �

Let gS = g1,1 denote the induced Sasaki metric on the tangent sphere bundle.

Corollary 1.1. (SrM, gS) is homothetic to (S ′
sM, (λg)S) via h if and only if ψ = λ = t2 and

this is a constant. In this case h is the identity, s =
√
λr; in other words SrM = S ′

sM . In

particular, two tangent sphere bundles both with the induced Sasaki metric are homothetic if

and only if they have exactly the same radius function, ie., they coincide.

Corollary 1.2. Other particular cases are as follows: (SrM, gf1,f2) is isometric via h to

(S ′
rM, (λg)1,f2) if f1 = λ is constant. And (SrM, gf1,f2) is isometric to (S ′

1M, (λg)1,r
2f2) if

f1 = λ and both r, f1 are constant. Moreover, (SrM, gS) is isometric to (S1M, g1,r
2

) if r is

constant.

We have used the metric G = gf1,r
−2

on SrM . So we study this case separately.
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Corollary 1.3. Let SrM be given the metric G = g1,
1

r
2 and let S ′

sM be with the metric

G′ = (λg)f
′

1
, 1

s
2 . Then the following three conditions are equivalent:

1. the map h : SrM → S ′
sM is a homothety.

2. the functions verify: ψ = f ′
1λ = 1, λ is a constant and s/r or sr is a constant.

3. the map h is an isometry.

Proof. Indeed we have ψ = f ′
1λ = t2 r

2

s2
= 1. �

Corollary 1.4. Let r be any function on M . Then (SrM, gS) is isometric to (S 1

r

M, g1,r
4

).

Proof. This is due to the second particular case found in the Theorem. We are taking λ = 1

and s = 1
r
and indeed ψ =

f ′
1

f1
λ = 1 = r4

r4
= t2

f ′
2

f2
since t = 1

r2
. Also notice we have sr

constant. �

One may illustrate this last result by looking for the isometries between concentric circles

in a plane.

1.4 Characteristic classes

1.4.1 Almost Hermitian structure on TM

The pair TM, gS admits a compatible almost complex structure, also attributed to Sasaki.

It was first studied in [7, 11] and gave origin in [12] to an almost contact structure on the

tangent sphere bundle S1M .

We continue the study of TM with the metric G = gf1,f2 where f1 = e2ϕ1 and f2 = e2ϕ2 .

We let ∇ denote a metric connection on M with torsion T∇. The almost complex structure

of Sasaki may be now written as the bundle endomorphism IS = θt − θ.

Let

ψ = ϕ2 − ϕ1, ψ = ϕ2 + ϕ1. (24)

We then define

IG = eψθt − e−ψθ. (25)

It is easy to see the endomorphism IG is an almost complex structure compatible with the

metric G. We consider also the associated non-degenerate 2-form ωG defined by

ωG(X, Y ) = G(IGX, Y ), ∀X, Y ∈ TTM. (26)

Since f1e
ψ = f2e

−ψ = eψ, it follows that ωG = eψωS where ωS is the 2-form associated to

the Sasaki structure gS and IS = θt − θ. The next Theorem is shown for completeness of

exposition. For the Cartan classification of torsions of metric connections see [3].
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Theorem 1.3 ([5]). (i) The almost complex structure IG is integrable if and only if ∇ is

flat and has the vectorial type torsion

T∇ = dψ ∧ 1. (27)

In particular, if ∇ is torsion free, then IG is integrable if and only if M is Riemannian flat

and f2/f1 =constant.

(ii) (TM, ωG) is a symplectic manifold if and only if

T∇ = dψ ∧ 1. (28)

In particular, with ∇ the Levi-Civita, dωG = 0 if and only if f2f1 =constant.

We observe that in the strict case of the Sasaki metric we have T∇ = 0 as necessary con-

dition for both integrability of IS and dωS = 0. In the general case, things are distinguished,

as they should, by ψ and ψ. Clearly we may draw the following conclusion.

Corollary 1.5 ([5]). The almost Hermitian structure (TM,G, IG, ωG) is Kähler if and only

if M is a Riemannian flat manifold (T∇ = 0, R∇ = 0) and f1, f2 are constants. In this

case, TM is flat.

The last assertion follows indirectly from Proposition 1.1.

Remark. Recall T ∗M has a natural symplectic structure. It arises as dλ where λ is the

Liouville form ([8]): the unique 1-form λ on T ∗M such that on a section α

λα = α ◦ π∗ (29)

When we introduce the metric, the tangent and co-tangent (sphere) bundles become isometric

bundles. And we find that the 1-form µ = ξ♭ ◦ θ = (θtξ)♭ corresponds with the Liouville

form, so it does not depend on the connection. Knowing the torsion of ∇∗ ⊕ ∇∗, for any

metric connection on M it is easy to deduce, cf. [4] (for any radius function):

dµ = ωS + µ ◦ T∇. (30)

The same is to say ωS corresponds with the pull-back of the Liouville symplectic form if and

only if T∇ = 0. Hence the Hamiltonian theory of the geodesic flow. We also remark that

the geodesic vector field in the sense e.g. of [8] (the vector field θtξ in our setting) is just the

same as the geodesic spray in the sense e.g. of [7, 10].

1.4.2 Chern and Stiefel-Whitney classes of TM

Let us continue with the structures G, IG on the tangent bundle, induced from any metric

connection ∇, and the same notation from above.

By a deformation retract on the fibres of π : TM → M , there is an identification of

co-homology spaces H∗(M) = H∗(TM). This is valid for any coefficient ring. In particular



Albuquerque 13

H i(TM) = 0, ∀i > m. Let wj denote the j-th Stiefel-Whitney class of M — which is the

Stiefel-Whitney class of TM as a vector bundle. Let w =
∑

wj denote the respective total

Stiefel-Whitney class.

Theorem 1.4. For any manifold M of dimension m, the Euler class of the manifold TM

vanishes and the total Stiefel-Whitney class is

w(TTM) = w2 =

[m/2]
∑

j=0

w2
j . (31)

Proof. Being a top degree class, the Euler class must vanish. Since TTM = π∗TM ⊕
π∗TM , the Whitney product Theorem and the naturality of the characteristic classes ([9])

immediately give w(TTM) = w(TM)w(TM) = w2. Recall the coefficients are in Z2. �

Theorem 1.5. The Chern classes of the manifold TM with almost complex structure IG

are the Chern classes of the complexified tangent bundle, TM ⊗R C →M .

Proof. The complex structure IG in TTM is equivalent to IS. One complex isomorphism is

given by f : X 7→ Xh + eψXv. Indeed, ∀X ∈ TTM ,

IS ◦ f(X) = (θt − θ)(Xh + eψXv) = −θXh + eψθtXv

= eψθtXv − eψe−ψθXh = f ◦ IG(X).

By the functorial properties, we just have to compute the Chern classes of IS. (Another

argument: the homotopy induced by tψ, t ∈ [0, 1], preserves the Chern classes.) Now, the

Chern classes of an almost complex manifold (N, J) are the Chern classes of the C-vector

bundle T+N , the +i-eigenbundle of J where i =
√
−1. In our case,

T+TM = Hc = π∗TM c

where c denotes complexification, because of the C-isomorphism induced from X ∈ H 7→
X + iθX ∈ T+TM . Indeed IS(X + iθX) = −θX + iθtθX = i(X + iθX). Again by trivial

reasons, we thence have cj(T
+TM) = cj(TM

c). �

We recall the Chern classes c2j define the Pontryagin classes of M , cf. [9],

pj(M) = (−1)jc2j(TM ⊗ C). (32)

Moreover, the Chern classes of (TM, IG) do not depend on the connection ∇.

1.4.3 Stiefel-Whitney classes of SrM with r constant

Now let m = n + 1 and let r > 0 be a constant. Then the n-vector bundle κ = u⊥ ⊂ V is

contained in TSM = H⊕κ where we assume e.g. the Sasaki metric. We continue to denote

by w =
∑

wj the total Stiefel-Whitney class of M .
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Theorem 1.6. The total Stiefel-Whitney class of SM is

w(TSM) =

n
∑

j=0

π∗w2
j (33)

and in particular the Euler class of the manifold SM vanishes.

Proof. We have w(π∗TM) = w(H) = π∗w. And clearly w(Rξ) = 1, so that w(π∗TM) =

w(κ⊕ Rξ) = w(κ). Hence

w(TSM) = w(H ⊕ κ) = w(π∗TM)2 = π∗w2.

Notice wm(κ) = 0. �

Remark. (i) We observe that always w1(SM) = 0, as expected because TM is always

oriented and ξ induces an orientation on the submanifold.

(ii) IfM has a finite good cover, is oriented, and admits a non-vanishing vector field, then we

deduceH∗(SM) = H∗(M)⊗H∗(Sn) by the Theorem of Leray-Hirsh (cf. [6]). In particular π∗

is an isomorphism H i(SM) = H i(M) of co-homology spaces up to degree i ≤ n−1 = m−2.

By contrast, we have proved π∗(wm) = 0.

Since w2(SM) = w2
1, we have the following.

Corollary 1.6. For any oriented Riemannian manifold M , the manifold SM is spin.

Recall w2 is also the obstruction to a 7-manifold admit a G2-structure. We have explicitly

constructed a naturalG2-structure on SM , for any oriented Riemannian 4-manifoldM , cf. [4]

and the references therein.
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Tôhoku Math. Jour. 10 (1958), 338–354.

[12] Y. Tashiro, On contact structures on tangent sphere bundles, Tôhoku Math. Jour. 21
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