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Abstract

The bondage number b(G) of a graph G is the smallest number of edges of
G whose removal from G results in a graph having the domination number
larger than that of G. We show that, for a graph G having the maximum
vertex degree A = A(G) and embeddable on an orientable surface of genus
h and a non-orientable surface of genus k,

b(G) < min{A(G) + h+2, A(G) + k + 1}.
This generalizes known upper bounds for planar and toroidal graphs.
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1. Introduction

We consider simple finite non-empty graphs. For a graph G, its vertex
and edge sets are denoted, respectively, by V(G) and E(G). We also use
the following standard notation: d(v) for the degree of a vertex v in G,
A = A(G) for the maximum vertex degree of G, § = §(G) for the minimum
vertex degree of GG, and N(v) for the neighbourhood of a vertex v in G.

A set D C V(G) is a dominating set if every vertex not in D is adjacent
to at least one vertex in D. The minimum cardinality of a dominating set
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of G is the domination number (G). Clearly, for any spanning subgraph
H of G, v(H) > v(G). The bondage number of G, denoted by b(G), is the
minimum cardinality of a set of edges B C E(G) such that v(G—B) > v(G).

The bondage number was introduced by Bauer et al. [1] (see also Fink
et al. [4]). Two unsolved classical conjectures for the bondage number of
arbitrary and planar graphs are as follows.

Conjecture 1 (Teschner [8]). For any graph G, b(G) < 3A(G).

Hartnell and Rall |6] and Teschner [9] showed that for the cartesian
product G,, = K,, x K,,, n > 2, the bound of Conjecture [ is sharp, i.e.
b(G,) = 2A(G,). Teschner [§] also proved that Conjecture [l holds when
v(G) < 3.

Conjecture 2 (Dunbar et al. [3]). If G is a planar graph, then b(G) <
A(G) + 1.

The planar graphs are precisely the graphs that can be drawn on the
sphere with no crossing edges. A topological surface S can be obtained from
the sphere Sy by adding a number of handles or crosscaps. If we add h
handles to Sy, we obtain an orientable surface S, which is often referred to
as the h-holed torus. The number h is called the orientable genus of Sy,. If we
add k crosscaps to the sphere Sy, we obtain a non-orientable surface N,. The
number k is called the non-orientable genus of Nj. Any topological surface
is homeomorphically equivalent either to Sy (h > 0), or to Ny (k > 1). For
example, S1, N1, Ny are the torus, the projective plane, and the Klein bottle,
respectively.

A graph G is embeddable on a topological surface S if it admits a drawing
on the surface with no crossing edges. Such a drawing of G on the surface S
is called an embedding of G on S. Notice that there can be many different
embeddings of the same graph G on a particular surface S. The embeddings
can be distinguished and classified by different properties. The set of faces
of a particular embedding of G on S is denoted by F(G).

An embedding of G on the surface S is a 2-cell embedding if each face of
the embedding is homeomorphic to an open disk. In other words, a 2-cell
embedding is an embedding on S that “fits” the surface. This is expressed in
Euler’s formulae ([Il) and (2]) of Theorem Bl For example, a cycle C,, (n > 3)
does not have a 2-cell embedding on the torus, but it has 2-cell embeddings
on the sphere and the projective plane. Similarly, a planar graph may have
2-cell and non-2-cell embeddings on the torus.
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The following result is usually known as (generalized) Euler’s formula.
We state it here in a form similar to Thomassen |10].

Theorem 3 (Euler’s Formula, [10]). Suppose a connected graph G with
|[V(G)| vertices and |E(G)| edges admits a 2-cell embedding having |F(G)|
faces on a topological surface S. Then, either S = S;, and

V(G| = |E(G)] + [F(G)] = 2 =2, (1)

or S = N, and
V(G| - [E(G)|+|F(G)| =2 -k (2)

Equation () is usually referred to as Euler’s formula for an orientable
surface S}, of genus h, h > 0, and Equation (2) is known as Euler’s formula
for a non-orientable surface Ny of genus k, k > 1.

The orientable genus of a graph G is the smallest integer h = h(G) such
that G admits an embedding on an orientable topological surface S of genus
h. The non-orientable genus of G is the smallest integer k = k(G) such that
G can be embedded on a non-orientable topological surface S of genus k.
Clearly, in general, h(G) # k(G), and the embeddings on Spg) and Ny
must be 2-cell embeddings.

Trying to prove Conjecture 2 Kang and Yuan [7] came up with the fol-
lowing upper bound whose simpler topological proof was later discovered by
Carlson and Develin [2].

Theorem 4 (|7, 2]). For any connected planar graph G,
b(G) < min{8, A(G) + 2}.

This solves Conjecture 2in case A(G) > 7. The upper bound of Theorem
[lis for the sphere Sy that has orientable genus h = 0. The proof of Theorem
M in [2] is topologically intuitive, uses Euler’s formula for the sphere, and
allows its authors to establish a partially similar result for the torus.

Theorem 5 ([2]). For any connected toroidal graph G, b(G) < A(G) + 3.

Notice that the torus S; has orientable genus h = 1. As mentioned in [2],
it is sufficient to prove the results of Theorems [4] and [B for connected graphs
because the bondage number of a disconnected graph G is the minimum of
the bondage numbers of its components.

In this paper, we prove the following result which generalizes the cor-
responding upper bounds of Theorems (] and [l for any orientable or non-
orientable topological surface S.



Theorem 6. For a connected graph G of orientable genus h = h(G) and
non-orientable genus k = k(G),

b(G) < min{A(G) + h +2, AG) +k + 1}.

The upper bound of Theorem [ follows from Theorems [8 and [ proved
below in Section 2.

2. The bondage number on orientable and non-orientable surfaces

In this section, we prove Theorem [6] by considering orientable and non-
orientable surfaces separately. The proofs are done by using Euler’s formulae
(@) and (@), counting arguments, and the following result.

Lemma 7 (Hartnell and Rall [6]). For any edge uv in a graph G, we have
b(G) < d(u) +d(v) —1— |N(u) N N(v)|. In particular, this implies that
b(G) <6(G) + A(G) — 1.

Having a graph G embedded on a surface S, each edge ¢; = uv € E(G),

i =1,...,|F(G)|, can be assigned two weights, w; = ﬁ + ﬁ and f; =

% + %, where m’ is the number of edges on the boundary of a face on one
side of e;, and m” is the number of edges on the boundary of the face on
the other side of e¢;. Notice that, in an embedding on a surface, an edge e;
may be not separating two distinct faces, but instead it can appear twice
on the boundary of the same face. For example, every edge of a path P,
(n > 2) embedded on the sphere is on the boundary of a unique face, and it
appears exactly twice on the face boundary walk: once for each side of the
edge. Clearly, in this case, m’ =m” =2(n — 1) and f; = % = % = ﬁ

Notice that weights w; and f;, i = 1,...,|E(G)|, count the number of
vertices of G and faces of its embedding on S as follows:

|E(G)| |E(G)|
> w = V(@) fi = |F(G).
=1

i=1
Then, by Euler’s formula (I), we have

E@)|
Y (wit f;=1) = V(G)| +|F(G)| ~ |E(G)| =2 - 2h,

1=1



or, in other words,

|E(G)] |E(G)]
2—2h 2h — 2
wi—i-fi—l— ): <wi+fi—1+ ):0
2 < o)~ 2 E(G)
Now, each edge ¢; = uwv € E(G), i = 1,...,|E(G)|, can be associated with

the quantity w; + f; — 1 + ‘2h( % called the oriented curvature of the edge.
Also, by Euler’s formula (2]), we have

[E(G)]

Y (it fi=1) = V(G| +|F(G) - [E@G)| =2~

=1
or, in other words,

|E(G)]

Z (wﬁ-fi—l

i=1

9_ 1 |E(G)| L—9
= i+ fi—1 =
E G>|) (“’ Tl \E(G>|)

Then, each edge ¢; = uv 6 E(G) i=1,...,|E(G)|, can be associated with
the quantity w; 4 f; — 1+ =2 B ) called the non-oriented curvature of the edge.

Theorem 8. Let G be a connected graph 2-cell embeddable on an orientable
surface of genus h > 0. Then

b(G) < A(G) + h+2. (3)

PROOF. Suppose G is 2-cell embedded on the h-holed torus Sj,. By Lemma
[0 if G has any vertices of degree h + 3 or less, we have §(G) < h + 3, and
inequality (B]) holds. Therefore, we can assume A(G) > §(G) > h + 4.

Now, suppose the opposite, b(G) > A(G)+h+3. Then, by Lemma/[7, for
any edge ; = uv, i =1,...,|E(G)|, we have d(u)+d(v)—1—|N(u)NN(v)| >
b(G) > A(G) + h + 3. Then, d(u) + d(v) > A(G) + h+ 4+ |N(u) N N(v)],
and d(u) < A(G), d(v) < A(G). If either d(u) or d(v) is equal to h + 4, the
other degree must be equal to A(G) > h + 4, and v and v cannot have any
common neighbors, so that m’ and m” are both at least 4. Since in this case
|E(G)| > w, such an edge e¢; = uv has a negative oriented curvature:

2h — 2 2 2 2(2h—2)  —8+h(3—h)
I e S at i T T e ) 2 H(h T p)

<0



for any h > 1, and, in case h = 0,

2 1 1 1 1 2 —2
<4 -+-4+2-1

TEO 11Tt T Ee) T Ee <

w2+f2—1

Suppose one of d(u) and d(v) is equal to h+ 5, without loss of generality,
d(u) = h+5. Then, A(G) > d(v) > A(G) — 1+ |N(u) N N(v)|. If d(v) =
h+4 = A(G)—1, we are in the previous case. Otherwise, we have d(v) > h+5,
and at most one of m’ and m” can be equal to 3, implying the other is at
least 4. Then again, since in this case |E(G)| > (h+4)(h+§)+2(h+5) — h2+10h+26

2 Y
the edge e; must have a negative oriented curvature:

2h — 2 2 11 2(2h — 2) —5h3 — 3h% + 52h — 266

4f1 < S —

for any h > 1, and, in case h = 0,

2 < 1 n 1 . 1 n 1 1 21 2 <0
[E(G)]~5 5 3 4 [BE(G)] 60 |B@G)
The only remaining case is when d(u) > h + 6 and d(v) > h + 6. Since
m' >3 and m” > 3, and, in this case, | E(G)| > WHAGATAAEE) _ A2t 1lh+52
the edge e; must have a negative oriented curvature:
2h — 2 2 2 2(2h — 2) —h® + h? 4+ 28h — T2

4 f—1 < ——1 =

w; + fi — 1

<0

for any h > 1, and, in case h = 0,

S I I I S
[E(G)~6 6 3 3 E(@)] [EG)]

w; + fi — 1

Summing over all edges e; € F(G) yields

|E(G)]

2h — 2
Z <w,—|—f,—1+m> < 0,

i=1
which is a contradiction to Euler’s formula (Il stating

|E(G)]

2 —2h
ZZ:; (wi“‘fi —-1- m) = |V(G)| + |F(G)| — |E‘(G)| _ (2—2h) —0.
Thus, b(G) < A(G) + h +2. -

<0



Theorem 9. Let G be a connected graph 2-cell embeddable on a non-orientable
surface of genus k > 1. Then

b(G) < AG) +k+ 1. (4)

PROOF. Suppose G is 2-cell embedded on the sphere with k crosscaps Ny. By
Lemmal7] if G has any vertices of degree k+ 2 or less, we have §(G) < k+ 2,
and inequality (@) holds. Therefore, we can assume A(G) > §(G) > k + 3.
Suppose the opposite, b(G) > A(G) + k + 2. Then, by Lemma [7], for any
edge e; = uv, i =1,...,|E(G)|, we have d(u) + d(v) — 1 — |[N(u) N N(v)| >
b(G) > A(G) + k + 2. Then, d(u) + d(v) > A(G) + k+ 3+ |N(u) N N(v)|,
and d(u) < A(G), d(v) < A(G). If either d(u) or d(v) is equal to k + 3, the
other degree must be equal to A(G) > k + 3, and u and v cannot have any
common neighbors, so that m’ and m” are both at least 4. Since in this case

|E(G)| > %M, the non-oriented curvature of the edge e; = uv is

k-2 2 2 Ak —2) At k(1 k)
it e S s T e 2 e

for any k > 2, and, in case k =1,

1 1 1 1 -1

i+ fi—1— - | < 0.
w; + f FEle)] +o+ o+

<

1 1 B
174471 JE@] [EQ)

Suppose one of d(u) and d(v), let us say d(u), is equal to k + 4. Then,
A(G) > d(v) > A(G) =1+ |[N(u) N N(v)|. If dlv) =k+3 =A(G) —1,
we are in the previous case. Otherwise, we have d(v) > k + 4, and at most
one of m’ and m” can be equal to 3, implying the other is at least 4. Then
again, since in this case |E(G)| > (k+3)(k+;’)+2(k+4) = KBEHT the edge e

must have a negative non-oriented curvature:

k—2 2 1.1 2(k —2) —124 — 5k — 12k2 — 5k?

i+ fi—1 < S t-— =
e S a3t R sk 1T 120k 1 4 & 8 1 17)
for any k > 2, and, in case k =1,

1
|E(G))]

AR U DU DR L,
5 3 4 \BE(G) 60 |E(G)] "

The only remaining case is when d(u) > k + 5 and d(v) > k+ 5. Since
m’ > 3 and m” > 3, and, in this case, |E(G)| > (k+3)(k+;1)+2(k+5) — F240k422

_|_

1
w; + fi — 1 Sg

2 Y

7
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the edge e; must have a negative non-oriented curvature:

k-2 2 2 2(k — 2) —k® — 2k + 5k — 38

i+ fi—1 < 5 =
e S ks 3 R 9kt 22 - 3k 5) (k2 1 Ok + 22)

for any k£ > 2, and, in case k =1,

o1 1 < 1+1+1+1 1 1 —1
Ww; i — = 5 = - —= - — 11— =
E(G) 76 6 3 3 |E(G)]  [E(G)]

< 0.

Summing over all edges e; € F(G) yields

|E(G)]

> (ot =1+ ) <0

1=1

which is a contradiction to Euler’s formula (2)) stating

|E(©) -
> (it fi= 1= o) = V@ +FG)] = 1B(G) - (2= k) =0

i=1

Thus, b(G) < A(G) + k + 1, and the proof is complete. O

3. Conclusions

The upper bound of Theorem [0 provides a hierarchy of upper bounds
that eventually may help solving Conjecture Il However, it can be seen that
the bounds of Theorems 8 and [0 are not tight for larger values of the genera
h = h(G) and k = k(G). For example, by adjusting respectively the proofs of
Theorems 8 and [@, upper bound (B]) can be improved to b(G) < A(G)+h+1
for h > 8, and upper bound (@) can be improved to b(G) < A(G) + k for
k>3 and to b(G) < A(G)+k—1 for k > 6. It is left to the reader to adjust
the proofs and bounds for a particular topological surface of higher genus.

In view of Theorem [ its proof in |2], and results presented in this paper,
it should be reasonable to conjecture that, when A(G) is sufficiently large,
the bondage number b(G) is bounded by a certain constant depending only
on the properties of topological surfaces where G embeds.

Conjecture 10. For a connected graph G of orientable genus h and non-
orientable genus k, b(G) < min{cy, ¢, A(G) +h+2, A(G) + k+ 1}, where
cn and ¢, are constants depending, respectively, on the orientable and non-
orientable genera of G.

<0



Since §(G) < 5 for a planar graph G, Fischermann et al. [3] ask whether
there exist planar graphs of bondage numbers 6, 7, or 8. A class of planar
graphs with the bondage number equal to 6 is shown in [2]. Therefore, in
case of planar graphs, we have 6 < ¢y < 8. It would be interesting to have
an estimation for the constants ¢, and ¢, for the torus Sy, projective plane
Ny, and Klein bottle Ns.
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