# Upper bounds for the bondage number of graphs on topological surfaces 

Andrei Gagarin ${ }^{\text {a,* }}$, Vadim Zverovich ${ }^{\text {b }}$<br>${ }^{a}$ Department of Mathematics and Statistics, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada<br>${ }^{b}$ Department of Mathematics and Statistics, University of the West of England, Bristol, BS16 1QY, UK


#### Abstract

The bondage number $b(G)$ of a graph $G$ is the smallest number of edges of $G$ whose removal from $G$ results in a graph having the domination number larger than that of $G$. We show that, for a graph $G$ having the maximum vertex degree $\Delta=\Delta(G)$ and embeddable on an orientable surface of genus $h$ and a non-orientable surface of genus $k$,


$$
b(G) \leq \min \{\Delta(G)+h+2, \Delta(G)+k+1\} .
$$

This generalizes known upper bounds for planar and toroidal graphs.
Keywords: Bondage number, Domination number, Topological surface, Embedding on a surface, Euler's formula

## 1. Introduction

We consider simple finite non-empty graphs. For a graph $G$, its vertex and edge sets are denoted, respectively, by $V(G)$ and $E(G)$. We also use the following standard notation: $d(v)$ for the degree of a vertex $v$ in $G$, $\Delta=\Delta(G)$ for the maximum vertex degree of $G, \delta=\delta(G)$ for the minimum vertex degree of $G$, and $N(v)$ for the neighbourhood of a vertex $v$ in $G$.

A set $D \subseteq V(G)$ is a dominating set if every vertex not in $D$ is adjacent to at least one vertex in $D$. The minimum cardinality of a dominating set

[^0]of $G$ is the domination number $\gamma(G)$. Clearly, for any spanning subgraph $H$ of $G, \gamma(H) \geq \gamma(G)$. The bondage number of $G$, denoted by $b(G)$, is the minimum cardinality of a set of edges $B \subseteq E(G)$ such that $\gamma(G-B)>\gamma(G)$.

The bondage number was introduced by Bauer et al. [1] (see also Fink et al. [4]). Two unsolved classical conjectures for the bondage number of arbitrary and planar graphs are as follows.

Conjecture 1 (Teschner [8]). For any graph $G, b(G) \leq \frac{3}{2} \Delta(G)$.
Hartnell and Rall 6] and Teschner [9] showed that for the cartesian product $G_{n}=K_{n} \times K_{n}, n \geq 2$, the bound of Conjecture 1 is sharp, i.e. $b\left(G_{n}\right)=\frac{3}{2} \Delta\left(G_{n}\right)$. Teschner [8] also proved that Conjecture 1 holds when $\gamma(G) \leq 3$.

Conjecture 2 (Dunbar et al. [3]). If $G$ is a planar graph, then $b(G) \leq$ $\Delta(G)+1$.

The planar graphs are precisely the graphs that can be drawn on the sphere with no crossing edges. A topological surface $S$ can be obtained from the sphere $S_{0}$ by adding a number of handles or crosscaps. If we add $h$ handles to $S_{0}$, we obtain an orientable surface $S_{h}$, which is often referred to as the $h$-holed torus. The number $h$ is called the orientable genus of $S_{h}$. If we add $k$ crosscaps to the sphere $S_{0}$, we obtain a non-orientable surface $N_{k}$. The number $k$ is called the non-orientable genus of $N_{k}$. Any topological surface is homeomorphically equivalent either to $S_{h}(h \geq 0)$, or to $N_{k}(k \geq 1)$. For example, $S_{1}, N_{1}, N_{2}$ are the torus, the projective plane, and the Klein bottle, respectively.

A graph $G$ is embeddable on a topological surface $S$ if it admits a drawing on the surface with no crossing edges. Such a drawing of $G$ on the surface $S$ is called an embedding of $G$ on $S$. Notice that there can be many different embeddings of the same graph $G$ on a particular surface $S$. The embeddings can be distinguished and classified by different properties. The set of faces of a particular embedding of $G$ on $S$ is denoted by $F(G)$.

An embedding of $G$ on the surface $S$ is a 2 -cell embedding if each face of the embedding is homeomorphic to an open disk. In other words, a 2-cell embedding is an embedding on $S$ that "fits" the surface. This is expressed in Euler's formulae (11) and (2) of Theorem 3, For example, a cycle $C_{n}(n \geq 3)$ does not have a 2 -cell embedding on the torus, but it has 2-cell embeddings on the sphere and the projective plane. Similarly, a planar graph may have 2 -cell and non-2-cell embeddings on the torus.

The following result is usually known as (generalized) Euler's formula. We state it here in a form similar to Thomassen [10].
Theorem 3 (Euler's Formula, 10]). Suppose a connected graph $G$ with $|V(G)|$ vertices and $|E(G)|$ edges admits a 2 -cell embedding having $|F(G)|$ faces on a topological surface $S$. Then, either $S=S_{h}$ and

$$
\begin{equation*}
|V(G)|-|E(G)|+|F(G)|=2-2 h, \tag{1}
\end{equation*}
$$

or $S=N_{k}$ and

$$
\begin{equation*}
|V(G)|-|E(G)|+|F(G)|=2-k . \tag{2}
\end{equation*}
$$

Equation (1) is usually referred to as Euler's formula for an orientable surface $S_{h}$ of genus $h, h \geq 0$, and Equation (2) is known as Euler's formula for a non-orientable surface $N_{k}$ of genus $k, k \geq 1$.

The orientable genus of a graph $G$ is the smallest integer $h=h(G)$ such that $G$ admits an embedding on an orientable topological surface $S$ of genus $h$. The non-orientable genus of $G$ is the smallest integer $k=k(G)$ such that $G$ can be embedded on a non-orientable topological surface $S$ of genus $k$. Clearly, in general, $h(G) \neq k(G)$, and the embeddings on $S_{h(G)}$ and $N_{k(G)}$ must be 2-cell embeddings.

Trying to prove Conjecture 2, Kang and Yuan [7] came up with the following upper bound whose simpler topological proof was later discovered by Carlson and Develin [2].
Theorem 4 ([7, 2]). For any connected planar graph $G$,

$$
b(G) \leq \min \{8, \Delta(G)+2\}
$$

This solves Conjecture 2 in case $\Delta(G) \geq 7$. The upper bound of Theorem 4 is for the sphere $S_{0}$ that has orientable genus $h=0$. The proof of Theorem 44 in [2] is topologically intuitive, uses Euler's formula for the sphere, and allows its authors to establish a partially similar result for the torus.
Theorem 5 ([2]). For any connected toroidal graph $G, b(G) \leq \Delta(G)+3$.
Notice that the torus $S_{1}$ has orientable genus $h=1$. As mentioned in [2], it is sufficient to prove the results of Theorems 4 and 5 for connected graphs because the bondage number of a disconnected graph $G$ is the minimum of the bondage numbers of its components.

In this paper, we prove the following result which generalizes the corresponding upper bounds of Theorems 4 and 5 for any orientable or nonorientable topological surface $S$.

Theorem 6. For a connected graph $G$ of orientable genus $h=h(G)$ and non-orientable genus $k=k(G)$,

$$
b(G) \leq \min \{\Delta(G)+h+2, \Delta(G)+k+1\}
$$

The upper bound of Theorem 6 follows from Theorems 8 and 9 proved below in Section 2.

## 2. The bondage number on orientable and non-orientable surfaces

In this section, we prove Theorem 6 by considering orientable and nonorientable surfaces separately. The proofs are done by using Euler's formulae (1) and (22), counting arguments, and the following result.

Lemma 7 (Hartnell and Rall [6]). For any edge uv in a graph $G$, we have $b(G) \leq d(u)+d(v)-1-|N(u) \cap N(v)|$. In particular, this implies that $b(G) \leq \delta(G)+\Delta(G)-1$.

Having a graph $G$ embedded on a surface $S$, each edge $e_{i}=u v \in E(G)$, $i=1, \ldots,|E(G)|$, can be assigned two weights, $w_{i}=\frac{1}{d(u)}+\frac{1}{d(v)}$ and $f_{i}=$ $\frac{1}{m^{\prime}}+\frac{1}{m^{\prime \prime}}$, where $m^{\prime}$ is the number of edges on the boundary of a face on one side of $e_{i}$, and $m^{\prime \prime}$ is the number of edges on the boundary of the face on the other side of $e_{i}$. Notice that, in an embedding on a surface, an edge $e_{i}$ may be not separating two distinct faces, but instead it can appear twice on the boundary of the same face. For example, every edge of a path $P_{n}$ ( $n \geq 2$ ) embedded on the sphere is on the boundary of a unique face, and it appears exactly twice on the face boundary walk: once for each side of the edge. Clearly, in this case, $m^{\prime}=m^{\prime \prime}=2(n-1)$ and $f_{i}=\frac{2}{m^{\prime}}=\frac{2}{m^{\prime \prime}}=\frac{1}{n-1}$.

Notice that weights $w_{i}$ and $f_{i}, i=1, \ldots,|E(G)|$, count the number of vertices of $G$ and faces of its embedding on $S$ as follows:

$$
\sum_{i=1}^{|E(G)|} w_{i}=|V(G)|, \quad \sum_{i=1}^{|E(G)|} f_{i}=|F(G)| .
$$

Then, by Euler's formula (1), we have

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1\right)=|V(G)|+|F(G)|-|E(G)|=2-2 h
$$

or, in other words,

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1-\frac{2-2 h}{|E(G)|}\right)=\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1+\frac{2 h-2}{|E(G)|}\right)=0
$$

Now, each edge $e_{i}=u v \in E(G), i=1, \ldots,|E(G)|$, can be associated with the quantity $w_{i}+f_{i}-1+\frac{2 h-2}{|E(G)|}$ called the oriented curvature of the edge. Also, by Euler's formula (2), we have

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1\right)=|V(G)|+|F(G)|-|E(G)|=2-k
$$

or, in other words,

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1-\frac{2-k}{|E(G)|}\right)=\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1+\frac{k-2}{|E(G)|}\right)=0
$$

Then, each edge $e_{i}=u v \in E(G), i=1, \ldots,|E(G)|$, can be associated with the quantity $w_{i}+f_{i}-1+\frac{k-2}{|E(G)|}$ called the non-oriented curvature of the edge.

Theorem 8. Let $G$ be a connected graph 2-cell embeddable on an orientable surface of genus $h \geq 0$. Then

$$
\begin{equation*}
b(G) \leq \Delta(G)+h+2 \tag{3}
\end{equation*}
$$

Proof. Suppose $G$ is 2 -cell embedded on the $h$-holed torus $S_{h}$. By Lemma 7, if $G$ has any vertices of degree $h+3$ or less, we have $\delta(G) \leq h+3$, and inequality (3) holds. Therefore, we can assume $\Delta(G) \geq \delta(G) \geq h+4$.

Now, suppose the opposite, $b(G) \geq \Delta(G)+h+3$. Then, by Lemma 7 , for any edge $e_{i}=u v, i=1, \ldots,|E(G)|$, we have $d(u)+d(v)-1-|N(u) \cap N(v)| \geq$ $b(G) \geq \Delta(G)+h+3$. Then, $d(u)+d(v) \geq \Delta(G)+h+4+|N(u) \cap N(v)|$, and $d(u) \leq \Delta(G), d(v) \leq \Delta(G)$. If either $d(u)$ or $d(v)$ is equal to $h+4$, the other degree must be equal to $\Delta(G) \geq h+4$, and $u$ and $v$ cannot have any common neighbors, so that $m^{\prime}$ and $m^{\prime \prime}$ are both at least 4. Since in this case $|E(G)| \geq \frac{(h+4)(h+5)}{2}$, such an edge $e_{i}=u v$ has a negative oriented curvature:
$w_{i}+f_{i}-1+\frac{2 h-2}{|E(G)|} \leq \frac{2}{h+4}+\frac{2}{4}-1+\frac{2(2 h-2)}{(h+4)(h+5)}=\frac{-8+h(3-h)}{2(h+4)(h+5)}<0$
for any $h \geq 1$, and, in case $h=0$,

$$
w_{i}+f_{i}-1-\frac{2}{|E(G)|} \leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}-1-\frac{2}{|E(G)|}=\frac{-2}{|E(G)|}<0
$$

Suppose one of $d(u)$ and $d(v)$ is equal to $h+5$, without loss of generality, $d(u)=h+5$. Then, $\Delta(G) \geq d(v) \geq \Delta(G)-1+|N(u) \cap N(v)|$. If $d(v)=$ $h+4=\Delta(G)-1$, we are in the previous case. Otherwise, we have $d(v) \geq h+5$, and at most one of $m^{\prime}$ and $m^{\prime \prime}$ can be equal to 3 , implying the other is at least 4. Then again, since in this case $|E(G)| \geq \frac{(h+4)(h+4)+2(h+5)}{2}=\frac{h^{2}+10 h+26}{2}$, the edge $e_{i}$ must have a negative oriented curvature:
$w_{i}+f_{i}-1+\frac{2 h-2}{|E(G)|} \leq \frac{2}{h+5}+\frac{1}{3}+\frac{1}{4}-1+\frac{2(2 h-2)}{h^{2}+10 h+26}=\frac{-5 h^{3}-3 h^{2}+52 h-266}{12(h+5)\left(h^{2}+10 h+26\right)}<0$
for any $h \geq 1$, and, in case $h=0$,
$w_{i}+f_{i}-1-\frac{2}{|E(G)|} \leq \frac{1}{5}+\frac{1}{5}+\frac{1}{3}+\frac{1}{4}-1-\frac{2}{|E(G)|}=-\frac{1}{60}-\frac{2}{|E(G)|}<0$.
The only remaining case is when $d(u) \geq h+6$ and $d(v) \geq h+6$. Since $m^{\prime} \geq 3$ and $m^{\prime \prime} \geq 3$, and, in this case, $|E(G)| \geq \frac{(h+4)(h+5)+2(h+6)}{2}=\frac{h^{2}+11 h+32}{2}$, the edge $e_{i}$ must have a negative oriented curvature:
$w_{i}+f_{i}-1+\frac{2 h-2}{|E(G)|} \leq \frac{2}{h+6}+\frac{2}{3}-1+\frac{2(2 h-2)}{h^{2}+11 h+32}=\frac{-h^{3}+h^{2}+28 h-72}{3(h+6)\left(h^{2}+11 h+32\right)}<0$
for any $h \geq 1$, and, in case $h=0$,

$$
w_{i}+f_{i}-1-\frac{2}{|E(G)|} \leq \frac{1}{6}+\frac{1}{6}+\frac{1}{3}+\frac{1}{3}-1-\frac{2}{|E(G)|}=\frac{-2}{|E(G)|}<0
$$

Summing over all edges $e_{i} \in E(G)$ yields

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1+\frac{2 h-2}{|E(G)|}\right)<0
$$

which is a contradiction to Euler's formula (1) stating

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1-\frac{2-2 h}{|E(G)|}\right)=|V(G)|+|F(G)|-|E(G)|-(2-2 h)=0
$$

Thus, $b(G) \leq \Delta(G)+h+2$.

Theorem 9. Let $G$ be a connected graph 2-cell embeddable on a non-orientable surface of genus $k \geq 1$. Then

$$
\begin{equation*}
b(G) \leq \Delta(G)+k+1 \tag{4}
\end{equation*}
$$

Proof. Suppose $G$ is 2 -cell embedded on the sphere with $k$ crosscaps $N_{k}$. By Lemma 7, if $G$ has any vertices of degree $k+2$ or less, we have $\delta(G) \leq k+2$, and inequality (4) holds. Therefore, we can assume $\Delta(G) \geq \delta(G) \geq k+3$.

Suppose the opposite, $b(G) \geq \Delta(G)+k+2$. Then, by Lemma 7 , for any edge $e_{i}=u v, i=1, \ldots,|E(G)|$, we have $d(u)+d(v)-1-|N(u) \cap N(v)| \geq$ $b(G) \geq \Delta(G)+k+2$. Then, $d(u)+d(v) \geq \Delta(G)+k+3+|N(u) \cap N(v)|$, and $d(u) \leq \Delta(G), d(v) \leq \Delta(G)$. If either $d(u)$ or $d(v)$ is equal to $k+3$, the other degree must be equal to $\Delta(G) \geq k+3$, and $u$ and $v$ cannot have any common neighbors, so that $m^{\prime}$ and $m^{\prime \prime}$ are both at least 4. Since in this case $|E(G)| \geq \frac{(k+3)(k+4)}{2}$, the non-oriented curvature of the edge $e_{i}=u v$ is
$w_{i}+f_{i}-1+\frac{k-2}{|E(G)|} \leq \frac{2}{k+3}+\frac{2}{4}-1+\frac{2(k-2)}{(k+3)(k+4)}=\frac{-4+k(1-k)}{2(k+3)(k+4)}<0$
for any $k \geq 2$, and, in case $k=1$,

$$
w_{i}+f_{i}-1-\frac{1}{|E(G)|} \leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}-1-\frac{1}{|E(G)|}=\frac{-1}{|E(G)|}<0
$$

Suppose one of $d(u)$ and $d(v)$, let us say $d(u)$, is equal to $k+4$. Then, $\Delta(G) \geq d(v) \geq \Delta(G)-1+|N(u) \cap N(v)|$. If $d(v)=k+3=\Delta(G)-1$, we are in the previous case. Otherwise, we have $d(v) \geq k+4$, and at most one of $m^{\prime}$ and $m^{\prime \prime}$ can be equal to 3 , implying the other is at least 4 . Then again, since in this case $|E(G)| \geq \frac{(k+3)(k+3)+2(k+4)}{2}=\frac{k^{2}+8 k+17}{2}$, the edge $e_{i}$ must have a negative non-oriented curvature:

$$
w_{i}+f_{i}-1+\frac{k-2}{|E(G)|} \leq \frac{2}{k+4}+\frac{1}{3}+\frac{1}{4}-1+\frac{2(k-2)}{k^{2}+8 k+17}=\frac{-124-5 k-12 k^{2}-5 k^{3}}{12(k+4)\left(k^{2}+8 k+17\right)}<0
$$

for any $k \geq 2$, and, in case $k=1$,

$$
w_{i}+f_{i}-1-\frac{1}{|E(G)|} \leq \frac{1}{5}+\frac{1}{5}+\frac{1}{3}+\frac{1}{4}-1-\frac{1}{|E(G)|}=-\frac{1}{60}-\frac{1}{|E(G)|}<0
$$

The only remaining case is when $d(u) \geq k+5$ and $d(v) \geq k+5$. Since $m^{\prime} \geq 3$ and $m^{\prime \prime} \geq 3$, and, in this case, $|E(G)| \geq \frac{(k+3)(k+4)+2(k+5)}{2}=\frac{k^{2}+9 k+22}{2}$,
the edge $e_{i}$ must have a negative non-oriented curvature:
$w_{i}+f_{i}-1+\frac{k-2}{|E(G)|} \leq \frac{2}{k+5}+\frac{2}{3}-1+\frac{2(k-2)}{k^{2}+9 k+22}=\frac{-k^{3}-2 k^{2}+5 k-38}{3(k+5)\left(k^{2}+9 k+22\right)}<0$
for any $k \geq 2$, and, in case $k=1$,

$$
w_{i}+f_{i}-1-\frac{1}{|E(G)|} \leq \frac{1}{6}+\frac{1}{6}+\frac{1}{3}+\frac{1}{3}-1-\frac{1}{|E(G)|}=\frac{-1}{|E(G)|}<0
$$

Summing over all edges $e_{i} \in E(G)$ yields

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1+\frac{k-2}{|E(G)|}\right)<0
$$

which is a contradiction to Euler's formula (2) stating

$$
\sum_{i=1}^{|E(G)|}\left(w_{i}+f_{i}-1-\frac{2-k}{|E(G)|}\right)=|V(G)|+|F(G)|-|E(G)|-(2-k)=0
$$

Thus, $b(G) \leq \Delta(G)+k+1$, and the proof is complete.

## 3. Conclusions

The upper bound of Theorem 6 provides a hierarchy of upper bounds that eventually may help solving Conjecture 1. However, it can be seen that the bounds of Theorems 8 and 9 are not tight for larger values of the genera $h=h(G)$ and $k=k(G)$. For example, by adjusting respectively the proofs of Theorems 8 and 9, upper bound (3) can be improved to $b(G) \leq \Delta(G)+h+1$ for $h \geq 8$, and upper bound (4) can be improved to $b(G) \leq \Delta(G)+k$ for $k \geq 3$ and to $b(G) \leq \Delta(G)+k-1$ for $k \geq 6$. It is left to the reader to adjust the proofs and bounds for a particular topological surface of higher genus.

In view of Theorem [4] its proof in [2], and results presented in this paper, it should be reasonable to conjecture that, when $\Delta(G)$ is sufficiently large, the bondage number $b(G)$ is bounded by a certain constant depending only on the properties of topological surfaces where $G$ embeds.

Conjecture 10. For a connected graph $G$ of orientable genus $h$ and nonorientable genus $k, b(G) \leq \min \left\{c_{h}, c_{k}^{\prime}, \Delta(G)+h+2, \Delta(G)+k+1\right\}$, where $c_{h}$ and $c_{k}^{\prime}$ are constants depending, respectively, on the orientable and nonorientable genera of $G$.

Since $\delta(G) \leq 5$ for a planar graph $G$, Fischermann et al. [5] ask whether there exist planar graphs of bondage numbers 6,7 , or 8 . A class of planar graphs with the bondage number equal to 6 is shown in [2]. Therefore, in case of planar graphs, we have $6 \leq c_{0} \leq 8$. It would be interesting to have an estimation for the constants $c_{h}$ and $c_{k}^{\prime}$ for the torus $S_{1}$, projective plane $N_{1}$, and Klein bottle $N_{2}$.

## References

[1] D. Bauer, F. Harary, J. Nieminen, C.L. Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983) 153-161.
[2] K. Carlson, M. Develin, On the bondage number of planar and directed graphs, Discrete Math. 306 (2006) 820-826.
[3] J.E. Dunbar, T.W. Haynes, U. Teschner, L. Volkmann, Bondage insensitivity and reinforcement, in: T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998, pp. 249-259.
[4] J.F. Fink, M.J. Jacobson, L.F. Kinch, J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57.
[5] M. Fischermann, D. Rautenbach, L. Volkmann, Remarks on the bondage number of planar graphs, Discrete Math. 260 (2003) 57-67.
[6] B.L. Hartnell, D.F. Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994) 173-177.
[7] L. Kang, J. Yuan, Bondage number of planar graphs, Discrete Math. 222 (2000) 191-198.
[8] U. Teschner, A new upper bound for the bondage number of graphs with small domination number, Australas. J. Combin. 12 (1995) 27-35.
[9] U. Teschner, The bondage number of a graph $G$ can be much greater than $\Delta(G)$, Ars Combin. 43 (1996) 81-87.
[10] C. Thomassen, The Jordan-Schönflies theorem and the classification of surfaces, Amer. Math. Monthly 99 (1992) 116-131.


[^0]:    *Corresponding author, fax: (1-902) 585-1074, phone: (1-902) 585-1419
    Email addresses: andrei.gagarin@acadiau.ca (Andrei Gagarin), vadim.zverovich@uwe.ac.uk (Vadim Zverovich)

