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In this short note we use results from the theory of crystallizations to prove that color in group
field theories garantees orientability of the piecewise linear pseudo-manifolds associated to each
graph generated perturbatively. For the colored Boulatov model the only graphs which represent
orientable manifolds are those that have a particular relation between the perturbative order and
the number of 2- and 3- bubbles. This relation is the combinatorial requirement of having 3-bubbles
which are homeomorphic to 2-spheres.
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I. INTRODUCTION

There has been recently a growth of interest in group field theories [1, 2] and there are many reasons for this
to happen. Group field theories (GFT) are at the boundary between Loop Quantum Gravity and Quantum Field
Theory over a group manifold and are a generalization of matrix models to higher dimensions [3][4]. It is known that
matrix models have a topological expansion in which the genus, the only topological invariant needed to characterize
orientable surfaces, plays the role of the parameter of this expansion. Roughly speaking a n-dimensional group field
theory has a vertex associated to an n-simplex and a propagator which glues the (n−1)-simplices. Feynman diagrams
of a n-dimensional group field theory can be interpreted as gluings of simplices and then have the interpretation of
piecewise linear (PL) manifolds . However generic GFT in 3 dimensions have the problem that the gluings are too
arbitrary, in the sense that the generated simplicial complexes are not even pseudo-manifolds [5], since they present
wrapping singularities. As in ordinary φ4 theory, a 3-dimensional group field theory can generate a “8” diagram which
however has no obvious geometrical interpretation in the continuum limit. This phenomenon does not happen in 2-
dimensions. For this reason a colored version of group field theory (cGFT) has been introduced[6–8]. The challenge in
these models is to obtain a topological expansion as in the 2-dimensional case [9–12]. It has been shown in [13] that the
sphere dominates the partition function. In order to achieve this result, techniques from the theory of crystallizations
have been used. In fact, colored n-graphs are well known in mathematics as gems: graph-encoded manifolds [14, 15].
In this paper we use the results in this field of mathematics to show that the growth of interest in colored models
is not unjustified: colored models generate orientable pseudomanifolds in any number of dimensions. Many of the
theorems we will use were known for long time in the context of crystallization and here we report briefly these results.
The outcome of this note is that the generation of pseudo-manifolds is due to the color, while the orientability in the
colored Boulatov model is due to the presence of two different vertices (clockwise and anti-clockwise). The paper is
organized as follows: in section II we recall the colored Boulatov model and its standard interpretation. In section
III we review basic results in the field of 3-gems and crystallizations. We will use some of these results in section IV
to prove the orientability of simplicial complexes generated perturbatively by the colored Btand that a CGFT graph
can be seen either as a stranded graph (using the vertex and the propagators as depicted in Fig. 1) or as a ‘oulatov
model.

II. THE COLORED BOULATOV MODEL

tand that a CGFT graph can be seen either as a stranded graph (using the vertex and the propagators as depicted
in Fig. 1) or as a ‘ In this section we introduce the main facts behind the colored Boulatov model[16][6]. Consider
a compact Lie group H, denote h its elements, e the unit element, and

∫
dh the integral with respect to the Haar

measure of the group.

In 3 dimensions we introduce two fields, ψ̄i and ψi, i = 0, 1, 2, 3 be four couples of complex scalar (or Grassmann)
fields over three copies of G, ψi : G × G × G → C. The index i runs from= 0 to n + 1, where n is the number of
dimensions, and the ψ and ψ̄ are functions of n copies of the group. We denote δΛ(h) the regularized delta function
over G with some cutoff Λ such that δΛ(e) is finite, but diverges when Λ goes to infinity. In the fermionic version
of the theory the indices i can be seen as the dependence of the field from a (global) gauge group SU(N), where
N = n+ 1. A feasible regularization is given, for instance for the group G = SU(2), by

δΛ(h) =

Λ∑
j=0

(2j + 1)χj(h). (1)

where χj(h) is the character of h in the representation j. The path integral for the colored Boulatov model over G is:

Z(λ, λ̄) = e−F (λ,λ̄) =
∫ ∏4

i=0 dµP (ψ̄i, ψi) e−S
int(ψ̄i,ψi) , (2)

where the Gaussian measure P is chosen such that:

∫ 4∏
i=0

dµP (ψ̄i, ψi) = 1 ,
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and:

Ph0h1h2;h′
0h

′
1h

′
2

=

=

∫
dµP (ψ̄i, ψi) ψ̄ih0h1h2

ψih′
0h

′
1h

′
2

=

=

∫
dh δΛ

(
h0h(h′0)−1

)
δΛ
(
h1h(h′1)−1

)
δΛ
(
h2h(h′2)−1

)
,

The colored model has two interactions, a “clockwise” and an “anti-clockwise”, and one is obtained from the other one
by conjugation in the internal group color SU(N), where N is 4 in 3 dimensions, one for each face of the 3-simplex.
For convenience we denote ψ(h, p, q) = ψhpq. Invariance under global rotations in the internal color group require at
least two interactions:

Sint = λ√
δΛ(e)

∫
(dh)6ψ0

h03h02h01
ψ1
h10h13h12

ψ2
h21h20h23

ψ3
h32h31h30

+

+ λ̄√
δΛ(e)

∫
(dh)6ψ̄0

h03h02h01 ψ̄1
h10h13h12 ψ̄2

h21h20h23 ψ̄3
h32h31h30 (3)

where hij = hji is symmetric in the two indices and λ 6= λ̄ in principle. In order to make the notation clearer (already
the orientation of the colors is sufficient to distinguish the two vertices), we call “red” the vertex involving the ψ’s
and “black” the one involving the ψ̄’s. Thus any line coming out of a cGFT vertex has a color i.

The group elements hij in eq. (3) are associated to the propagators (represented as solid lines), and glue two vertices
with opposite orientation. The vertex can be seen as the dual of a tetrahedron and its lines represent the triangles
which form the tetrahedron. Each propagators is decomposed into three parallel strands which are associated to the

FIG. 1. Colored GFT red and black vertices.

three arguments of the fields, i.e. the 1-dimensional elements of the 1-skeleton of the tetrahedron which bound every
face. A colored line represents the gluing of two tetrahedra (of opposite orientations) along triangles of the same color
as in Fig. (2).

It is easy to understand that a cGFT graph can be seen either as a stranded graph (using the vertex and the
propagators as depicted in Fig. 1) or as a “colored graph” with (colored) solid lines, and two classes of oriented
vertices. In this paper we consider only vacuum graphs, i.e. all the vertices of the graphs are 4-valent and we deal
only with connected graphs. The lines of a vacuum cGFT graph Γ have two natural orientations given by the fact
that only vertices of opposite orientations can be glued. It is easy to see that a vacuum cGFT graph must have the
same number of black and red vertices. For any graph Γ, we denote n as the number of vertices, l as the lines of
Γ, and we define as faces (not to be confused with the faces of the tetrahedron!), FΓ, as any closed strand in the
Feynman graph of a GFT. Thus a generic vacuum Feynman amplitude of the theory can be written as:

A =
(λλ̄)

n
2

[δN (e)]
n
2

∫ ∏
l∈Γ

dhl
∏
f∈FΓ

δΛ
f (

→∏
l0∈f

h
σ(l0,f)
l0

), (4)

where l0 is a line associated to a face f and σ(l0, f) is alternatively +1 or −1 depending on the orientation. In the
following we will assume that an orientation is fixed. Because of the properties of δ′s the orientation does not affect the
amplitude. To each colored graph associated to an amplitude of the colored Boulatov model it is possible to associate
bubbles by removing all the edges of one color. We call Bi1,··· ,ik the set of k-bubbles associated to the deletion of
n− k colors. In 3-dimensions, for instance, 3-bubbles have 3-colors (surfaces), 2-bubbles have 2 colors (lines) and so
on and so forth. Bubbles play a special role in the theory, since they discriminate manifold from pseudo-manifolds
(see next section for the same result in the theory of 3-gems).
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Face gluing

Propagator

3-gem

FIG. 2. A gluing using a colored propagator.

III. A SURVEY OF GRAPH-EMBEDDED MANIFOLDS RESULTS

In this section we review some basic results in the field of 3-gems and make a dictionary between the two literatures,
as colored group field theory can gain much from the results obtained in all the years of research in such field.

Let Γ be a finite, edge-colored graph, parallel edges allowed. A k-residue of Γ, k ∈ N is a connected compo-
nent of subgraph of Γ induced by k color classes (this is what in colored group field theory are called bubbles). These
graphs represent a piecewice linear manifold in the following sense (a pseudo-complex) [18]. A n-regular n-colored
graph is a couple (Γ, γ)n where n denotes its degree. To a couple (Γ, γ)n+1 there is an associated pseudo-complex
K(Γ) given by the following construction. Take an n-simplex σn for each V (Γ) and label its vertices ∆n. If x,y in
V (Γ) are joined by an edge, then attach the (n−1)-faces of their associated simplices. This is the same interpretation
given to attaching faces of n-simplices in a n-dimensional group field theory. We denote |Γ| the pseudo-complex
associated with the colored graph Γ.

Lemma 1 For any PL n-manifold M there exist a (n+1)-graph Γ such that |Γ| w M.

We now restrict to the case of 3-dimensions and list some of the basic results[15].

Let Γ be a 4-edge-colored 4-graph and denote by v, e, b, t respectively the number of vertices (0-residues), edges
(1-residues), 2-residues and 3-residues.

Definition A 3-gem (a 3 graph-embedded manifold) is a 4-regular properly edge-colored graph such that

v + t = b (5)

A 4-regular properly edge-colored graph for which (5) does not apply is called 3-gepm (a 3 graph-embedded pseudo-
manifold).

Lemma 2 A necessary and sufficient condition for the graph (Γ, γ)4 to represent a manifold, is to meet the re-
lation between its 2- and 3- residues (read as it 2- and 3- colored bubbles) and the number of vertices (read as the
perturbative order) v + t = b.

This Lemma clarifies the reason why 3-gems have to satisfy the relation (5). Let now introduce few definitions
which will turn useful later[18]:
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Definition A triball is a connected, cubic, 3-edge-colored graph Γ3 ⊂ Γ such that its Euler characteristic is the
one of the 2-sphere.

Thus we have the relation between its 2-residues bΓ3
and the vertices: 2bΓ3

−v = 4. An important fact is the following:

Lemma 3 A graph (Γ, γ)4 is a 3-gem iff each of its 3-residue is a triball.

Thus, the condition that graphs have to satisfy in order to be 3-gems is a condition on the topology of its 3-
residues. We now discuss crystallizations of 3-gems. Let first introduce the fusion process. Let be Bijk and B′ijk

FIG. 3. Fusion moves on a 4-regular 4-edge colored graph of 1-, 2- and 3- dipoles respectively.

two different 3-residues separated by a unique color which, by construction, is different from the color i, j, k. We call
1−dipole this edge connecting the two 3-residues. The generalization to k−dipoles which connect (n−k)-residues is
obvious. We call fusion the process of contraction of two vertices through the first two combinatorial moves depicted
in Fig. 3. Each cancellation of a 1-dipole has the effect of decreasing by one the number of i-residues, where i is the
color of the edge which defines the 1-dipole, not changing the number of j-residues, for j 6= i. Thus by a succession
of 1-dipole cancellation we obtain a 3-gem with 4 triballs. Such a 3-gem is said to be contracted and is called a
crystallization for the associated 3-manifold. It is a fact that any closed 3-manifolds has a crystallization, and two
closed 3-manifolds are related by a homeomorphic if and only if they are related by creation or contraction of 1- and
2- dipoles with the fusion rules; in this case, the two 3-manifolds are said to be equivalent or homeomorphic. Thus
it is easy to understand that the fusion rules are the combinatorial equivalent of homeomorphisms. Let now discuss
crystallization for generic colored (n+ 1)-graphs. The following results hold:

Theorem 1 For every PL n-manifold M there exist a crystallization.

Theorem 2 Two n-graphs |Γ1| and |Γ2| are crystallizations of the same manifold M if one is converted into
the other by:
a) Adding or removing a non-degenerate m-dipole with n− 1 > m > 1;
b) Adding a 1-dipole and deleting another 1-dipole.

A general theorem on the orientability of n-graphs holds:

Theorem 3 (Orientability) Let (Γ, γ)n+1 be any crystallization of an n-manifold M. Then M is orientable
iff Γ is bipartite.

These theorems are fundamental in order to have a clear geometrical understanding of graphs generated by a
colored group field theory, and will be used in the remainder of this paper. In particular we will use the theorem
above to prove the orientability in the colored Boulatov model.

IV. ORIENTABILITY IN CGFT

In this section we prove a Lemma on the orientability of PL manifolds associated to graphs generated by the colored
Boulatov model. Orientability of a manifold is a requirement if we want to construct a spin bundle. In 4-dimensions,
for instance, the requirement to have a global spin bundle is to have a vanishing first and second Stiefel-Whitney
class. While the second can be neglected by constructing local spin bundle and then gluing the charts, the vanishing
of the first is a strict requirement and is equivalent to ask the orientability of the manifold[20]. Another important
fact is that orientability restricts enormously the class of 3-manifolds which could be generated. As an example,
in 2-dimensions the most general decomposition is given by connected sum of spheres, torii and projective planes.
Orientability excludes the connected sum of projective planes, which allows the expansion in the ordinary genus we
are used to.
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Lemma (3-dimensions) Let Γ be a vacuum finite graph generated by the colored Boulatov model. Let Bijk
and Bij be the set of 3- and 2- bubbles of Γ respectively. Then |Γ| represents a closed and orientable 3-manifold iff

V + Card{Bijk} = Card{Bij} (6)

Proof. This lemma follows directly from the properties of graphs generated by the colored Boulatov model and its
interpretation, which is the same of the simplicial construction of 3-gepms. By Lemma 1 the graph generated is a
manifold if and only if the condition (6) is met. Since the graph is finite, the manifold is also closed. Thus what
we have to show is that they are orientable. By the theorem on the orientability the 3-gem represents an orientable
manifold if and only if the crystallization graph is bipartite. First we note that the graphs generated by colored group
field theory are bipartite. Let A and B be the set of clockwise and anti-clockwise vertices of Γ respectively. Since by
construction a clockwise vertex has to be contracted with an anticlockwise, then all the edges are between the set A
and the set B and none is within the sets, thus the graph is bipartite. Now we have to show that its contraction is
still bipartite. However, this fact is trivial because any of the moves in Fig. 3 keeps the bipartiteness of the original
graph, thus in particular the fusion of a 1− dipole. Moreover, since the graph is finite, the crystallization is reached
in a finite number of moves.

Part of this Lemma can be generalized to higher dimensions. The construction given in the third section of this note
ensures that to each n-dimensional pseudo-complex there is at least a colored (n+ 1)-graph which is homehomorphic
to it. It is then easy to see why colored group field theories generates only orientable pseudo-manifolds in any number
of dimensions; we state it as a Lemma, even if it clearly follows from the construction given in [14] of n-edge-colored
graphs in any number of dimensions, while orientability comes from a generalization to m-dipoles (as in Theorem 2)
of the previous proof and the fact that there are two types of vertices:

Lemma (n-dimensions) At any finite order, the vacuum graphs of a colored group field theory are associated
with closed and orientable PL pseudo-manifolds.

In the standard interpretation of group field theory as gluing faces of n-simplices this result certifies colored group
field theories as the best candidates to obtain reasonable manifolds in the continuum limit.

V. CONCLUSIONS

In this short paper we have used results in the field of 3-gems to prove that all the graphs generated by the colored
Boulatov model are related to orientable manifolds. In order to prove it we used new tools which could turn to
be very useful in the context of group field theory, more specifically in the colored version of it. In fact, color is
a fundamental ingredient in all we said. It should be said that what proved here is not an unexpected result[21].
The fact that an orientation for the faces can be chosen with ease was a hint of what proved here. Indeed, as far
as the author is concerned, this is the first rigorous proof appeared so far. We should stress that orientability is a
fundamental requirement for “reasonable” manifolds. As briefly explained at the beginning of section IV orientability
is a necessary ingredient in order to have a spin bundle over a manifold. If the current interpretation of PL complexes
associated to group field theory is correct, and since we expect GFT to be models of quantum gravity related to
Loop Quantum Gravity, where a SU(2) bundle is required to have spin-networks on the boundary of a covariant path
integral, orientability of the low energy manifolds should be merely a consistency check.
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